高性能微波滤波器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信和移动通信技术的迅猛发展,现代微波、毫米波系统正迅速向小型化、集成化、多功能、可靠性、低成本的方向发展。滤波器作为系统的重要组成部分,如何进行快速有效地设计对工程师们提出了前所未有的挑战。本文从设计方法、谐振器结构、设计工艺与材料等多个角度出发,研究如何设计高性能、小型化的微波滤波器。本文主要分为两部分:第一部分为微波滤波器理论研究,首先阐述了滤波器的基本理论以及设计方法,这是微带滤波器设计的基础。然后提出了改进知识嵌入空间映射(Improved Knowledge Embedded Space Mapping)的优化算法,使用该优化算法可以快速有效地设计滤波器。再从谐振器结构出发研究双模微带谐振器的工作原理,对双模微波滤波器进行建模、分析以及设计,可以实现滤波器的小型化;第二部分为微波滤波器的设计实例。基于低温共烧陶瓷(LTCC)技术,运用滤波器理论以及设计方法,设计并制作了超宽带(UWB:3.1——10.6GHz)滤波器系列、Ka波段三工器;基于高温超导(HTS)技术设计并制作了S波段、X波段的高温超导滤波器。
     本文的主要研究内容与成果如下:
     1、提出了改进知识嵌入空间映射法(Improved Knowledge Embedded Space Mapping)。首次将提取的设计曲线作为嵌入知识用到空间映射法中,解决了介质集成波导(SIW)滤波器的粗糙模型与精确模型参量不匹配问题,运用该方法可以有效、快速的设计SIW滤波器;
     2、分析了双模谐振器的工作原理与耦合极性,提出了利用双模谐振器实现具有规范折叠型耦合拓扑结构滤波器的方法。利用双模谐振器中不同的微扰位置,可以实现双模谐振器中两个模式不同的耦合极性,从而可以实现规范折叠型耦合拓扑结构,即可以实现广义切比雪夫型滤波器,如具有多个传输零点的滤波器、线性相位滤波器等。
     3、研制出了基于LTCC技术的小型化超宽带(UWB)滤波器系列。本文提出一种多模谐振器,可以实现具有传输零点的UWB滤波器,提高边带陡峭性;在此基础上提出一种带有多零点的多模谐振器,可以直接实现具有限波(notch)的UWB滤波器,从而抑制UWB频谱中不需要的信号;通过将一对短路的四分之一波长线耦合到UWB滤波器中,实现具有阻带的UWB滤波器,用来抑制无线局域网(WLAN)信号。
     4、研制出了新型的基于星型拓扑结构的Ka波段LTCC三工器。利用LTCC的多层技术,三路滤波器采用上下层耦合结构从而实现小型化,再将三路滤波器分别耦合到一个公共谐振器上实现消纳网络。
     5、研制出了具有极低损耗、极高带外抑制的S波段与X波段高温超导滤波器。采用T1-2212高温超导薄膜,在LaAlO3(001)基片上,设计并制作了10阶S波段高温超导滤波器和6阶X波段高温超导滤波器,测试结果表明高温超导滤波器具有插入损耗小、体积小以及选择性高的特点。
With the rapid development of wireless communication and mobile communication technology, miniaturization, integration, multi-functional, low-cost andreliability are required for modern microwave and millimeter wave systems. It brings great challenges for the engineers to design miniaturized filters with high performance quickly and efficiently, as filters is an important part of the system. How to design miniaturized filters with high performance is studied in this dissertation from several perspectives, including the design method, the resonator structure, design technology and materials. This dissertation can be divided into two parts. The first part focuses on the microwave filter theory. The basic theory and design method of the filters are discussed, which is the basis for the design of microwave filters. Improved knowledge embedded space mapping optimization algorithm is proposed, which can help to design filters quickly and efficiently. Dual mode microstrip resonators are studied. After modeling and analyzing dual mode filters, dual mode filters with general chebyshev response and minimized size can be acheived. The second part is about the microwave filter design examples. Ultra-wideband (UWB:3.1GHz-10.6GHz) filter series and a ka-band triplexer are designed and fabricated using low temperature co-fired ceramic (LTCC) technology based on the filter theory and design methods. An S-band high temperature superconductor (HTS) filter and an X-band HTS filter are designed and fabricated with HTS technology.
     The major contents and contributions of this dissertation can be outlined as follows:
     1. Improved knowledge embedded space mapping technology is proposed to design the substrate integrated waveguide (SIW) filters. Extracted design curves are first used as the embedded knowledge in space mapping algorithm, to solve the problem of mismatch of parameters of the course model and fine model. Base on the proposed optimization algorithm, we can design SIW filters quickly and effectively.
     2. The dual mode resonator is analyzed and the coupling characteristic is determined. A method to realize filters with folded canonical form is proposed based on the dual mode resonators. We can get different coupling characteristic of the two modes when the disturbance is placed in different place of the dual mode resonator. On this basis, we can realize filters with folded canonical form, which means that general chebyshev filters can be realized using dual mode resonators, such as filters with multiple transmission zeros, filters with linear phase.
     3. A series of miniaturized UWB filters have been developed based on LTCC technology. A multi-mode resonator is proposed to realize UWB filter with transmission zeros to improve the frequency selectivity. A multi-mode resonator with inherent zeros is proposed to realize the UWB filter with a notched band to eliminate the unwanted signals in UWB band. By coupling a couple of1/4λ transmission lines to a UWB filter, a UWB filter with a stopband can be realized to suppress the WLAN signals.
     4. Novel LTCC triplexer with star-junctionin Ka-band has been developed. Based on LTCC multilayer technology, vertical coupling structure is adopted in three filter channels in order to achieve miniaturization. And then, the three filter channels are coupled to a common resonator to realize the absorptive network.
     5. HTS filters with extremely low insersion loss and high rejection in S-band and X-band have been developed. The T1-2212superconducting thin films were prepared on both sides of the substrate of LaAlO3(001). An S-band10-pole HTS filter and an X-band6-pole HTS are designed and fabricated. HTS filters show the advantage of low insertion loss, small size and high selectivity.
引文
[1]甘本拨,吴万春,现代微波滤波器的结构与设计。北京:北京科学出版社,1973.
    [2]G.L. Matthaei, L.Young, and E.M.T. Jones, Microwave Filters:Impedance-matching network and coupling structures. New York:McGraw-Hill,1964.
    [3]V. E. Boria and B. Gimeno, Waveguide filters for satellite, IEEE Microwave Magazine,2007, 8(5):60-70.
    [4]C. Kudsia, R. J. Cameron, and W.-C. Tang, Innovations in microwave filters and multiplexing networks for communications satellite systems, IEEE Trans. Microwave Theory Tech.,1992, 40(6):1133-1149.
    [5]J.R.Hull.Applications of high-temperature superconductors in power technology. Rep. Prog. Phys.,2003,66 (11):1865-1886.
    [6]Bednorz J G, Mttller K A Z. Possible high Tc superconductivity in the Ba-La-Cu-O system, Phys. B,1986,64(2):189-193.
    [7]I. C. Hunter, Theory and Design of Microwave Filters, London:IEE Press,2001.
    [8]Revision of Part 15 of the Commission's Rules Regarding Ultra-wideband Transmission Systems. ET-Docket 98-153, First Note and Order. Federal Communication Commission. Feb.14, 2002.
    [9]W. Menzel and A. Belalem, quasi-lumped suspended substrate filters and diplexers, IEEE Trans. Microwave Theory Tech.,2005,53(10):3230-3237.
    [10]W. Menzel and M. Berry, Quasi-lumped suspended stripline filters with adjustable transmission zeroes, Microwave Symposium Digest,2004 MTT-S Int., vol.1, pp.375-378, June 2004.
    [11]M. Bekheit, S. Amari and W. Menzel, Modeling and optimization for compact microwave bandpass filters, IEEE Transaction on Microwave Theory and Techniques,2008, vol.56(2): 420-430.
    [12]L. Zhu, S. Sun and W. Menzel, Ultra-wideband (UWB) bandpass filters using multiple mode resonator, IEEE Trans. Microwave Theory Tech.,2005,15(11):796-798.
    [13]S. Sun and L. Zhu, Capacitive ended interdigital coupled lines for UWB bandpass filters with improved out of band performance, IEEE Microwave Wireless Components Lett.,2006,16(8):440-442.
    [14]J. Gao, L. Zhu, W. Menzel and F Bogelsack, Short circuited CPW multiple-mode resonator for ultra wideband bandpass filter, IEEE Microwave Wireless Components Lett.,2006,16(3): 104-106.
    [15]H. Wang, L. Zhu and W. Menzel, Ultra-wideband bandpass fitler with hybrid microstrip/CPW structure, IEEE Microwave Wireless Components Lett.,2005,15(12):844-846.
    [1]G. C. Temes, and S. K. Mitra, Modern Filter Theory and Design, Wiley, New York,1973.
    [2]J. D. Rhodes, Theory of Electrical Filters, Wiley, New York,1976.
    [3]Atia A E, Williams A E, Newcomb R W. Narrow-band Multiple-coupled Cavities Synthesis. IEEE Trans. Circuit and Systems,1974,21 (5):649-655.
    [4]Cameron R J, Rhodes J D. Asymmetric Realization of Dual-mode Bandpass Fiter. IEEE Trans. Microwave Theory Tech,1981,29 (1):649-655.
    [5]Bell H C. Canonical Asymmetric Coupled-resonator Filters. IEEE Trans. Microwave Theroy Tech,1982,30(1):1335-1340.
    [6]Cameron R J. General Coupling Matrix Synthesis Methods for Cheybeshev filtering function. IEEE Trans. Microwave Theory and Tech.,1999,47 (4):433-442.
    [7]Amari S, Rosenberg U. Adaptive Synthesis and Design of Resonator Filters with Source/load-multiresonator Coupling. IEEE Trans. Microwave Theory Tech.,2002,50 (8): 1969-1978.
    [8]Amari S, Rosenberg U. Direct Synthesis of a New Class of Bandstop Fiters. IEEE Trans. Microwave Theory Tech,2004,52(5):607-616.
    [9]Cameron R J. Advanced Coupling Matrix Synthesis Techniques for Microwave Filter. IEEE Trans. Microwave Theory and Tech.,2003,51 (1):1-10.
    [10]J-T Kuo, et al. Design of quasi-elliptic function filters with a dual-passband response. IEEE Microwave and Wireless Components Letters,2004, vol.14, no.10:472-474.
    [11]Jen-Tsai Kuo, et al. Design of microstrip bandpass filters with a dual-passband response. IEEE Transction on Microwave Theory and Techniques,2005,53(4):1331-1337.
    [12]E.G. Cristal and G.L. Matthaei, A technique for the design of multiplexers having contiguous channels, IEEE Trans. Microwave Theory Tech.,1964,12(1):88-93.
    [13]A.E. Atia, Computer aided design of waveguide multiplexers, IEEE Trans. Microwave Theory Tech.,1974,22(3):322-336.
    [14]M. Guglielmi, Simple CAD procedures for microwave filters and multiplexers, IEEE Trans. Microwave Theory Tech.,1994,42(7):1347-1352.
    [15]R.R. Mansour, S. Ye, V. Dokas, B. Jolley, W.C. Tang, and C. Kudsia, System integration issues of high power HTS output multiplexers, IEEE Trans. Microwave Theory Tech.,2000,48(7): 1199-1208.
    [16]M. Yu, Design of multiplexers with many channels, in Proc. IEEE International Microwave Symp., San Francisco, Jun.2006.
    [1]M. B. Steer, J.W. Bandler, and C.M. Snowden, Computer-aided designof RF and microwave circuits and systems, IEEE Trans. MicrowaveTheory Tech.,2002,50(3):996-1005.
    [2]J. W. Bandler, Q. S. Cheng, S. A. Dakroury, et al. Space Mapping:The State of the Art, IEEE Trans. Microwave Theory Tech.,2004,52:337-361.
    [3]S. Koziel, S. Ogurtsov, Rapid Design Optimization of Antennas Using Space Mapping and Response Surface Approximation Models, Int. J. RF and Microwave Computer-Aided Eng., 2011,21(6):611-621.
    [4]M. A. Ismail, D. Smith, A.Panariello, Y. Wang; M. Yu,EM-Based Design of Large-Scale Dielectric-Resonator Filters and Multiplexers by Space Mapping, IEEE Trans. Microwave Theory Tech.,2004,52 (1):386-392.
    [5]K. L. Wu, Y. J. Zhao, J. Wang, M.K.K Cheng, An effective dynamic coarse model for optimization design of LTCC RF circuits with aggressive space mapping,IEEE Trans. Microwave Theory Tech.,2004,52(1):393-402.
    [6]M.A.Ismail, K.G.Engel, M. Yu, Multiple space mapping for RF T-switch design, Microwave Symposium Digest,2004 IEEE MTT-S International,2004(3):1569-1572.
    [7]S.I. Li, B. Han; J.l. Cheng, Neuro-Space Mapping-Based DC Modeling for 130-nm MOSFET, Int. J. RF and Microwave Computer-Aided Eng.,2010,20(5):512-526.
    [8]X. Liu; G. Wang; J. Liu, Wideband Model of On-Chip CMOS Interconnects Using Space-Mapping Technique,Int. J. RF and Microwave Computer-Aided Eng.,2011,21(4):439-445.
    [9]J. W. Bandler, R. M. Biernacki, S. H. Chen, et al. Space mapping technique for electromagnetic optimization. IEEE Trans. Microwave Theory Tech.,1994,42(12):2536-2544.
    [10]J. W. Bandler, R. M. Biernacki, S. H. Chen, et al. Electromagnetic optimization exploiting aggressive space mapping technique. IEEE Trans.Microwave Theory Tech.,1995,43(12): 2874-2882.
    [11]M. H. Bakr, J.W. Bandler,et al.Review of the space mapping approach to engineering optimization andmodeling, Optimization Eng.2000,1(3):241-276.
    [12]M. H. Bakr, J. W. Bandler, M. A. Ismail, J. E. Rayas-Sanchez, and Q.J. Zhang, Neural space-mapping optimization for EM-based design,IEEE Trans. Microwave Theory Tech., 2000,48(12):2307-2315.
    [13]J. W. Bandler, M. A. Ismail, J. E. Rayas-Sanchez, and Q. J. Zhang,Neural inverse space mapping (NISM) optimization for EM-based microwave design, Int. J. RF Microwave Computer-Aided Eng.,2003,13(2):136-147.
    [14]J. E. Rayas-Sanchez,EM-based optimization of microwave circuits using artificial neural networks:the state-of-the-art,IEEE Trans. Microwave Theory Tech.,2004,52(1):420-435.
    [15]J. E. Rayas-Sanchez andN. Vargas-Chavez A Linear Regression Inverse Space Mapping Algorithm forEM-Based Design Optimization of Microwave Circuits, Microwave Symposium Digest (MTT), IEEE MTT-S International,2011:1-4.
    [16]J.W. Bandler, Q. S. Cheng, N. K. Nikolova, and M. A. Ismail, Implicitspace mapping optimization exploiting preassigned parameters, IEEETrans. Microwave Theory Tech.,2004, 52(1):378-385.
    [17]S.Koziel,Q.S. Cheng, J.W.Bandler,Implicit space mapping with adaptive selection of preassigned parameters, Microwaves, Antennas & Propagation, IET,2010,4(3):361-373.
    [18]S.Koziel, M. Jie J.W. Bandler, M.H.Bakr, Q.S.Cheng, Accelerated Microwave Design Optimization With Tuning Space Mapping,IEEETrans. Microwave Theory Tech.,2009,57(2): 383-394.
    [19]Q.S.Cheng, J.W. Bandler, S.Koziel, Space Mapping Design Framework Exploiting Tuning Elements.IEEETrans. Microwave Theory Tech.,2010,58(1):136-144.
    [20]S.Koziel, J.W. Bandler, Q.S.Cheng, Tuning space mapping design framework exploiting reduced electromagnetic models, Microwaves, Antennas & Propagation, IET,2011,5(10): 1219-1226.
    [21]K.-L. Wu, R. Zhang, M. Ehlert, and D.-G. Fang, An Explicit Knowledge-Embedded Space Mapping Technique and Its Application to Optimization of LTCC RF Passive Circuits, IEEE Trans. Microwave Theory Tech.,2003,26 (2):399-406.
    [22]J. Hirokawa and M. Ando, Single-layer feed waveguide consisting of posts for plane TEM wave excitation in parallel plates, IEEE Trans Antennas Propagat.,1998,46 (5):625-630.
    [23]U. Hiroshi, T. Takeshi, and M. Fujii, Development of a'laminated waveguide', IEEE Trans Microwave Theory Tech.,1998,46 (12):2438-2443.
    [24]X.-P. Chen, K. Wu, Dual-Band a triple-Band substrate integrated waveguide filters with Chebyshev and Quasi-elliptic responses, IEEE Trans Microwave Theory Tech.,55 (12): 2569-2578.
    [25]X.-P. Chen and K. Wu, Substrate Integrated Waveguide Cross-Coupled Filter With Negative Coupling Structure, IEEE Trans. Microwave Theory Tech.,2008,56 (1):142-149.
    [26]H.-Y. Chien, T.-M. Shen, Miniaturized Bandpass Filters With Double-Folded Substrate Integrated Waveguide Resonators in LTCC, IEEE Trans. Microwave Theory Tech.,2009,57 (7): 1774-1782.
    [27]L.-S. Wu, X.-L, Zhou, W.Y. Yin, L. Zhou, and J.F. Mao, A Substrate-Integrated Evanescent-Mode Waveguide Filter With Nonresonating Node in Low-Temperature Co-Fired Ceramic, IEEE Trans. Microwave Theory Tech.,2010,58(10):2654-2662.
    [28]W. Shen, W.-Y. Yin, X.W. Sun, Miniaturized Dual-Band Substrate Integrated Waveguide Filter With Controllable Bandwidths, IEEE Microwave Wireless Components Lett.,2009,21 (8), 418-420.
    [29]J.E. Rayas-Sanchez, J.A. Jasso-Urzua, EM-Based Optimization of a Single Layer SIW with Microstrip Transitions using Linear Output Space Mapping, IEEE MTT-S Int. Microwave Symp. Digest, Boston, June 2009:525-528.
    [30]F. Mira, M. Bozzi, F., Efficient Design of SIW Filters by Using Equivalent Circuit Models and Calibrated Space-Mapping Optimization, Int J RF and Microwave Computer-Aided Eng., 2010,20 (6):689-698.
    [31]Y. Cassivi, L. Perregrini, P. Arcioni, M. Bressan, K. Wu, and G. Conciauro, Dispersion Characteristics of Substrate Integrated Rectangular Waveguide, IEEE Microw. Wireless Compon. Lett.,2002,12(9):333-335, Feb.2002.
    [32]J.-S. Hong and M. J. Lancaster, Microstrip Filter for RF/Microwave Applications. Wiley, New York,2001.
    [1]I. Woff, Microstrip bandpass filter using degenerate modes of a microstrip ring resonator. Electron Lett,1972,8 (12):302-303.
    [2]A. Cassinese, M. Barra and etc, Miniaturized superconducting filter realized by using dual-mode and stepped resoantors, IEEE Trans.Microwave Theory Tech.,2004,52 (1):97-104.
    [3]J.S. Hong and M.J. Lancaster, Microstrip bandpass filter using degenerate modes of a novel meander loop resonator, IEEE Microwave and Guided Wave Letters,1995,5 (11):371-372.
    [4]S. Luo, L. Zhu and S. Sun, A dual-band ring-resonator bandpass filter based on two pairs of degenerate modes,IEEE Trans. Microwave Theory Tech.,2010,58 (12):3427-3432.
    [5]S. Luo, L. Zhu and S. Sun, Compact dual-mode triple-band bandpass filters using three pairs of degenerate modes in a ring resonator,IEEE Trans. Microwave Theory Tech.,2011,59 (5): 1222-1229.
    [6]J.S. Hong, H. Shaman and Y.H. Chun, Dual-mode microstrip open-loop resonators and filters,IEEE Trans. Microwave Theory Tech.,2010,58 (11):2888-2895.
    [7]L. Athukorala and D. Budimir, Design of compace dual-mode microstrip filter, IEEE Trans. Microwave Theory Tech.,2011,59 (5):1222-1229.
    [8]A.Gorur, Description of coupling between degenerate modes of a dual-mode microstrip loop resonator using a novel perturbation arrangement and its dual-mode bandpass filter applications, IEEE Trans. Microwave TheoryTech.,2004,52(2):671-677.
    [9]E.Djoumessi and K. Wu, Multilayer Dual-Mode Dual-Bandpass Filter, IEEE Microwave and Wireless Components Letters,2009,19(11):21-23.
    [10]S. Amari, Application of Representation Theory to Dual-Mode Microwave Bandpass Filters,IEEE Trans. Microwave Theory Tech.,2009,57 (2):430-441.
    [11]J.W. Baik, L. Zhu and Y. S. Kim, Dual-Mode Dual-Band Bandpass Filter Using Balun Structure for Single Substrate Configuration,IEEE Microwave and Wireless Components Letters, 2010,20 (11):613-615.
    [12]P. Cheong, T.S. Lv and etc., A Compact Microstrip Square-Loop Dual-ModeBalun-Bandpass Filter With SimultaneousSpurious Response Suppression and Differential Performance Improvement, IEEE Microwave and Wireless Components Letters,2011,21 (2):77-79.
    [13]S. Sun and W. Menzel, Novel Dual-Mode Balun Bandpass Filters UsingSingle Cross-Slotted Patch Resonator,IEEE Microwave and Wireless Components Letters,2011,21 (8):415-417.
    [14]C.C. Wang, H.C. Chiu and T.G. Ma, A Slow-Wave Multilayer Synthesized Coplanar Waveguide and Its Applications to Rat-Race Coupler and Dual-Mode Filter,IEEE Trans. Microwave Theory Tech.,2011,59 (7):1719-1729.
    [15]C. L. Wei, B.F. Jia and etc., Novel trigonal dual-mode filter with controllable transmission zeros, Microwave, Antennas Propagation,2011,5(13):1563-1567.
    [16]H.A. Wheeler, Transmission line properties of a strip on a dielectric sheet on a plane, IEEE Trans., MTT-25, Aug.1977:631-647.
    [17]J.S. Hong, M. J. Lancaster, Microstrip Filters for RF/Microwave Application, New York: John Wiley & Sons, INC, USA,2001.
    [18]R. J. Cameron, Advanced coupling matrix synthesis techniques for microwave filters, IEEE Trans. Microwave Theory Tech.,2003,50 (1):1-10.
    [1]H. Stetson, Multilayer Ceramic Technology, Ceramics and Civilization,1987, 12(3):307-322.
    [2]W. J. Gyuvk, Methods of Manufacturing Multilayered Monolithic Ceramic Bodies, U.S.Patent No.3,192,086, June 1965.
    [3]H. Stetson, Methods of Making Multilayer Circuits, U.S. Patent No.3,189,978, June,1965.
    [4]B. Schwartz, Microelectronics Packaging:II, Am.Ceram.Soc.Bull.,1984,63,(4): 577-81.
    [5]A. J. Blodgett, and D. R. Barbour, Thermal conduction module:A high performancemultilayer ceramic package, IBM J. Res. Develop.,1982,26(3):30.
    [6]C. W. Ho, D.A. Chance, C. H. Bajorek, and R. E. Acosta, The Thin-Film Module andHigh Performance Semiconductor Package, IBM J. Res. Develop.,1982, 26,(3):286-296.
    [7]Low-Temperature Fireable Multi-layer Ceramic Circuit Board, NIKKEI NEW MATERIALS, Aug. (1987), pp.93-103.
    [8]High performance and low cost copper paste, NIKKEIELECTRONICS, Jan. (1983),pp.97-114.
    [9]R. R. Tummala, Ceramics and Glass-Ceramic Packaging in thel990s, J. Am. Ceram. Soc.,1991,74, (5):895-908.
    [10]K.Niwa, E. Horikoshi, and Y.Imanaka, Recent Progress in Multilayer Ceramic Substrates, Ceramic Transactions Vol.97, Multilayer Electronic Ceramic Devices (American Ceramic Society, Westerville, OH,1999, pp.171-182.
    [11]Yoshihiko Imanaka,Multilayered Low TemperatureCofired Ceramics (LTCC)Technology,Fujitsu Laboratories, Ltd.,Japan.
    [12]H. Tsuneno, Multilayer technology of circuit board, Research and Development ofCeramic Devices and Material for Electronics (CMC, Tokyo,2000), pp.128-139.
    [13]C. Makihara, M. Terasawa, and H. Wada, The Possibility of High Frequency FunctionalCeramics Substrate, Ceramic Transactions Vol.97, Multilayer Electronic Ceramic Devices(American Ceramic Society, Westerville, OH,1999), pp.215-226.
    [14]P. Chahal, R. R. Tummala, M. G. Allen, and M. Swaminathan, A Novel IntegratedDecoupling Capacitor for MCM-L Technology, Proceeding of 1996 Electronic Componentsand Technology Conference, (1996), pp.125-132.
    [15]V. Agarwal, P. Chahal, R. R. Tummala, and M. G. Allen, Improvements and RecentAdvances in Nanocomposite Capacitors Using a Colloidal Technique, Proceeding of 1998Electronic Components and Technology Conference, (1998), pp. 165-170.
    [16]S. Ogitani, S. A. Bidstrup-Allen, and P. Kohl, An Investigation of Fundamental FactorsInfluencing the Permittivity of Composite for Embeded Capacitor, Proceeding of 1999Electronic Components and Technology Conference, (1999), pp.77-81.
    [17]H. Windlass, P. M. Raj, S. K. Bhattacharya, and R. R. Tummala, "Processing ofPolymer-Ceramic Nanocomposites for System-on-Package Application", Proceeding of 2001 Electronic Components and Technology Conference, (2001), pp. 1201-1206.
    [18]FCC, "Revision of part 15 of the commission's rules regarding ultra-wideband transmission system," Federal Communications Commission, Washington, D.C., Tech. Rep. ET-Docket 98-153 FCC02-48, Apr.2002.
    [19]P. S. Kshetrimayum, "An introduction to UWB communication systems," IEEE Potentials, vol.28, pp.9-13, Mar./Apr.2009.
    [20]C.-C. Chong, F. Watanabe, and H. Inamura, "Potential of UWB technology for the next generation wireless communications," in Proc.2006 IEEE 9th Int. Symp. Spread Spectrum Techniques and Applications, Aug.28-31,2006, pp.422-429.
    [21]C. L. Hsu, F. C. Hsu, and J. T. Kuo, Microstrip bandpass filter for ultra-wideband (UWB) wireless communications, IEEE MTT-S Int. Microwave Symp. Dig.,679-682, 2005.
    [22]C.-W. Tang and M. G. Chen, A microstrip ultra-wideband band-pass filter with cascaded broadband bandpass and bandstop filters,IEEE Trans. Microwave Theory Tech.,55 (11):2412-2418,2007.
    [23]Z.-C. Hao and J.-S. Hong, Ultra-wideband bandpass filter using multilayer liquid-crystal-polymer technology, IEEE Trans. Microwave Theory Tech.,56 (9):2095-2100,2008.
    [24]T. H. Duong and I. S. Kim, New elliptic function type UWB BPF based on capacitively coupled 1/4 open T resonator, IEEE Trans. Microwave Theory Tech.,57 (12):3089-3098,2009.
    [25]H. Wang, L. Zhu, and W. Menzel, Ultra-wideband (UWB) bandpass filter with hybrid microstrip/CPW structure, IEEE Microwave Wireless Compon. Lett.,15 (12):844-846,2005.
    [26]T. N. Kuo, S. C. Lin, and C. H. Chen, Compact ultra-widebandbandpass filter using composite microstrip-coplanar-waveguidestructure, IEEE Trans. Microwave Theory Tech.,54 (10):3772-3778,2006.
    [27]L. Zhu, S. Sun, and W. Menzel, Ultra-wideband (UWB) bandpass filter using multiple-mode resonator, IEEE Microwave Wireless Compon. Lett.,15 (11):796-798, 2005.
    [28]S. W. Wong and L. Zhu, Quadruple-mode UWB bandpass filter with improved out-of-band rejection,IEEE Microwave Wireless Compon. Lett.,19 (3):152-154, 2009.
    [29]L. Han, K. Wu, and X. Zhang, Development of packaged ultra-wideband bandpass filters, IEEE Trans. Microwave Theory Tech.,58 (1):220-228,2010.
    [30]S. Pirani, J. Nourinia, and C. Ghobadi, Band-notched UWB BPF design using parasitic coupled line, IEEE Microw. Wireless Compon.Lett.,2010,20(8):444-446.
    [31]X. Luo, J.-G.Ma, K. Ma, and K.-S. Yeo, Compact UWB bandpass filter with ultra narrow notched band,IEEE Microw. Wireless Compon.Lett.,2010,20(3): 145-147.
    [32]F. Wei, Q.-Y.Wu, X.-W. Shi, and L. Chen, Compact UWB bandpass filter with dual notched bands based on SCRLH resonator, IEEE Microw. Wireless Compon.Lett.,2011,21(1):28-30.
    [33]H. Shaman,and J.-S. Hong, Asymmetric parallel-coupled lines for notch implementation in UWB filter, IEEE Microw. Wireless Compon.Lett.,2007,17(7): 516-518.
    [34]S.-W. Wong, and L. Zhu, Implementation of compact UWB bandpass filter with a notch-band, IEEE Microw. Wireless Compon.Lett.,2008,18(1):10-12.
    [35]C.-H Kim, and K. Chang, Ultra-wideband (UWB) ring resonator bandpass filter with a notched band, IEEE Microw. Wireless Compon.Lett.,2011,21 (4):206-208.
    [36]Hao Z.-C, and Hong J.-S.:'Dual-band UWB filter using multilayer liquid crystal polymer technology', Electron. Lett.,2010,46, (3), pp.265-266.
    [37]Shinpei O., and Kouji W., Multilayer Dual-Band Bandpass Filter inLow-Temperature Co-Fired CeramicSubstrate for Ultra-Wideband Applications, IEEE Trans. Microw. Theory Tech.,2010,58, (3):614-622.
    [38]R.J. Cameron,Advanced Coupling Matrix Synthesis Techniquesfor Microwave Filters, IEEE Trans. Microw. Theory Tech.,2003,51 (1):614-622.
    [39]Rhodes J. D., Levy R., A generalized multiplexer theory,IEEE Trans. Microw. Theory Tech.,1979,27, (2):99-111.
    [40]Chen C.F., Shen T. M.:Design of Multimode Net-Type Resonators and Their Applications to Filters and Multiplexers, IEEE Trans.Microw. Theory Tech.,2011,59, (4),:848-856.
    [41]Cameron R.I., Kudsia C. M., Microwave filters for communication systems, (Wiley, New York, Hoboken,2007).
    [42]Macchiarella G., Tamiazzo S., Synthesis of Star-Junction Multiplexers, IEEE Trans.Microw. Theory Tech.,2010,58, (12):3732-3741.
    [43]Buchsbaum, M., Korden, C., Design of a high integrated Triplexer using LTCC technology. IEEE MTT-S Int. Microw.Symp. Dig.,2006, pp.378-381.
    [44]Tang C. W.; Hsu H. C., The A multilayered triplexer with low-temperature cofired ceramic technology, Microwave Opt Tech. Lett.,2008,50 (9),:2399-2403.
    [45]Tang C. W.; You S. F.:Design methodologies of LTCC bandpass filters, diplexer, and triplexer with transmission zeros, IEEE Trans. Microw. Theory Tech.,2006,54, (2):717-723.
    [1]R.Levy, Richard V. Snyder and G. Matthaei. Design of Microwave Filters. IEEE Trans. Microwave Theory Tech.,2002,50(3):783-793.
    [2]Mansour,R.R. Microwave superconductivity. IEEE Transactions on Microwave Theory and Techniques,2002,50(3):750-759.
    [3]G. Roesler. Superconducting Filters Enhance Military Receiver Performance. Microwaves and RF,1998,37:61-68.
    [4]J. Terrell.High Temperature Superconducting Filters for Military Applications. GOMAC, March 1999.
    [5]G. Koepf. Superconductors improve coverage in wireless networks. Microwave RF,1998, 37(4):63-72.
    [6]S. H. Talisa, M. A. Robertson, B. J. Meler. Dynamic range considerations for high-temperature superconducting filter applications to receive front ends. IEEE MTT-S Int. Symp. Dig.,1997,997-1000.
    [7]T. G. Kawecki, G. A. Golba, G. E. Price, et al. The high temperature superconductivity space experiment (HTSSE-II) design. IEEE Trans. Microwave Theory Tech.,1996,44:1198-1211.
    [8]G. Mattaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, Norwood, MA,1980.
    [9]G.-C. Liang, D. Zhang, C.-F. Shih,et al. High-power high-temperature superconducting microstrip filter for cellular base-station applications IEEE Trans. Appl. Supercondur.,1995,5(2): 2652-2655.
    [10]F. S. Thomson, R. R. Mansour, Y. Shen, et al. Current Density and Power Handling of High-Temperature Superconductive Thin Film Resonators and FiltersIEEE Transactions,1998,8: 84-92.
    [11]Aidam R, Geerk J, Linker G, et al. Y-Ba-Cu-O thin films on 3" sapphire wafers for microwave devices. IEEE Trans Appl Supercond,2001,11:357-360.
    [12]Face D W, Small R J, Warrington M S, et al. Large area YBa2Cu307 and Tl2Ba2CaCu2O8 thin films for microwave and electronic applications. Physica C,2001,357-360:1488-1494.
    [13]Schneidewind H, Manzel M, Bruchlos G, et al. TlBaCaCuO(2212) thin films on lanthanum aluminate and sapphire substrates for microwave filters. Supercond Sci Technol,2001,14: 200-212.
    [14]Liu X Z, Tao B W, Deng X W, et al. The preparation of two inch double-sided YBCO thin films. Supercond Sci Technol,2002,15:1698-1700.
    [15]Yan S L, Fang L, He M, et al. TlBaCaCuO thin films on 2 in. LaAlO (001) substrates. Cryogenics,2005,45:41-44.
    [16]Soares E R, Fuller J D, Marozick P J, et al. Applications of high-temperature-superconducting filters and cryo-electronics for satellite communication. IEEE Trans Microw Theory Tech,2000,48:1190-1198.
    [17]Willemsen B A. HTS filter subsystems for wireless telecommunications. IEEE Trans Appl Superconduct,2001,11:60-67.
    [18]Hong J S, Lancaster M J, Jedamzik D, et al. On the development of superconducting microstrip filters for mobile communications applications. IEEE Trans Microwave Theory Tech, 1999,47:1656-1663.
    [19]Hong Jia-sheng, Lancaster M J. Microstrip filters for RF/microwave applications. New York: John Wiley & Sons, Inc.,2001.235-271.
    [20]KonoPka J, Wolff I. Dielectric Properties of Substrates for deposition of high-Tc thin films up to 40 GHz. IEEE Trans Micrw Theory Tech,1992,40:2418-2423.
    [21]Zuo T, Fang L, Wu Z, Zhou T, Ji L, Xie Q, Zhang X. A self-equalized HTS filter for future mobile communication applications. Physica C,2007,459 (1-2):1-4.
    [22]Ning JS, Yang K, Luo ZX, et al. Design of high temperature superconducting contiguous-band diplexer. Chinese Science Bulletin,2009,54(7):1279-1281.
    [23]Xiahou H, Zhou CX, Zuo T, et al. Development of High Temperature Superconducting Filters Operating at Temperatures above 90 K. Chinese Science Bulletin,2009,54(19): 3596-3599.
    [24]Hong J, Lancaster M J, Jedamzik D, Greed R B. On the development of superconducting microstrip filters for mobile communications applications. IEEE Trans. Microw. Theory Tech., 1999,47(9):1656-1663.
    [25]Zhang X, Meng Q, Li F, et al. A 24-pole high Tc superconducting filter for mobile communication applications. Supercond. Sci. Technol.,2006,19(5):394-397.
    [26]Liu J, Yang K, Luo Z, Bu S, Ning J, Zhang T. Study of high-temperature superconductivity filters for satellite communication. Journal on Communications,2006,27 (3):105-109.
    [27]Richard J. Cameron. General Coupling Matrix Synthesis Methods. IEEE Trans. Microw. Theory Tech.,1999,47(4):433-442.
    [28]Zhang X, Yan S, Ji L, Sun D, Zhou T, Fang L, Zhao X. Microwave surface resistance measurement of hts films using dielectric resonators. Physica C,2006,449 (2):96-99.
    [1]甘本拨,吴万春,现代微波滤波器的结构与设计。北京:北京科学出版社,1973.
    [2]G.L. Matthaei, L.Young, and E.M.T. Jones, Microwave Filters:Impedance-matching network and coupling structures. New York:McGraw-Hill,1964.
    [3]V. E. Boria and B. Gimeno, Waveguide filters for satellite, IEEE Microwave Magazine,2007, 8(5):60-70.
    [4]C. Kudsia, R. J. Cameron, and W.-C. Tang, Innovations in microwave filters and multiplexing networks for communications satellite systems, IEEE Trans. Microwave Theory Tech.,1992, 40(6):1133-1149.
    [5]J.R.Hull.Applications of high-temperature superconductors in power technology. Rep. Prog. Phys.,2003,66 (11):1865-1886.
    [6]Bednorz J G, Mtlller K A Z. Possible high Tc superconductivity in the Ba-La-Cu-O system, Phys. B,1986,64(2):189-193.
    [7]I. C. Hunter, Theory and Design of Microwave Filters, London:IEE Press,2001.
    [8]Revision of Part 15 of the Commission's Rules Regarding Ultra-wideband Transmission Systems. ET-Docket 98-153, First Note and Order. Federal Communication Commission. Feb. 14,2002.
    [9]W. Menzel and A. Belalem, quasi-lumped suspended substrate filters and diplexers, IEEE Trans. Microwave Theory Tech.,2005,53(10):3230-3237.
    [10]W. Menzel and M. Berry, Quasi-lumped suspended stripline filters with adjustable transmission zeroes, Microwave Symposium Digest,2004 MTT-S Int., vol.1, pp.375-378, June 2004.
    [11]M. Bekheit, S. Amari and W. Menzel, Modeling and optimization for compact microwave bandpass filters, IEEE Transaction on Microwave Theory and Techniques,2008, vol.56(2): 420-430.
    [12]L. Zhu, S. Sun and W. Menzel, Ultra-wideband (UWB) bandpass filters using multiple mode resonator, IEEE Trans. Microwave Theory Tech.,2005,15(11):796-798.
    [13]S. Sun and L. Zhu, Capacitive ended interdigital coupled lines for UWB bandpass filters with improved out of band performance, IEEE Microwave Wireless Components Lett.,2006,16(8):440-442.
    [14]J. Gao, L. Zhu, W. Menzel and F Bogelsack, Short circuited CPW multiple-mode resonator for ultra wideband bandpass filter, IEEE Microwave Wireless Components Lett.,2006,16(3): 104-106.
    [15]H. Wang, L. Zhu and W. Menzel, Ultra-wideband bandpass fitler with hybrid microstrip/CPW structure, IEEE Microwave Wireless Components Lett.,2005,15(12):844-846.
    [16]G. C. Temes, and S. K. Mitra, Modern Filter Theory and Design, Wiley, New York,1973.
    [17]J. D. Rhodes, Theory of Electrical Filters, Wiley, New York,1976.
    [18]Atia A E, Williams A E, Newcomb R W. Narrow-band Multiple-coupled Cavities Synthesis. IEEE Trans. Circuit and Systems,1974,21 (5):649-655.
    [19]Cameron R J, Rhodes J D. Asymmetric Realization of Dual-mode Bandpass Fiter. IEEE Trans. Microwave Theory Tech,1981,29 (1):649-655.
    [20]Bell H C. Canonical Asymmetric Coupled-resonator Filters. IEEE Trans. Microwave Theroy Tech,1982,30(1):1335-1340.
    [21]Cameron R J. General Coupling Matrix Synthesis Methods for Cheybeshev filtering function. IEEE Trans. Microwave Theory and Tech.,1999,47 (4):433-442.
    [22]Amari S, Rosenberg U. Adaptive Synthesis and Design of Resonator Filters with Source/load-multiresonator Coupling. IEEE Trans. Microwave Theory Tech.,2002,50 (8): 1969-1978.
    [23]Amari S, Rosenberg U. Direct Synthesis of a New Class of Bandstop Fiters. IEEE Trans. Microwave Theory Tech,2004,52(5):607-616.
    [24]Cameron R J. Advanced Coupling Matrix Synthesis Techniques for Microwave Filter. IEEE Trans. Microwave Theory and Tech.,2003,51 (1):1-10.
    [25]J-T Kuo, et al. Design of quasi-elliptic function filters with a dual-passband response. IEEE Microwave and Wireless Components Letters,2004, vol.14, no.10:472-474.
    [26]Jen-Tsai Kuo, et al. Design of microstrip bandpass filters with a dual-passband response. IEEE Transction on Microwave Theory and Techniques,2005,53(4):1331-1337.
    [27]E.G. Cristal and G.L. Matthaei, A technique for the design of multiplexers having contiguous channels, IEEE Trans. Microwave Theory Tech.,1964,12(1):88-93.
    [28]A.E. Atia, Computer aided design of waveguide multiplexers, IEEE Trans. Microwave Theory Tech.,1974,22(3):322-336.
    [29]M. Guglielmi, Simple CAD procedures for microwave filters and multiplexers, IEEE Trans. Microwave Theory Tech.,1994,42(7):1347-1352.
    [30]R.R. Mansour, S. Ye, V. Dokas, B. Jolley, W.C. Tang, and C. Kudsia, System integration issues of high power HTS output multiplexers, IEEE Trans. Microwave Theory Tech.,2000, 48(7):1199-1208.
    [31]M. Yu, Design of multiplexers with many channels, in Proc. IEEE International Microwave Symp., San Francisco, Jun.2006.
    [32]M. B. Steer, J.W. Bandler, and C.M. Snowden, Computer-aided designof RF and microwave circuits and systems, IEEE Trans. MicrowaveTheory Tech.,2002,50(3):996-1005.
    [33]J. W. Bandler, Q. S. Cheng, S. A. Dakroury, et al. Space Mapping:The State of the Art, IEEE Trans. Microwave Theory Tech.,2004,52:337-361.
    [34]S. Koziel, S. Ogurtsov, Rapid Design Optimization of Antennas Using Space Mapping and Response Surface Approximation Models, Int. J. RF and Microwave Computer-Aided Eng., 2011,21(6):611-621.
    [35]M. A. Ismail, D. Smith, A.Panariello, Y. Wang; M. Yu,EM-Based Design of Large-Scale Dielectric-Resonator Filters and Multiplexers by Space Mapping, IEEE Trans. Microwave Theory Tech.,2004,52 (1):386-392.
    [36]K. L. Wu, Y. J. Zhao, J. Wang, M.K.K. Cheng, An effective dynamic coarse model for optimization design of LTCC RF circuits with aggressive space mapping,IEEE Trans. Microwave Theory Tech.,2004,52(1):393-402.
    [37]M.A.Ismail, K.G.Engel, M. Yu, Multiple space mapping for RF T-switch design, Microwave Symposium Digest,2004 IEEE MTT-S International,2004(3):1569-1572.
    [38]S.I. Li, B. Han; J.1. Cheng, Neuro-Space Mapping-Based DC Modeling for 130-nm MOSFET, Int. J. RF and Microwave Computer-Aided Eng.,2010,20(5):512-526.
    [39]X. Liu; G. Wang; J. Liu, Wideband Model of On-Chip CMOS Interconnects Using Space-Mapping Technique,Int. J. RF and Microwave Computer-Aided Eng., 2011,21(4):439-445.
    [40]J. W. Bandler, R. M. Biernacki, S. H. Chen, et al. Space mapping technique for electromagnetic optimization. IEEE Trans. Microwave Theory Tech.,1994,42(12):2536-2544.
    [41]J. W. Bandler, R. M. Biernacki, S. H. Chen, et al. Electromagnetic optimization exploiting aggressive space mapping technique. IEEE Trans.Microwave Theory Tech.,1995,43(12): 2874-2882.
    [42]M. H. Bakr, J.W. Bandler,et al.Review of the space mapping approach to engineering optimization andmodeling, Optimization Eng.2000,1(3):241-276.
    [43]M. H. Bakr, J. W. Bandler, M. A. Ismail, J. E. Rayas-Sanchez, and Q.J. Zhang, Neural space-mapping optimization for EM-based design,IEEE Trans. Microwave Theory Tech., 2000,48(12):2307-2315.
    [44]J. W. Bandler, M. A. Ismail, J. E. Rayas-Sanchez, and Q. J. Zhang,Neural inverse space mapping (NISM) optimization for EM-based microwave design, Int. J. RF Microwave Computer-Aided Eng.,2003,13(2):136-147.
    [45]J. E. Rayas-Sanchez,EM-based optimization of microwave circuits using artificial neural networks:the state-of-the-art,IEEE Trans. Microwave Theory Tech.,2004,52(1):420-435.
    [46]J. E. Rayas-Sanchez andN. Vargas-Chavez A Linear Regression Inverse Space Mapping Algorithm forEM-Based Design Optimization of Microwave Circuits, Microwave Symposium Digest (MTT), IEEE MTT-S International,2011:1-4.
    [47]J.W. Bandler, Q. S. Cheng, N. K. Nikolova, and M. A. Ismail, Implicitspace mapping optimization exploiting preassigned parameters, IEEETrans. Microwave Theory Tech.,2004, 52(1):378-385.
    [48]S.Koziel,Q.S. Cheng, J.W.Bandler,Implicit space mapping with adaptive selection of preassigned parameters, Microwaves, Antennas & Propagation, IET,2010,4(3):361-373.
    [49]S.Koziel, M. Jie J.W. Bandler, M.H.Bakr, Q.S.Cheng, Accelerated Microwave Design Optimization With Tuning Space Mapping,IEEETrans. Microwave Theory Tech.,2009,57(2): 383-394.
    [50]Q.S.Cheng, J.W. Bandler, S.Koziel, Space Mapping Design Framework Exploiting Tuning Elements,IEEETrans. Microwave Theory Tech.,2010,58(1):136-144.
    [51]S.Koziel, J.W. Bandler, Q.S.Cheng, Tuning space mapping design framework exploiting reduced electromagnetic models, Microwaves, Antennas & Propagation, IET,2011,5(10): 1219-1226.
    [52]K.-L. Wu, R. Zhang, M. Ehlert, and D.-G. Fang, An Explicit Knowledge-Embedded Space Mapping Technique and Its Application to Optimization of LTCC RF Passive Circuits, IEEE Trans. Microwave Theory Tech.,2003,26 (2):399-406.
    [53]J. Hirokawa and M. Ando, Single-layer feed waveguide consisting of posts for plane TEM wave excitation in parallel plates, IEEE Trans Antennas Propagat.,1998,46 (5):625-630.
    [54]U. Hiroshi, T. Takeshi, and M. Fujii, Development of a'laminated waveguide', IEEE Trans Microwave Theory Tech.,1998,46 (12):2438-2443.
    [55]X.-P. Chen, K. Wu, Dual-Band a triple-Band substrate integrated waveguide filters with Chebyshev and Quasi-elliptic responses, IEEE Trans Microwave Theory Tech.,55 (12): 2569-2578.
    [56]X.-P. Chen and K. Wu, Substrate Integrated Waveguide Cross-Coupled Filter With Negative Coupling Structure, IEEE Trans. Microwave Theory Tech.,2008,56 (1):142-149.
    [57]H.-Y. Chien, T.-M. Shen, Miniaturized Bandpass Filters With Double-Folded Substrate Integrated Waveguide Resonators in LTCC, IEEE Trans. Microwave Theory Tech.,2009,57 (7): 1774-1782.
    [58]L.-S. Wu, X.-L, Zhou, W.Y. Yin, L. Zhou, and J.F. Mao, A Substrate-Integrated Evanescent-Mode Waveguide Filter With Nonresonating Node in Low-Temperature Co-Fired Ceramic, IEEE Trans. Microwave Theory Tech.,2010,58 (10):2654-2662.
    [59]W. Shen, W.-Y. Yin, X.W. Sun, Miniaturized Dual-Band Substrate Integrated Waveguide Filter With Controllable Bandwidths, IEEE Microwave Wireless Components Lett.,2009,21 (8), 418-420.
    [60]J.E. Rayas-Sanchez, J.A. Jasso-Urzua, EM-Based Optimization of a Single Layer SIW with Microstrip Transitions using Linear Output Space Mapping, IEEE MTT-S Int. Microwave Symp. Digest, Boston, June 2009:525-528.
    [61]F. Mira, M. Bozzi, F., Efficient Design of SIW Filters by Using Equivalent Circuit Models and Calibrated Space-Mapping Optimization, Int J RF and Microwave Computer-Aided Eng., 2010,20 (6):689-698.
    [62]Y. Cassivi, L. Perregrini, P. Arcioni, M. Bressan, K. Wu, and G. Conciauro, Dispersion Characteristics of Substrate Integrated Rectangular Waveguide, IEEE Microw. Wireless Compon. Lett.,2002,12(9):333-335, Feb.2002.
    [63]J.-S. Hong and M. J. Lancaster, Microstrip Filter for RF/Microwave Applications. Wiley, New York,2001.
    [64]I. Woff, Microstrip bandpass filter using degenerate modes of a microstrip ring resonator. Electron Lett,1972,8 (12):302-303.
    [65]A. Cassinese, M. Barra and etc, Miniaturized superconducting filter realized by using dual-mode and stepped resoantors, IEEE Trans.Microwave Theory Tech.,2004,52 (1):97-104.
    [66]J.S. Hong and M J. Lancaster, Microstrip bandpass filter using degenerate modes of a novel meander loop resonator, IEEE Microwave and Guided Wave Letters,1995,5(11):371-372.
    [67]S. Luo, L. Zhu and S. Sun, A dual-band ring-resonator bandpass filter based on two pairs of degenerate modes,IEEE Trans. Microwave Theory Tech.,2010,58 (12):3427-3432.
    [68]S. Luo, L. Zhu and S. Sun, Compact dual-mode triple-band bandpass filters using three pairs of degenerate modes in a ring resonator,IEEE Trans. Microwave Theory Tech.,2011,59 (5): 1222-1229.
    [69]J.S. Hong, H. Shaman and Y.H. Chun, Dual-mode microstrip open-loop resonators and filters,IEEE Trans. Microwave Theory Tech.,2010,58 (11):2888-2895.
    [70]L. Athukorala and D. Budimir, Design of compace dual-mode microstrip filter, IEEE Trans. Microwave Theory Tech.,2011,59 (5):1222-1229.
    [71]A.Gorur, Description of coupling between degenerate modes of a dual-mode microstrip loop resonator using a novel perturbation arrangement and its dual-mode bandpass filter applications, IEEE Trans. Microwave TheoryTech.,2004,52(2):671-677.
    [72]E.Djoumessi and K. Wu, Multilayer Dual-Mode Dual-Bandpass Filter, IEEE Microwave and Wireless Components Letters,2009,19(11):21-23.
    [73]S. Amari, Application of Representation Theory to Dual-Mode Microwave Bandpass Filters,IEEE Trans. Microwave Theory Tech.,2009,57 (2):430-441.
    [74]J.W. Baik, L. Zhu and Y. S. Kim, Dual-Mode Dual-Band Bandpass Filter Using Balun Structure for Single Substrate Configuration,IEEE Microwave and Wireless Components Letters, 2010.20 (11):613-615.
    [75]P. Cheong, T.S. Lv and etc., A Compact Microstrip Square-Loop Dual-ModeBalun-Bandpass Filter With Simultaneous Spurious Response Suppression and Differential Performance Improvement, IEEE Microwave and Wireless Components Letters, 2011.21 (2):77-79.
    [76]S. Sun and W. Menzel, Novel Dual-Mode Balun Bandpass Filters UsingSingle Cross-Slotted Patch Resonator,IEEE Microwave and Wireless Components Letters,2011,21 (8):415-417.
    [77]C.C. Wang, H.C. Chiu and T.G. Ma, A Slow-Wave Multilayer Synthesized Coplanar Waveguide and Its Applications to Rat-Race Coupler and Dual-Mode Filter,IEEE Trans. Microwave Theory Tech.,2011,59 (7):1719-1729.
    [78]C. L. Wei, B.F. Jia and etc., Novel trigonal dual-mode filter with controllable transmission zeros, Microwave, Antennas Propagation,2011,5(13):1563-1567.
    [79]H.A. Wheeler, Transmission line properties of a strip on a dielectric sheet on a plane, IEEE Trans., MTT-25, Aug.1977:631-647.
    [80]J.S. Hong, M. J. Lancaster, Microstrip Filters for RF/Microwave Application, New York: John Wiley & Sons, INC, USA,2001.
    [81]R. J. Cameron, Advanced coupling matrix synthesis techniques for microwave filters, IEEE Trans. Microwave Theory Tech.,2003,50 (1):1-10.
    [82]H. Stetson, Multilayer Ceramic Technology, Ceramics and Civilization,1987,12(3): 307-322.
    [83]W. J. Gyuvk, Methods of Manufacturing Multilayered Monolithic Ceramic Bodies, U.S.Patent No.3,192,086, June 1965.
    [84]H. Stetson, Methods of Making Multilayer Circuits, U.S. Patent No.3,189,978, June,1965. [85] B. Schwartz, Microelectronics Packaging:II, Am.Ceram.Soc.Bull.,1984,63,(4):577-81.
    [80]A. J. Blodgett, and D. R. Barbour, Thermal conduction module:A high performancemultilayer ceramic package, IBM J. Res. Develop.,1982,26(3):30.
    [87]C. W. Ho, D.A. Chance, C. H. Bajorek, and R. E. Acosta, The Thin-Film Module andHigh Performance Semiconductor Package, IBM J. Res. Develop.,1982,26,(3):286-296.
    [88]Low-Temperature Fireable Multi-layer Ceramic Circuit Board, NIKKEI NEW MATERIALS, Aug. (1987), pp.93-103.
    [89]High performance and low cost copper paste, NIKKEIELECTRONICS, Jan. (1983), pp.97-114.
    [90]R. R. Tummala, Ceramics and Glass-Ceramic Packaging in the1990s, J. Am. Ceram. Soc., 1991,74, (5):895-908.
    [91]K.Niwa, E. Horikoshi, and Y.Imanaka, Recent Progress in Multilayer Ceramic Substrates, Ceramic Transactions Vol.97, Multilayer Electronic Ceramic Devices (American Ceramic Society, Westerville, OH,1999, pp.171-182.
    [92]Yoshihiko Imanaka,Multilayered Low TemperatureCofired Ceramics (LTCC)Technology,Fujitsu Laboratories, Ltd.,Japan.
    [93]H. Tsuneno, Multilayer technology of circuit board, Research and Development ofCeramic Devices and Material for Electronics (CMC, Tokyo,2000), pp.128-139.
    [94]C. Makihara, M. Terasawa, and H. Wada, The Possibility of High Frequency FunctionalCeramics Substrate, Ceramic Transactions Vol.97, Multilayer Electronic Ceramic Devices(American Ceramic Society, Westerville, OH,1999), pp.215-226.
    [95]P. Chahal, R. R. Tummala, M. G. Allen, and M. Swaminathan, A Novel IntegratedDecoupling Capacitor for MCM-L Technology, Proceeding of 1996 Electronic Componentsand Technology Conference, (1996), pp.125-132.
    [96]V. Agarwal, P. Chahal, R. R. Tummala, and M. G. Allen, Improvements and RecentAdvances in Nanocomposite Capacitors Using a Colloidal Technique, Proceeding of 1998Electronic Components and Technology Conference, (1998), pp.165-170.
    [97]S. Ogitani, S. A. Bidstrup-Allen, and P. Kohl, An Investigation of Fundamental FactorsInfluencing the Permittivity of Composite for Embeded Capacitor, Proceeding of 1999Electronic Components and Technology Conference, (1999), pp.77-81.
    [98]H. Windlass, P. M. Raj, S. K. Bhattacharya, and R. R. Tummala, "Processing ofPolymer-Ceramic Nanocomposites for System-on-Package Application", Proceeding of 2001Electronic Components and Technology Conference, (2001), pp.1201-1206.
    [99]FCC, "Revision of part 15 of the commission's rules regarding ultra-wideband transmission system," Federal Communications Commission, Washington, D.C., Tech. Rep. ET-Docket 98-153 FCC02-48, Apr.2002.
    [100]P. S. Kshetrimayum, "An introduction to UWB communication systems," IEEE Potentials, vol.28, pp.9-13, Mar./Apr.2009.
    [101]C.-C. Chong, F. Watanabe, and H. Inamura, "Potential of UWB technology for the next generation wireless communications," in Proc.2006 IEEE 9th Int. Symp. Spread Spectrum Techniques and Applications, Aug.28-31,2006, pp.422-429.
    [102]C. L. Hsu, F. C. Hsu, and J. T. Kuo, Microstrip bandpass filter for ultra-wideband (UWB) wireless communications, IEEE MTT-S Int. Microwave Symp. Dig.,679-682,2005.
    [103]C.-W. Tang and M. G. Chen, A microstrip ultra-wideband band-pass filter with cascaded broadband bandpass and bandstop filters,IEEE Trans. Microwave Theory Tech.,55 (11) 2412-2418,2007.
    [104]Z.-C. Hao and J.-S. Hong, Ultra-wideband bandpass filter using multilayer liquid-crystal-polymer technology, IEEE Trans. Microwave Theory Tech.,56 (9):2095-2100, 2008.
    [105]T. H. Duong and I. S. Kim, New elliptic function type UWB BPF based on capacitively coupled 1/4 open T resonator, IEEE Trans. Microwave Theory Tech.,57 (12):3089-3098,2009.
    [106]H. Wang, L. Zhu, and W. Menzel, Ultra-wideband (UWB) bandpass filter with hybrid microstrip/CPW structure, IEEE Microwave Wireless Compon. Lett.,15 (12):844-846,2005.
    [107]T. N. Kuo, S. C. Lin, and C. H. Chen, Compact ultra-widebandbandpass filter using composite microstrip-coplanar-waveguidestructure, IEEE Trans. Microwave Theory Tech.,54 (10):3772-3778,2006.
    [108]L. Zhu, S. Sun, and W. Menzel, Ultra-wideband (UWB) bandpass filter using multiple-mode resonator, IEEE Microwave Wireless Compon. Lett.,15 (11):796-798,2005.
    [109]S. W. Wong and L. Zhu, Quadruple-mode UWB bandpass filter with improved out-of-band rejection,IEEE Microwave Wireless Compon. Lett.,19 (3):152-154,2009.
    [110]L. Han, K. Wu, and X. Zhang, Development of packaged ultra-wideband bandpass filters, IEEE Trans. Microwave Theory Tech.,58 (1):220-228,2010.
    [111]S. Pirani, J. Nourinia, and C. Ghobadi, Band-notched UWB BPF design using parasitic coupled line, IEEE Microw. Wireless Compon.Lett.,2010,20(8):444-446.
    [112]X. Luo, J.-G.Ma, K. Ma, and K.-S. Yeo, Compact UWB bandpass filter with ultra narrow notched band,IEEE Microw. Wireless Compon.Lett.,2010,20(3):145-147.
    [113]F. Wei, Q.-Y.Wu, X.-W. Shi, and L. Chen, Compact UWB bandpass filter with dual notched bands based on SCRLH resonator, IEEE Microw. Wireless Compon.Lett.,2011,21(1): 28-30.
    [114]H. Shaman,and J.-S. Hong, Asymmetric parallel-coupled lines for notch implementation in UWB filter, IEEE Microw. Wireless Compon.Lett.,2007,17(7):516-518.
    [115]S.-W. Wong, and L. Zhu, Implementation of compact UWB bandpass filter with a notch-band, IEEE Microw. Wireless Compon.Lett.,2008,18(l):10-12.
    [116]C.-H Kim, and K. Chang, Ultra-wideband (UWB) ring resonator bandpass filter with a notched band, IEEE Microw. Wireless Compon.Lett.,2011,21(4):206-208.
    [117]Hao Z.-C., and Hong J.-S.:'Dual-band UWB filter using multilayer liquid crystal polymer technology', Electron. Lett.,2010,46, (3), pp.265-266.
    [118]Shinpei O., and Kouji W., Multilayer Dual-Band Bandpass Filter inLow-Temperature Co-Fired CeramicSubstrate for Ultra-Wideband Applications, IEEE Trans. Microw. Theory Tech., 2010,58, (3):614-622.
    [119]R.J. Cameron,Advanced Coupling Matrix Synthesis Techniquesfor Microwave Filters, IEEE Trans. Microw. Theory Tech.,2003,51 (1):614-622.
    [120]Rhodes J. D., Levy R., A generalized multiplexer theory,IEEE Trans. Microw. Theory Tech.,1979,27,(2):99-111.
    [121]Chen C.F., Shen T. M.:Design of Multimode Net-Type Resonators and Their Applications to Filters and Multiplexers, IEEE Trans.Microw. Theory Tech.,2011,59, (4),:848-856.
    [122]Cameron R.I., Kudsia C. M., Microwave filters for communication systems, (Wiley, New York, Hoboken,2007).
    [123]Macchiarella G., Tamiazzo S., Synthesis of Star-Junction Multiplexers, IEEE Trans.Microw. Theory Tech.,2010,58, (12):3732-3741.
    [124]Buchsbaum, M., Korden, C., Design of a high integrated Triplexer using LTCC technology. IEEE MTT-S Int. Microw.Symp. Dig.,2006, pp.378-381.
    [125]Tang C. W.; Hsu H. C., The A multilayered triplexer with low-temperature cofired ceramic technology, Microwave Opt Tech. Lett.,2008,50 (9),:2399-2403.
    [126]Tang C. W.; You S. F.:Design methodologies of LTCC bandpass filters, diplexer, and triplexer with transmission zeros, IEEE Trans. Microw. Theory Tech.,2006,54, (2):717-723.
    [127]R.Levy, Richard V. Snyder and G. Matthaei. Design of Microwave Filters. IEEE Trans. Microwave Theory Tech.,2002,50(3):783-793.
    [128]Mansour,R.R. Microwave superconductivity. IEEE Transactions on Microwave Theory and Techniques,2002,50(3):750-759.
    [129]G. Roesler. Superconducting Filters Enhance Military Receiver Performance. Microwaves and RF,1998,37:61-68.
    [130]J. Terrell.High Temperature Superconducting Filters for Military Applications. GOMAC, March 1999.
    [131]G. Koepf. Superconductors improve coverage in wireless networks. Microwave RF,1998, 37(4):63-72.
    [132]S. H. Talisa, M. A. Robertson, B. J. Meler. Dynamic range considerations for high-temperature superconducting filter applications to receive front ends. IEEE MTT-S Int. Symp. Dig.,1997,997-1000.
    [133]T. G. Kawecki, G. A. Golba, G. E. Price, et al. The high temperature superconductivity space experiment (HTSSE-Ⅱ) design. IEEE Trans. Microwave Theory Tech.,1996,44:1198-1211.
    [134]G. Mattaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks, and Coupling Structures, Artech House, Norwood, MA,1980.
    [135]G.-C. Liang, D. Zhang, C.-F. Shih,et al. High-power high-temperature superconducting microstrip filter for cellular base-station applications IEEE Trans. Appl. Supercondur.,1995,5(2): 2652-2655.
    [136]F. S. Thomson, R. R. Mansour, Y. Shen, et al. Current Density and Power Handling of High-Temperature Superconductive Thin Film Resonators and FiltersIEEE Transactions,1998,8: 84-92.
    [137]Aidam R, Geerk J, Linker G, et al. Y-Ba-Cu-O thin films on 3" sapphire wafers for microwave devices. IEEE Trans Appl Supercond,2001,11:357-360.
    [138]Face D W, Small R J, Warrington M S, et al. Large area YBa2Cu307 and Tl2Ba2CaCu208 thin films for microwave and electronic applications. Physica C,2001,357-360:1488-1494.
    [139]Schneidewind H, Manzel M, Bruchlos G, et al. TlBaCaCuO(2212) thin films on lanthanum aluminate and sapphire substrates for microwave filters. Supercond Sci Technol,2001,14: 200-212.
    [140]Liu X Z, Tao B W, Deng X W, et al. The preparation of two inch double-sided YBCO thin films. Supercond Sci Technol,2002,15:1698-1700.
    [141]Yan S L, Fang L, He M, et al. TlBaCaCuO thin films on 2 in. LaAlO (001) substrates. Cryogenics,2005,45:41-44.
    [142]Soares E R, Fuller J D, Marozick P J, et al. Applications of high-temperature-superconducting filters and cryo-electronics for satellite communication. IEEE Trans Microw Theory Tech,2000,48:1190-1198.
    [143]Willemsen B A. HTS filter subsystems for wireless telecommunications. IEEE Trans Appl Superconduct,2001,11:60-67.
    [144]Hong J S, Lancaster M J, Jedamzik D, et al. On the development of superconducting microstrip filters for mobile communications applications. IEEE Trans Microwave Theory Tech, 1999,47:1656-1663.
    [145]Hong Jia-sheng, Lancaster M J. Microstrip filters for RF/microwave applications. New York:John Wiley & Sons, Inc.,2001.235-271.
    [146]KonoPka J, Wolff I. Dielectric Properties of Substrates for deposition of high-Tc thin films up to 40 GHz. IEEE Trans Micrw Theory Tech,1992,40:2418-2423.
    [147]Zuo T, Fang L, Wu Z, Zhou T, Ji L, Xie Q, Zhang X. A self-equalized HTS filter for future mobile communication applications. Physica C,2007,459 (1-2):1-4.
    [148]Ning JS, Yang K, Luo ZX, et al. Design of high temperature superconducting contiguous-band diplexer. Chinese Science Bulletin,2009,54(7):1279-1281.
    [149]Xiahou H, Zhou CX, Zuo T, et al. Development of High Temperature Superconducting Filters Operating at Temperatures above 90 K. Chinese Science Bulletin,2009,54(19): 3596-3599.
    [150]Hong J, Lancaster M J, Jedamzik D, Greed R B. On the development of superconducting microstrip filters for mobile communications applications. IEEE Trans. Microw. Theory Tech., 1999,47(9):1656-1663.
    [151]Zhang X, Meng Q, Li F, et al. A 24-pole high Tc superconducting filter for mobile communication applications. Supercond. Sci. Technol.,2006,19(5):394-397.
    [152]Liu J, Yang K, Luo Z, Bu S, Ning J, Zhang T. Study of high-temperature superconductivity filters for satellite communication. Journal on Communications,2006,27 (3):105-109.
    [153]Richard J. Cameron. General Coupling Matrix Synthesis Methods. IEEE Trans. Microw. Theory Tech.,1999,47(4):433-442.
    [154]Zhang X, Yan S, Ji L, Sun D, Zhou T, Fang L, Zhao X. Microwave surface resistance measurement of hts films using dielectric resonators. Physica C,2006,449 (2):96-99.