大豆窄行密植平作高速气吸式精密播种机关键部件的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究内容来源于国家科技支撑计划“大马力拖拉机复式作业装备研究与开发”(课题编号:2006BAD11A05)中的子课题“大豆窄行密植平作高速精密播种机研究与开发”,旨在为大豆窄行密植平作栽培技术的推广提供装备技术支撑。
     本文遵循理论分析与实践检验相结合的原则,对大豆窄行密植栽培模式及配套高速气吸式精密播种机的关键部件进行了深入系统的研究:
     通过广泛查阅相关资料,对大豆窄行密植栽培模式及其配套播种机的国内外发展概况进行了详细介绍;探讨了大豆窄行密植栽培模式的农艺特点及增产机理,明确了大马力配套大豆窄行密植平作高速精密播种机的关键技术问题。
     对不同行距窄行密植平作机械化栽培技术进行了比较试验研究,试验结果表明,对于窄行密植平作栽培模式,35cm单行栽培产量最高;与30cm单行、45cm单行、45cm双行和70cm垄作栽培相比,其增产幅度分别为23.3%、8.4%、24.3%和44.3%。这一试验结果为配套播种机的设计提供了农艺理论支持和设计参数依据。
     通过对播种机机组总体动力学分析,确定了大豆窄行密植平作栽培配套高速气吸式精密播种机的设计原则:整体受力平衡,播种机质心前移。
     本文采取CAD与CAE相结合的手段,利用虚拟样机技术,完成了对大豆窄行密植平作栽培配套2BZJ-18大型高速气吸式精密播种机整机建模及播种单元组的运动仿真分析;设计了一种边梁式机架,兼作稳压箱及气流传输通道的作用,并应用ANSYS 10.0软件对播种机机架进行了有限元分析,以保证播种机在加工、装配和实际作业过程中均能能满足设计要求。
     田间试验结果表明,所设计的大豆窄行密植平作栽培配套高速精密播种机能够正常运输与作业,且作业质量符合《中耕作物精密播种机产品质量分等》标准中关于一等品的规定,能够满足大豆窄行密植平作机械化播种作业要求;大豆窄行密植平作栽培配套高速精密播种机播种单元组各部件能够正常工作,仿行效果较好,传动可靠,可保证播深一致性和粒距均匀性。
     根据田间实际作业情况,播种单元组及施肥装置还可以得到进一步的优化,因此,本文在最后提出了播种单元组的改进方案,通过分析,该方案在一定程度上能够更好地解决窄行密植平作栽培配套播种机关键技术问题,但是其实际作业效果仍需通过田间试验进行确定。
The research is based on the project of“Research and Development of High-speed Vacuum Precision Planter Matched with the Soybean Narrow-row-flat-dense Seeding Technique”supported by the National key technology R&D program“Research and Development of Combined Equipment Matched With Large Horse-Power Tractor”(NO.2006BAD11A05).The objective of the research is to offer equipment support for the development of soybean narrow-row-flat-dense seeding technique.
     According to the rule of combining the theory analysis with practice, this paper has a systemic research on the cultivation model of soybean narrow-row- flat - dense seeding and matched planter as follow:
     With comprehensive reference to correlative information, the paper details the present situation of soybean narrow-row-flat-dense planting technique and matched planter in and aboard; discusses the agriculture characteristic and theory of yield increasement of that cultivation model.
     The cultivation comparison experiment on soybean narrow-row- flat - dense seeding under the condition of different between-row spacing has been carried out to study the effect of yield increasement, the results shows that between the cultivation model of soybean narrow-row- flat - dense seeding whose between-row spacing are respectively 35cm and 45cm, and the 70cm ridge cultivation, the yield increasement of 35cm narrow-row- flat - dense seeding is the most. Compared with 30cm single row, 45cm single row, 45cm double rows and 70cm ridge cultivation, the yield exceeds approximately 23.3%、8.4%、24.3% and 44.3% respectively. The experiment results would provide the basic agricultural parameter for the design of matched planter.
     Based on the dynamics analysis of the whole planter when be transported or works, this thesis also determines the design principle of matched high-speed vacuum precision planter as follows: balance of forces on the whole planter and forward movement of the barycenter.
     With the technique of CAD and CAE, the Virtual Prototyping (VP) technology is adopt to create the model of the matched 2BZJ-18 high–speed vacuum precision planter, simulate the real situation of seeding unit when works; the finite element analysis (FEA) software ANSYS 10.0 is also used to analysis the stress and strain of the frame.All the methods above make sure that the matched planter can meet the design purpose.
     The results of the field experiment show that, the matched planter can work and be transported normally, and the work quality can meet the requirement on one class product according to the standard《Quality Classification of Precision Seeder for Intercultivation Crop》; With well contour following, reliable transmission, normal working of every part, the planter units meet the requirement on the uniformity of seeding depth and inter-plant spacing.
     According to the field experiment, the seeding unit can be further optimized. The improved structure has been designed in the last chaptor. Through the theory analysis, the new scheme can solve the key technology problem of the matched planter better in some degree. However, the performance of the seeding unit should still be measured through the field experiment.
引文
GB/T 6973-2005单粒(精密)播种机试验方法[S].中国标准出版社.
    JB/T 51017-1999中耕作物精密播种机产品质量分等[S].国家机械工业局
    陈海涛,李柏,黄兴华.1993.拖拉机汽车学[M].(出版者不详)
    陈志.2006.中国农业机械发展趋势与展望[C].中国农业机械学会2006年学术年会论文集. 10~13
    丁乔,杨广林,杨悦乾等.2005.大豆窄行平作密植栽培模式及配套机器系统的研究[J].东北农业大学学报.(3):222~223
    丁乔.2004.大豆窄平密全程机械化生产体系与机器系统配备研究[D].东北农业大学博士论文
    段进,倪栋,王国业. 2006.ANSYS 10.0结构分析入门到精通[M].北京:兵器工业出版社.
    方宪法,陈志,苏文凤等.2007.中国农业装备产业发展战略研究[J].农业工程学报. 23(2):267~272
    高元恩.2006.中国农业机械的现状与发展趋势[C].中国农业机械学会2006年学术年会论文集. 1~9
    耿丙峰,姚卫华. 2004.浅谈大豆的三种高产栽培方法实用技术[J].大豆通报.(6):11~12
    国外动态.2004.巴西的大豆产业[J].上海蔬菜.(2):66
    何秀荣,李平,张晓涛.2004.阿根廷大豆产业发展与政府政策[J].农业技术经济.(1):60~61
    胡国华.2001.大豆机械化“深窄密”高产配套栽培技术[J].作物杂志.(5):36~39
    机械设计手册编委会.2007.机械设计手册[M].北京:中国农业科学技术出版社.1:1-21
    李铭丰,胡立成,董立华等.2003.大豆全程机械化栽培技术[J].黑龙江农业科学
    刘宏新,杨广林.2003.大豆窄行平作配套机具技术研究[J].农机化研究.2:78~80
    刘宏新.2007.大豆窄行密植平作机关键部件研究及整机设计[D].东北农业大学博士论文
    刘鸿文.2004.材料力学Ⅰ[M].北京:农业出版社.243~244
    刘丽君.2003.巴西大豆的科研与生产服务体系[J].大豆科学.(3).236~239
    刘忠堂,何志鸿,魏冀西等.1997.大豆窄行密植高产栽培技术引进试验与嫁接[J].黑龙江农业科学.(6):28-29
    刘忠堂.2002.大豆窄行密植高产栽培技术的研究[J].大豆科学.21(2):117~122
    马成林,于海业,马旭等.1998.大豆高速气力精密播种机的研制与开发[J].大豆通报.(6):3~5
    马晓红,武天龙.2002.大豆子粒比重与生态特点的研究[J].大豆科学.22(1):22~26
    马旭,马成林,于海业. 1998.精密播种机田间植株分布动态仿真[J].吉林工业大学报.4:16~21
    农业部赴巴西大豆考察组.2003.巴西大豆产业发展情况与成功经验[J].世界农业.(8):37~39
    孙一源高行方余登苑.1985.农业土壤力学[M].北京:农业出版社. 93
    谭慧.2006.浅谈农机制造技术现代化[J].机电新产品导报. (11):27~29
    王金陵.1992.王金陵大豆论文集[C].哈尔滨:东北林业大学出版社.74~87
    王庆五,左昉,胡仁喜.2006.ANSYS 10.0机械设计高级应用实例[M].北京:机械工业出版社.
    王树友,安树义,周育忠.2001.大豆“小垄窄行密植”栽培技术[J].大豆通报.(4):11
    王艳杰,杜吉到,郑殿峰.2007.大豆不同群体几种主要性状与产量关系的研究[J].大豆科学.26(2):185~189
    吴相军,闫红萍,张文林等.1995.大豆窄行密植栽培技术及其配套播种机[J].河北农机.(1):24
    姚卫华.2007.机械化大豆“三垄”栽培技术增产效果及经济效益分析[J].大豆通报.(5):9
    张德文,李林,王慧民.1982.精密播种机械[M].北京:农业出版社.
    张伟,王福林,汪春等.2005.2BD-7型多功能精密播种机的实验研究[J].农业工程学报.21(4):81~84
    章建新,李劲松.2007.窄行密植对高产春大豆根系生长的影响[J].大豆科学.26(4):500~505
    中国农业机械化科学研究院.2007.农业机械设计手册下[M].北京:中国农业科学技术出版社.
    周福君,刘宏新,杨广林等.2001.2BZ-4大豆窄行精密平作机的研制[J].农机化研究.(2):77~78
    朱晶,李玉成.2003.黑龙江省垦区大豆机械化生产配套技术[J].大豆通报(3):16
    Arnold W Schumann, William M Miller, Sharath A Cugati,ect.2006.Optimizing Variable Rate Granular Fertilizer Spreader Performance for Single-Tree Prescription Zones. ASAE. 1~14
    C. L. Searle, M. F. Kocher,J. A. Smith,ect.2008.Field Slope Effects on Uniformity of Corn Seed Spacing for Three Precision Planter Metering Systems. Transactions of the ASAE. 4(5): 581-586
    C. M. Mesquita, M. A. Hanna, N. P. Costa.2007. Crop And Harvesting Operation Characteristics Affecting Physiological Qualities Of Soybeans ? Part I. ASAE.22(3): 325~333
    C. M. Mesquita, M. A. Hanna,N. P. Costa.2007. Crop And Harvesting Operation Characteristics Affecting Physiological Qualities of Soybeans ? Part II. ASAE.23(4): 433~438
    D. Karayel,A. O¨zmerzi. 2007. Comparison Of Vertical and Lateral Seed Distribution Of Furrow Openers Using a New Criterion.Soil & Tillage. 69~75
    Daniel.R, EssStephen.E, Hawkins Jay.C,ect.2004.Evaluation of the Performanceof a Belt Metering System for Soybeans Planted with a Grain Drill. ASAE. 1~10
    J. P. Molin,L. L. Bashford,K. Von Bargen,ect.1998.Design and Evaluation of A Punch Planter for No-Till Systems.Transactions of ASAE.
    Li Wei, Lin Jia, chun Zhan Bin,ect.2003.A Dynamic Test of Seeder Performance Based on ImagingTechniques. ASAE Annual International Meeting.
    M. G. Boydas, N. Turgut.2007.Effect of Vibration, Roller Design, and Seed Rates on the Seed Flow Evenness of A Studded Feed Roller. ASAE.23(4): 413~418
    Thomas J.R, Hughes, Ernest Hinton.1986.Finite element methods for plate and shell structures. Swansea, U.K.: Pineridge Press International, 75~96
    Wei Li, Jiachun Lin.2006.Seeding Precision Test Based on Machine Vision.Computers in Agriculture and Natural Resources, 4th World Congress Conference. 375-380