TJK6916数控落地镗铣床研究与关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着制造业的快速发展,需要大量的数控设备,其中,数控落地镗铣床是使用最为广泛的设备之一,本文作者受某企业的委托设计开发了数控落地镗铣床。
     首先按照用户对机床的设计要求基于CAD工程软件设计了机床工程图样,并按照工程图样制造了TJK6916数控落地镗铣床样机。
     深入分析研究机床部件之间的结合部问题,通过对机床样机各个结合部采用激振器激振、加速度传感器拾振的方式进行模态试验,获得了机床各个结合部的振动信号,并将采集到的振动信号导入用Lab VIEW编写的模态识别程序,获得了各结合部的模态参数,再利用有限元参数优化识别方法识别出各结合部的刚度和阻尼参数;利用COMBIN14单元模拟识别出的结合部刚度和阻尼参数建立TJK6916数控落地镗铣床整机有限元模型,并对整机进行模态分析得到了整机的各阶固有频率和振型;为验证有限元理论分析结果的正确性,对整机进行模态试验分析,将理论分析结果和试验分析结果相比较,证明了有限元模型的正确性,分析了产生误差的原因;根据模态分析的结果,分析了机床结构的薄弱环节,并对滑座、主轴箱、滑枕等主要部件进行了结构优化设计,对X轴传动系统、支撑固定结构、锁紧机构等机床结合部的联结方式及联结装置进行了创新设计,本人和团队成员共取得了5项国家专利。
     对优化后的机床结构,再在ansys中定义镗床立柱和主轴箱单元类型、材料、定义网格尺寸、划分网格,然后输出k文件,并在ls-prepost中编辑k文件,定义主轴箱运动关键字及边界条件,编辑以后,递交dyna971求解器求解,并运用1s-prepost对计算后的结果后置处理。利用动态模拟仿真,观察主轴箱在上下移动时对镗床立柱的影响,最后进行立柱应力、应变及能量的后处理,从分析数据看,机床的动态特性良好。
     通过市场调查,比较分析了当前国内外同类机床的电气控制系统,数控落地镗铣床的限位装置可靠性要求高,如果一旦失效将发生严重的事故。本文研究了适用于数控镗铣床的限位控制的负逻辑控制原理模型,并基于该模型设计开发了X、Y、Z轴的限位控制电路,并用于机床的控制电路的实际中,取得了良好的效果。
     深入研究分析了数控落地镗铣床加工零件的特征,基于GT技术创新地提出了适合于数控落地镗铣床加工零件特征的分组方法,按照该分组方法研究开发了模块化的参数化数控加工程序,并基于VB开发软件将模块化程序进行封装构建了适合于数控镗铣床加工的数控加工程序的自动编程系统。
     综合应用上述的研究成果,完整地设计、生产出了数控落地镗铣床,产品已投入市场,使用效果良好。为同类机床的开发研究提供参考,对提高落地式镗铣床产品的市场竞争力具有较大工程意义。此外,本文的研究分析方法对其它类型机床的改进也具有一定的参考价值和借鉴意义。
With the rapid development of manufacturing, a large number of CNC equipment are needed, in which CNC horizontal boring and milling machine tools is one of the most widely devices. In this situation, the author of the thesis has designed and developed CNC horizontal boring and milling machine tools entrusted by the enterprise.
     First, according to the users'requirements, the author designed the engineering drawing on the basis of CAD engineering software, and then manufactured the prototype of TJK6916CNC horizontal boring and milling machine tools.
     Deeply analyzing and researching the problems of the joints between the parts, by means of vibration exciter exciting and acceleration transducer picking up each joint part of the prototype machine, modal testing is done and the machine tools'vibration signals are obtained. Then collecting vibration sigoals are put into modal identification procedures programming by Lab VIEW, modal parameters of each joint parts are achieved and stiffness and damping parameters of each joint parts are identified by using the optimization recognition method of the finite element parameter. By using COMBIN14unit to simulate the identified joint stiffness and damping parameters of each joint part, the finite element model of the complete machine is established, and the modal analysis is carried out to get the each steps natural frequency and vibration type. In order to verify the finite element theory, the whole machine's modal test is analyzed, the analysis results of the theoretical and the test is compared, the finite element model is proved to be true, and the reasons of error is analyzed. According to the results of modal analysis, the weak unit of the machine tools structure is analyzed, the structures of the major components, such as the sliding seat, the spindle box, ram, are designed optimized. Furthermore, the creation design of coupling form and device of the machine tools'joint parts are carried out, for example, the transmission system along the X axis, supporting and fixing structure and the locking mechanism of machine tools. As a consequence, good dynamic property is obtained with the whole machine so as to the author and the team members have obtained five national patents.
     For optimized machine tools'structure, the type of boring machine bed and spindle box unit, material, mesh size were defined, meshing was completed and k file was output in Ansys. The k file was edited; the keyword&boundary conditions of the spindle box movement were defined in1s-prepost. After editing, they were submitted to dyna971solver to solve, the calculated result was treated by using1s-prepost. The influence on boring machine bed was observed by the use of dynamic simulation, when the spindle box moved up and down. Then, the post-processing of the bed stress, strain and energy has good dynamic characteristics.
     Having conducted market research and compared the electrical control system of current similar machine at home and abroad, once failure of which happens, serious accident will follow, with high reliability requirements of the limiting device of CNC Horizontal boring and milling machine. This paper studies the negative logic control theory model of limit control suitable for the applicability of CNC Horizontal boring and milling machine, and develops the limit control circuits of X, Y and Z axis based on the model. Later, good results are achieved in application of the circuits in practice.
     Thoroughly researching and analyzing of the processing parts'features of CNC horizontal boring and milling machine tools, the paper has put forward an innovative method of grouping suitable for which based on the GT technology innovation. According to the method of grouping, the digital control machining programs of modularization and parameterization have been researched and developed and modularization programs have been packaged to construct automatic programming system suitable for CNC Horizontal boring and milling machine based on VB software.
     With the general application of the research conclusion above, the CNC horizontal boring and milling machine has been designed and produced completely and put into market with good results. The machine tools provides reference for development and research of the similar one. And it has great engineering significance to elevate the market competitiveness of these products. In addition, the research and analysis methods in the article also have certain reference significance in the improvement of other types of machine tools.
引文
[1]彭斯林,落地铣镗床的技术发展特点.http://www.c-cnc.com/news/newsfile/2009/7/4/170582.
    [2]顾萍.数控技术和装备发展趋势与pro/E教学关系匹配[J].广西轻工业,2011.
    [3]郭景全.数控技术和装备发展的趋势及对策探讨[J].产业与科技论坛,2011(10):24.
    [4]才立杰,杨晓东.数控机床应用于维修.湖南农机[J].2013(1):40.
    [5]张伯霖编著.超高速加工与机床的零传动[M].北京:中国机械工程,1996.7(5)
    [6]张世珍,刘炳业,范晋伟等.电主轴设计的几个关键问题[J].制造技术与机床,2005(8):364-368.
    [7]周延佑.数控机床发展新趋势与我国相应的对策[J].机械工艺师,2001(2):5-71.
    [8]王爱玲.现代数控机床[M].北京:国防工业出版社,2006.25-50
    [9]储开宇,杜必强等.现代机床设计思想及其发展[J].水利电力机械,1999(18).P37-39.
    [10]刘强.大型飞机制造中的关键数控技术及装备[J].航空制造技术,2008,(5):P40-43
    [11]跨世纪数控机床技术发展战略研究课题组.跨世纪数控机床技术发展战略研究[J].机械科学研究院,2001.11
    [12]杨楠,唐恒龄,廖伯瑜. 机床动力学(Ⅰ)[M].机械工业出版社,1983,5
    [13]杨楠,唐恒龄,廖伯瑜.机床动力学(Ⅱ)[M].机械工业出版社,1983,5
    [14]浙江省先进制造技术研究所.大型高效数控模具加工机床关键技术研究验收(鉴定)材料,2006,1
    [15]韩兴瑞.机床切削振动的结构动力学模型的探讨[J].机床与液压,2003,4:161-163
    [16]李沪曾,G.Spur,郭大津.机床振动学研究的历史回顾与展望[J].同济大学学报,1994,22(3):378-384
    [17]陈勇,刘雄伟,俞铁岳.立铣加工切削力和振动的计算机仿真与试验[J].华侨大学学报(自然科学版),2006,27(1):71-75
    [18]李亮,查文伟.薄壁零件高速铣削的振动问题分析[J].盐城工学院学报(自然科学版),2006,19(2):9-13
    [19]李沪曾,G.Spur.平面端铣切削振动试验[J].振动、测试与诊断.1999,19(3):178-182
    [20]廖伯瑜,周新民,尹志宏.现代机械动力学及其工程应用[M].北京:机械工业出版社,2004.232-278
    [21]Yang M, Park H.The Prediction of Cutting Force in Ball-end Milling [J].International Journal of Machine Tools and Manufacture.1991,31(1):45-54
    [22]Lee P, Altintas Y.Prediction of Ball-end Milling Forces from Orthogonal Cutting Data [J]. International Journal of Machine Tools and Manufacture.1996,36(9):1059-1072
    [23]Yucesan G, Altintas Y.Prediction of Ball End Milling Force[J].Transactionsof the ASME,Journal of Engineering for Industry.1996,118(1):95-103
    [24]H Y Feng, C H Menq.The Prediction of Cutting Force in Ball-end Milling Process-I.Model Formulation and Model Building Procedure [J]. International Journal of Machine Tools and Manufacture.1994,34(5): 697-710
    [25]Kim G M,Cho P J,Chu C N.Cutting force Prediction of Sculptured Surface Ball-end Milling Using Z-Map[J]. International Journal of Machine Tools and Manufacture.2000,40(2):277-291
    [26]Ismail Lazoglu. Sculpture surface machining:a generalized model of ball-end milling force system[J]. International Journal of Machine Tools and Manufacture.2003,43(5):453-462
    [27]S.Engin,Y.Altintas.Mechanics and dynamics of general milling cutters, Part I:helical end mills.International Journal of Machine Tool Manufacture.2001,41(15):2195-2212
    [28]E.J.A.Armarego, R. C. Whitfield. Computer based modeling of popular machining operations for forces and power prediction.Annals of the CIRP.1985,34(1):65-69
    [29]垣野议昭,稻崎一郎等.机床动态特性讲座(一)评价方法及在设计上的应用[J].机床译丛,1981
    [30]M.韦克,K.泰佩尔,张慧聪译.金属切削机床的动态特性[M].北京:机械工业出版社,1985
    [31]李沪曾,G.Spur.机床切削振动仿真计算的结构动力学模型[J].同济大学学报,1995,23(5):541-546
    [32]杨楠,唐恒龄,廖伯瑜.机床动力学(Ⅰ,Ⅱ)[M].北京:机械工业出版社,1983
    [33]章正伟.许雪峰.XK717数控铣床床身结构的动态特性分析[J].轻工机械,2005,(2):31-35
    [34]张广鹏,史文浩,黄玉美.机床整机动态特性的预测解析建模方法[J].上海交通大学学报,2001
    [35]刘晓平,徐燕申,彭泽民等.模态分析和有限元法结合识别机械结构结合面动力学参数[J].应用力学学报,1993
    [36]汤文成,易红,唐寅.机床大件结构的拓扑优化设计[J].东南大学学报,1996,26(5):22-26.
    [37]徐超辉,阎兵.一种螺旋刃球头铣刀的高速加工铣削力模型[J].工具技术,2007,41(8):34-38
    [38]司徒渝,武友德.成组工艺技术在轴类零件数控车削加工中的应用研究[J].机械设计与制造,2008.07(第7期),134-125
    [39]赵信革.成组技术在零件数控加工生产中的应用[J].机械设计与研究,2006,22(5):96-97,103
    [40]曹玉娇.我国数字化造船发展现状[J].船舶工程,2008,30(3):6-9
    [41]王关峰,王俊彪,王淑侠.机翼整体壁板数字化制造技术[J].制造技术与机床,2006(5):87-90
    [42]曾东保,刘艳华.CAM技术的现状与发展趋势[J].装备制造技术,2008(11):129-131
    [43]何春生.CAD/CAM系统集成的研究与应用[J].中国机械工程,2006.17(13):1380-1383
    [44 Hong-Seok, Park, Van-Syler, Gyu-Bong Lee. An integrated CAD-CAPP-CAM system for Machining Mold Die With Optimal Cutting Parameters [C]//2006 International Forum on Strategic Technology. Ulsan, Korea,2006:344-348
    [45]韩庆瑶,赵保亚.现代成组技术在CAD/CAM中的应用与发展[J].机械设计与制造,2006(5): 64-66
    [46]陈文锋,毛汉领.MXBS-1320 M高速外圆磨床动态性能的试验研究[J].广西机械,1997,(02):33-34.
    [47]伍建国,陈新等.内圆磨床床身结构的动态分析与优化设计[J].精密制造与自动化,2002,(02):67-69.
    [48]张海伟.数控机床动态性能的分析及其结构优化[J].制造技术与机床,2006(05):22-23.
    [49]陈庆堂.基于ANSYS的数控铣床主轴箱优化设计[J].莆田学院学报,2005,(05):102-103.
    [50]陈艳辉,伍建国等.精密机床床身结构参数的优化设计[J].机械设计与研究,2003,(06):69-70.
    [51]毛海军,孙庆鸿,陈南等.基于BP神经网络模型的机床大件结构动态优化方法及其应用研究[J].东南大学学报(自然科学版),2002,(4):594-597.
    [52]汤文成,易红,唐寅.机床大件结构的拓扑优化设计[J].东南大学学报,1996,26(5):22-26.
    [53]Hull. Partick V Optimal synthesis of compliant mechanisms using subdivision and commercial FEA[J]. American Society of Mechanical Engineers. March, 2006:64-65.
    [54]Bianchi. G'Paolucci. F. Towards virtual engineer in machine tools design[J].Annals of the CIRP V01.45/1.1996:102-104.
    [55]T. P. YehandJ. M. Vance. Applying virtual Reality Techniques to Sensitivity-B ased Structural Shape Design. Journal of Mechanical Design[J].Transaction ofthe ASME,1998,12:44-45.
    [56]M. yoshimura. Computer Aided Design Improvement of Machine tools:Structure Incoporation Joint Dynamics Data[J].Annals of CIRP V01.2
    [57]司徒渝,武友德.成组工艺技术在轴类零件数控车削加工中的应用研究[J].机械设计与制造,2008,(7):129-125
    [58]高红,李双美,张凯等.成组工艺和CAPP在编制工艺规程中的应用[J].机械设计与制造,2006,(7): 134-125
    [59]周杰,李果.成组技术在CAPP中的研究与应用[J].现代制造工程,2006,(5):67-69
    [60]廉元国,张永洪编.加工中心设计与应用[M].北京:机械工业出版社.1995
    [61]S Jain,K C Yang.A systematic force analysis of the milling operation[J].Proceeding of ASME Winter Annaual Meeting,San Francisco.1989:55-63
    [62]龙驭球.有限元法概论[M].北京:高等教育出版社.1987
    [63]郑兆昌.机械振动[M].北京:机械工业出版社.1982
    [64]张国瑞.有限单元法[M].北京:机械工业出版社.1992
    [65]孙靖民,王新荣等.现代设计方法选讲[M].哈尔滨:哈尔滨工业大学出版社.1995
    [66]徐次达等.固体力学有限元理论方法及程序[M].北京:北京水利电力出版社.1983
    [67]华东水利学院.弹性力学问题的有限单元法[M].北京:北京水利电力出版社.1978
    [68]张汝清,詹先义.非线形有限元分析[M].重庆:重庆大学出版社.1990
    [69]王助成,邵敏编著.有限单元法基本原理与数值方法[M].北京:清华大学出版社.1988
    [70]李大潜等.有限元素法续讲[M].北京:科学出版社.1979
    [71]杜庆华等.材料力学(下册)[M].北京:人民教育出版社.1961
    [72]Kim, G M Cho, P J Chu. CN Cutting force Prediction of Sculptured Surface Ball-end Milling Using Z-Map[J]. IntemationalJournal of Machine Tools and Manufacture,2000,40(2):277-291
    [73]Fu W P, Huang Y M, Zhang G.P. Experimental investigation on damping behavior of normal joint surfaces at unit area Modeling [J].Measurement & Control, B,1993.
    [74]郑伟中.机床的振动及其防治[M].科学出版社.1981.11: 191-269
    [75]R.Connolly, R.H.Thornley. The Significance of Joint on the Overall Deflection of Machine Tool Structures [J].6thMTDR Conf.1965
    [76]C.F.Beads. Damping in Structural Joints The Shock and Vibration Digest. No.6,1982.
    [77]金晓亮,刘强等.基于虚拟仪器的数控机床态特性测试与分析系统研究[J].制造技术与机床,2007,(6): 77-80
    [78]Smith W R. Least-Squirt Time Method for Simultaneous Identification of Vibration Parameters from Multiple Free-Response Records A1AA Paper:530
    [79]李德葆, 陆秋海. 试验模态分析及其应用[M]. 科学出版社,2001.2: 191-269
    [80]曹树谦.振动结构模态分析:理论、实验与应用[M]. 天津:大学出版社,2001.3: 191-269
    [81]特拉维斯(美),克林(美),乔瑞萍.Lab VIEW大学实用教程[M].电子工业出版社,2008.6
    [82]Xi Shi, Andreas A.polycar pou. Measurement and modeling of Normal Contact Stiffness and Contact Damping at the Meso Scale. Journal of Vibration and Acousties.2005,127(2):52-62
    [83]杜平安,甘娥忠,于亚婷.有限元法—原理、建模及应用[M].国防工业出版社,2004
    [84]博弈创作室.ANSYS9.0经典产品基础教程与实例详解[M].中国水利水电出版社,2006
    [85]管迪华.模态分析技术[M]. 清华大学出版社.1996.5: 191-269
    [86]康方,范晋伟.基于ANSYS的数控机床动态特性分析[J].机床与液压,2008,(7):81-82
    [87]傅中裕,杨晓京.ANSYS的丝杠模态分析[J].机械制造与研究,2004.33(6):37-39
    [88]史安娜,孙伟.基于ADAMS的导轨系统动力学特性分析[J].机械制造,2011,(5):36-38
    [89]张珂等.陶瓷轴承电主轴的模态分析及其动态性能实验[J].沈阳建筑大学学报(自然科学版),2008.24(3).
    [90]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    [91]曹文平,杨庆东.五轴联动铣床的实验模态分析[J].机械制造与研究,2008.37(1):71-73.
    [92]徐文源.PLC输入信号正负逻辑判断[J].设备管理与维修,1999,3:14-16
    [93]John O. Hallquist. LS-DYNA THEORETICAL MANUAL[M]. LIVERMORE SOFTWARE TECH-NOLOGY CORPORATION. May 1998.
    [94]赵海鸥.LS-DYNA动力分析指南[M].北京:兵器工业出版社,2003
    [95]白金泽.LS-DYNA3D理论基础与实例分析[M].北京:科学出版社,2005
    [96]杨永.SEMENS系统数控机床位置控制数据的设置和调整[J].桂林电子工业学院学报,2004,24(1):52-55
    [97]丛红.基于PC的开放式数控系统设计[J].机床与液压,2003,(6):183-184
    [98]肖爱萍.基于普通车床的数控化改造设计[J].机床与液压,2000,(2):74-75
    [99]谢明红.数控系统的点动控制[J].华侨大学学报,2001,22(1):61-64
    [100]许吉庆.C616车床的数控化改造设计.机械制造[J].1999,37(1):38-40
    [101]廖效果,朱启逑.数字控制机床[M].武汉:华中理工大学出版社,2001.
    [102]邹元超.采用GT重组机械工业生产结构[J].成组技术与生产现代化,1997, (1): 39-41
    [103]丛红.基于PC的开放式数控系统设计[J].机床与液压,2003,(6):37-41
    [104]李援朝.SIEMENS SINUMERIK 810T数控系统简介[J].制造技术与机床,1997,(3):38-40
    [105]王细洋.计算机辅助零件工艺过程设计原理[M].北京:航空出版社,2004.
    [106]Xu X W, He Q. Striving, for a total integration of CAD. cAP'0, CAM and CNC[J]. Robotics and Computer-Integrated Mann{actoring,2004,20(2):101-109