液压机立柱的应力监测系统研制及其附加应力规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
立柱为液压机主要受力部件,起着支撑液压机本体以及为活动横梁导向的作用,由于加工偏载效应、活动横梁横向偏摆运动、液压系统冲击等复合作用,将引起立柱局部瞬态附加应力明显偏大,影响液压机本体结构安全。由于液压机现场环境恶劣,早期立柱应力检测系统均未运行多久即失效,目前国内没有长期可靠运行的液压机立柱应力监测系统。
     本文以300MN模锻液压机为研究对象,主要对上一代电涡流式立柱应力检测系统进行了实验测试分析,总结其失效的主要原因,在此基础上,提出了一种数字式液压机立柱应力在线监测方案,并完成了系统总体方案、结构、电气以及软件的设计;系统通过检测立柱受载时的微变形来计算立柱承受的应力,采用数字式微位移传感器为检测核心元件,所有传感器通过一条RS485总线相连,实现了应力信号的数字化采集与传输,提高了系统的抗干扰能力;基于现场总线技术实现与300MN液压机操作系统融合,实现了立柱应力的实时监测、数据归档以及传感器状态监测等功能;使用LS-DYNA软件对300MN模锻液压机进行了有限元接触分析,得出不同模间距下活动横梁偏移对立柱附加应力的影响规律,采用数据拟合的方法得出了立柱附加应力估算公式,可实现立柱附加应力的实时估算,具有工程应用价值;对系统记录的数据进行了分析,验证了附加应力计算公式,得出了300MN模锻液压机立柱应力变化规律。
     系统自2009年底成功在300MN模锻液压机上试运行,系统试运行一年多来未出现任何故障,具有较高的可靠性,实现了液压机立柱应力长期可靠监测。所提出的附加应力估算公式可实现立柱附加应力的实时估算,为液压机应力预警提供了技术支撑,对液压机力学规律的进一步研究奠定了基础,为大型液压机的设计提供借鉴和参考。
As the main force components of the hydraulic press, the columns support the body of hydraulic press and guide for the moving beam. The combined effects of processing partial loading, horizontal deflection of the moving beam and the impact of the hydraulic system would cause columns'local transient additional stress significantly increased and affect the safety of the body structure. The early column stress detection systems were all failed by running only a shot time because of the hostile site environment of the hydraulic press. At present, there hasn't been any long-term and reliable columns'stress monitoring system of the hydraulic press in the country.
     In this paper, the 300MN die forging hydraulic press was choused as the research object. The experiment of eddy-current columns'stress detecting system was tested to identify the main failure reasons of the previous generation. And on this basis, a program of digital hydraulic columns' stress online monitoring system was proposed. The overall system plan, structural design, electrical system design and software design were all been completed. The system calculated the columns stress by detecting the micro-deformation of the column when loaded. The digital micro-displacement sensors were used as the core components, and all sensors were connected to a RS485 bus, so both the signal acquisition and transmission were digitizing, which improved the capacity of anti-jamming of the system. Based on the filedbus, the columns'stress monitoring system integrated with the 300MN die forging hydraulic press operating system, had the functions of real-time columns'stress monitoring, data archiving, and sensor condition monitoring. The finite element contact analysis of 300MN die forging hydraulic press was did by LS-DYNA to analyze the influence on columns'additional stress with different mode spacing caused by the horizontal offset of moving beam. Columns'additional stress estimation formula was concluded using the method of data fitting, which can estimate the columns'additional stress real-time. It has the engineering value. The data recorded by the system was analyzed to verify the columns'additional stress estimation formula. The change rule of 300MN die forging hydraulic press columns'stress was summed up.
     The columns'stress online monitoring system has been trial ran on the 300MN die forging hydraulic press since the end of the year 2009. There has not any breakdown during the system operation time, so the system has high reliability, it can realize long-term reliable monitoring of the columns'stress of hydraulic press. The estimation formula proposed can estimate the columns'additional stress real-time, which provide d technical support for early warning of hydraulic press'stress. The research of this paper laid the foundation of hydraulic press'mechanical laws for further research and provided reference for the design of huge hydraulic press.
引文
[1]谭建平,黄长征,周俊峰等.300MN模锻液压机操纵系统改造[J].锻压技术.2007,32(3):80-84
    [2]机电工程学院.300MN模锻液压机同步控制系统鉴定技术资料[R].长沙:中南大学,2001
    [3]姚淑萍等.2000吨水压机立柱断裂分析[J].冶金分析.2004,(24):560-562
    [4]曹万昊.2500吨水压机立柱断裂力学分析[J].鞍山钢铁学院学报.1987,(4):52-60
    [5]关腾,方春林.6000吨水压机立柱断裂原因浅析[J].一重技术.2002,94(4):63-65
    [6]马建斌,王国强.8000T水压机立柱堆焊修复[J].焊接.2001,(6):41-42
    [7]尹福炎.电阻应变片发展历史的回顾[J].衡器.2009,38(4):46-52
    [8]侯林峰,曾庆雪,李肠.大跨度预应力框架梁应力测试技术研究[J].河南科学.2010,28(6):718-721
    [9]李昌辉.应力检测技术在翻车机上的应用[J].通用机械.2005,(9):74-77
    [10]陈中,王小平.桥式起重机金属结构的应力检测与分析[J].装备制造技术.2009,(7):30-37
    [11]张祝林,杨振坤.双光纤布拉格光栅温度和应变传感研究[J].西安交通大学学报.2004,38(6):607-610
    [12]Yoffe G W, Krug P A et al.Passive temperature-compensating Package for optical fiber Gratings[J]. Applied Optics.1995,34(30):6859-6861
    [13]曹晔,刘波,开桂云等.光纤光栅传感技术研究现状及发展前景[J].传感器技术.2005,24(12):1-4
    [14]Hill K O. et al.. Photosensitivity in optic fiber waveguides. Application to reflector filter fabrication[J]. Applied Physics Letter,1978,32(10):647-649
    [15]Meltz G, Morey WW, Glenn W H. Formation of Bragg gratings in optical fiber by a transverse holographic method[J]. Optics Letter,1989,14(15):823-825
    [16]尚丽平,张淑清,史锦珊.光纤光栅传感器的现状与发展[J].燕山大学学报.2001,25(2):139-143
    [17]P M Nellen, et al. Application of Fiber Optical and Resistance Strain Gauges for Long-term Surveillance of Civil Engineering Structures [C].1997, SPIE 3043:77-86
    [18]胡玉瑞,张奂欧.基于FBG表面应变仪的隧道监测系统[J].现代隧道技术.2010,47(4):54-57
    [19]吴海彬,朴承凤,熊永超等.运用弦振动法测大型构件的应力[J].辽宁工程技术大学学报(自然科学版).1999,18(2):169-172
    [20]胡华军,吴京,郭会国.振弦式应力传感器测试误差研究[J].江苏建筑.2007,(1):41-43
    [21]卢伟升,陈常松,涂光亚等.振弦式应变传感器的温度影响修正[J].传感器与微系统.2006,25(8):49-51
    [22]王星海,张玉平,李传习.株洲建宁大桥施工阶段主梁截面应力监控[J].长沙理工大学学报(自然科学版).2004,4(2):42-44
    [23]Hughes D S and Kelly J L. Second-order elastic deformation of solids[J]. Phys. Rev.,92(1953):1145-1149.
    [24]P N Keating. Theory of the Third-Order elastic constants of diamond-like crystals [J].Phys.Rev.,149,(1966):674-678.
    [25]刘镇清.超声波应力测试技术[J].实用测试技术.1996,(3):31-32.
    [26]王军,韩庆帮.固体金属中的超声波应力测量[J].重庆教育学院学报.2005,18(6):23-25.
    [27]冉启芳,费星如,邓朝栋等.用超声波方法测盆螺栓应力[J].固体力学学报.1982,(1):64-69
    [28]Adam Bartosiewicz, etc超声波应力检测在铁路工业中的应用[J].国外铁道车辆.1999,(6):32-36
    [29]路浩,马子奇,刘雪松等.300 km/h高速列车车体残余应力超声波法无损测量[J].焊接学报.2010,31(8):29-32
    [30]孟立凡,王恩怀,齐红丽.超声波检测无缝钢轨热应力研究[J].华北工学院学报.2005,26(1):50-52
    [31]Jiles D C. Review of Magnetic Methods for Nondestructive Evaluation. NDT International,1988,21(5):311~319
    [32]Jiles D C. Review of Magnetic Methods for Nondestructive Evaluation (Part2).NDT International,1990,23(2):83-92
    [33]王威,王社良,苏三庆等.钢铁材料结构构件工作应力的检测方法及特点[J].钢结构.2004,19(5):43-46
    [34]罗健豪.无损残余应力测量及其新技术[J].力学与实践.2003,25(4):7-11
    [35]Langman R. Measurement of the mechanical stress in mild steel by means of rotation of magnetic field strength. NDT&E International,1981,14(5):255-262
    [36]陈耕野,唐理想,石俊杰.钢管应力-感应电动势效应及其磁矩偏转原理[J].哈尔滨工业大学学报.2006,38(12):2174-2176
    [37]熊二刚,王社良,张倩.铁磁材料磁通量变化与应力关系的磁力学模型[J].广西大学学报:自然科学版.2009,34(5):599-602
    [38]姜永昌.四柱高行程液压机整体力学性能的电测应力分析[J].武汉化工学院学报.1983,(1):47-53
    [39]郁宏.125MN自由锻造液压机立柱应力测试分析[J].一重技术.2007,115(1):44-46
    [40]左虹,官英平,刘国权.方立柱液压机动态测试分析[J].锻压技术.1995,(1):48-51
    [41]黄明辉,张可,许良琼.巨型模锻液压机立柱应力在线检测及保护系统[J].中南工业大学学报.1998,27(5):474-477
    [42]陈晖,谭建平,龚金利.巨型模锻水压机立柱应力检测系统方案研究[J].锻压技术.2009,34(3):113-116
    [43]张可.100MN多向模锻水压机立柱应力在线检测与保护系统的研制[硕士学位论文].长沙:中南工业大学,1997.
    [44]G.Y.Tian.A Fieldbus-based intelligent sensor[J].Mechatronics.2000(10):835-849
    [45]Kim YJ. A frame for an on-line diagnostic expert system with intelligent sensor validation [J]. KSME International Journal.1997,11(1):9-10
    [46]俞新陆.液压机[M].北京:机械工业出版社,1982:22-23
    [47]李范坤,钟掘.300MN模锻水压机机架有限元计算模型探讨[J].中南矿冶学院学报.1993,24(3):384-390
    [48]李范坤,钟掘.300MN模锻水压机侧推力研究[J].中国有色金属学报.1995,5(3):134-137
    [49]K J Bathe. Numerical methods in Finite Element Analysis [M].Prentice-hall, Inc, 1976:35-36
    [50]Kobayashi S, Oh S I, Altan T. Metal Forming and the Finite-Element Method [M].Oxford:Oxford University Press,1989:55-70
    [51]O.C.Zienkiewicz. The Finite Element Method [M]. London:McGraw-Hill, 1977:13-24
    [52]Zhang, Cunhui. Finite element modeling of the frame structure of a 300 MN hydraulic forging press [J]. American Society of Mechanical Engineers,1994, 295:127-131
    [53]黄明辉,段智勇,彭伟波.300MN模锻水压机机架的有限元模态分析[J].中 国重型装备.2008,(1):3-5
    [54]郭立新.锻压机导套对立柱作用反力的分析研究[J].冶金设备.2000,(3):5-8
    [55]梁米.300MN模锻水压机关键部件承载及非正常接触附加力学行为分析[硕士学位论文].长沙:中南大学,2010
    [56]Hui Chen, Jianping Tan, Yufeng Peng, and Lingyun Quan. A Digital and Non-contact Method for Detecting Moving Beam Eccentricity in Forging Hydraulic Press Based on Machine Vision [C].2010 International Conference on Measuring Technology and Mechatronics Automation,2010,1:64~67.
    [57]Chen Hui, Tan Jiangping, Gong Jinli. A Digital Method for Detecting Hydraulic Press Column Stress Based on Profibus-dp Fieldbus[C].Measuring Technology and Mechatronics Automation. Zhangjiajie:IEEE computer society,2009: 155-158
    [58]谭建平,苏勇,周俊峰等.300MN模锻水压机操纵系统复杂网络控制实现[J].锻压技术.2007,32(1):84-87
    [59]Solartron Metrology. Power Supply Inteface Module User & Installation Manual [R].2001
    [60]Solartron Metrology. RS232 Interface Module User Manual [R].2001
    [61]Hild, Patrick, Quadratic finite element methods for unilateral contact problems [J]. Applied Numerical Mathematics,2002,41(3):401-421
    [62]Wriggers, P. Finite element methods for contact problems with friction [J], Tribology International,1996,29(8):651-658
    [63]John O. Hallquist, LS-DYNA THEORETICAL MANUAL[R], Livermore Software Technology Corporation,1998
    [64]Asano, Kazuhiro, A method of finite element analysis for elastic contact problem with sliding, Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A,2006,72(5):616-623
    [65]LSTC. LS-DYNA KEYWORD USER'S MANUAL[R]. Version 971. Livermore Software Technology Corporation,2007
    [66]龚金利,谭建平,陈晖.一种数字式液压机立柱应力在线监测系统研究[J].锻压技术.2010,35(4):81-85