毛竹颗粒表面化学/水热修饰及其增强PVC基复合材料性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以聚氯乙烯(PVC)和竹产业加工废弃物竹屑为研究对象,研究了原料特性和热模压工艺对复合材料性能的影响,在此基础上,着重考察了化学/水热增容对竹颗粒特性及复合材料性能的影响。结果发现:
     1)毛竹颗粒含水率为3%,复合材料中竹颗粒和PVC塑料的配比为5:5,竹颗粒粒径为0.9mm时,制备的竹颗粒增强PVC基复合材料的各项物理力学性能达到较佳。复合材料的较佳模压时间为8min,模压温度为180℃。
     2)5%硅酸钠处理的竹颗粒增强PVC基复合材料拉伸强度达到最大值,为15.72MPa。浓度为5%和2%氢氧化钠处理的竹颗粒增强PVC基复合材料弹性模量和静曲强度分别达到最大值,为4362.48 MPa和44.73MPa。0.5%的氢氧化钠处理的竹颗粒增强PVC基复合材料2h、24h厚度膨胀率分别达到最小值。采用不同溶液处理后竹颗粒和PVC的相容性改善,氢氧化钠和硅酸钠处理后的竹颗粒在PVC基体中的分布均匀性较亚硫酸氢钠差。
     3)高锰酸钾处理改善了毛竹颗粒在PVC基体中的分布,但高锰酸钾剂量过多会导致复合材料性能的降低。0.5%浓度的高锰酸钾修饰的竹颗粒增强PVC基复合材料的拉伸强度达到极大值,为13.79MPa。0.5%浓度的高锰酸钾修饰的竹颗粒增强PVC基复合材料的静曲强度和弹性模量分别达到极大值,为30.36MPa和3261.89MPa。高锰酸钾氧化处理增强了复合材料的弯曲变形率和断裂伸长率,改善了复合材料的耐水性。
     4)水热处理改善了毛竹颗粒表面结构,有效去除了半纤维素、木质素、果胶等物质,水热处理后毛竹颗粒在复合材料基体中的分布更为均匀。180℃水热处理复合材料的拉伸强度、静曲强度和弹性模量分别达到极大值,为15.79MPa、39.57MPa和6702.26MPa。200℃水热处理复合材料的拉伸断裂伸长率达到最大值,为3.75%±0.20%,140℃水热处理复合材料的弯曲最大变形率达到最大值,为36.22%±2.70%。280℃水热处理复合材料的2h和24h吸水率、2h和24h吸水厚度膨胀率分别达到极小值,为1.18%±0.08%、3.34%±0.20%、0.49%±0.13%和1.3%±0.41%。
     5)毛竹颗粒水热增容中,催化剂种类和浓度对毛竹颗粒特性及复合材料性能的影响显著。160℃时0.5%的硅酸钠催化水热处理毛竹颗粒的蛋白质、糖类、淀粉、果胶等物质的含量最小,为11.55wt%;120℃时0.5%硫酸催化水热处理毛竹颗粒的半纤维素含量最小,为7.58wt%;160℃下1%氢氧化钠催化水热处理毛竹颗粒的木质素含量略低,为11.31wt%。200℃下2%的硅酸钠水热处理毛竹颗粒增强PVC基复合材料的拉伸强度达到最大值,为26.98±4.69MPa。160℃下2%碳酸钾水热处理毛竹颗粒增强PVC基复合材料的弹性模量和静曲强度达到最大值,分别为6089.49±347.49MPa和52.16±2.54MPa。140℃下2%碳酸钠水热处理毛竹颗粒增强PVC基复合材料的拉伸断裂伸长率达到最大值,为4.41±0.03%。水热温度为160℃、浓度为2%氢氧化钠处理毛竹颗粒增强PVC基复合材料的弯曲最大变形率达到最大值,为91.92%±2.79%。120℃下催化剂浓度0.5%的硫酸水热处理毛竹颗粒增强PVC基复合材料的2h吸水率达到最小值,为1.61%±0.07%。180℃下催化剂浓度2%的硅酸钠水热处理毛竹颗粒增强PVC基复合材料的24h吸水率达到最小值,为3.43%±0.50%。,140℃下催化剂浓度0.5%的硅酸钠水热处理毛竹颗粒增强PVC基复合材料的2h厚度膨胀率达到最小值,为0.52%±0.15%。160℃下催化剂浓度1%的硅酸钠水热处理毛竹颗粒增强PVC基复合材料的24h厚度膨胀率达到最小值,为2.43%±0.13%。
     本论文在复合材料界面水热增容及复合材料耐水性机理方面进行了探索研究,本论文的研究成果为天然纤维的表面修饰及其增强树脂基复合材料的研究提供了新的思路和方法,为木塑复合材料的应用提供了参考。
Bamboo plastic composites were fabricated with polyvinyl chloride and moso bamboo sawdust from bamboo processing industry in this paper. And in order to obtain composites with outstanding mechanical properties, the influences of materials properties and moulding technical on the mechanical properties of moso bamboo particles reinforced PVC composites were studied. With this base, the roles of chemical/hydrothermal modification on characteristic of bamboo particles and properties of the composites were investigated. Results showed that:
     1) A better mechanical properties of moso bamboo particles reinforced PVC composites will be obtained when the particle size of moso bamboo particles is 0.9mm with a moisture content of 3%, and the weight ratio of bamboo and polyvinyl chloride is 50:50. Optimized parameters of molding technical is 8min compressing at 180℃.
     2) The highest tensile strength of the composites is 15.72MPa with 5wt% Na2SiO3 aqueous solution treatment. The best modulus of elasticity and modulus of rupture of the composites are obtained with 5wt% and 2wt% NaOH aqueous solution treated respectively, and the values are 4362.48 MPa and 44.73MPa. The lowest values of 2h and 24h thickness swelling and water absorption are obtained with 0.5wt% NaOH aqueous solution treatment. The compatibility of different content of the composites is improved with NaOH, Na2SiO3 and NaHSO3 solutions and the most uniform distribution of moso bamboo particles in PVC composites is observed with NaHSO3 solutions treatment.
     3) Tensile strength of moso bamboo particles reinforced PVC composites get its maximum value of 13.79MPa with 0.5% potassium permanganate treatment while modulus of rupture and modulus of elasticity reach their highest values of 30.36MPa and 3261.89MPa respectively at 0.2% concentration. Potassium permanganate treatment enhanced elongation at break and flexural deformation. A uniform dispersion of moso bamboo particles in PVC matrix was obtained after potassium permanganate treatment. Low concentration would oxidize hydroxyl groups of moso bamboo cellulose and too high concentration would make moso bamboo cellulose degrade.
     4) Hydrothermal modification improve the surface structure of moso bamboo particles and wipe out hemicelluloses, lignin, pectin and etc.. A uniform dispersion of moso bamboo particles in PVC matrix is observed with hydrothermal treatment. Tensile strength, modulus of elasticity and modulus of rupture of moso bamboo particles get their maximum values of 15.79Mpa, 6702.26MPa and 39.57MPa respectively with 180℃hydrothermal modification. The highest values of elongation at break and flexural deformation are 3.75%±0.20%(with 200℃hydrothermal modification) and 36.22%±2.70%(with 140℃hydrothermal modification). The lowest values of 2h and 24h of water absorption and thickness swelling are 1.18%±0.08%、3.34%±0.20%、0.49%±0.13% and 1.3%±0.41% respectively.
     5) The type and concentration of the catalyst have remarkable influence on characteristic of moso bamboo particles and the properties of the composites in the process of hydrothermal modification. A lowest content of protein, saccharine, amylum and pectin is obtained with 0.5wt% Na2SiO3 catalyzed. The lowest content of hemicelluloses is 7.58wt% which is catalyzed with 0.5% H2SO4 at 120℃hydrothermal modification. The lowest content of lignin is 11.31wt% which is catalyzed with 1%NaOH at 160℃hydrothermal modification. The largest tensile strength of the composites is 26.98±4.69MPa which is treated with 2wt% Na2SiO3 at 200℃. The highest modulus of elasticity and modulus of rupture are 6089.49±347.49MPa and 52.16±2.54MPa respectively which is treated with 2wt% K2CO3 at 160℃. The largest elongation at break of the composites is 4.41±0.03% which is catalyzed with 2wt% Na2CO3 at 140℃and the largest flexural deformation of the composites is 91.92±2.79% which is treated with 2wt% NaOH at 160℃. The lowest 2h water absorption of moso bamboo particles reinforced composites is 1.61±0.07% which is treated with 0.5wt% H2SO4 at 120℃hydrothermal condition. The lowest 24h water absorption of moso bamboo particles reinforced composites is 3.43±0.50% which is treated with 2wt% Na2SiO3 at 180℃hydrothermal condition. The lowest 2h thickness swelling of composites is 0.52±0.15% which is treated with 0.5wt% Na2SiO3 at 140℃hydrothermal condition and the lowest 24h thickness swelling of composites is 2.43±0.13% which is treated with lwt% Na2SiO3 at 160℃hydrothermal condition.
     The most important contribution of this research is surface modification of the composites with hydrothermal technology and the investigation of water absorption mechanism of the composites. The results of this manuscript will give an innovation thinking and method to surface modification of natural fibers and interface improvement of wood plastic composites. The results of our research also give some references to the applications of wood plastic composites.
引文
[1]LAHIRY A K. CCA leachability of slow dried three major bamboo species of Bangladesh [J]. Bulletin of Materials Science,1998,21(2):181-184.
    [2]Shao ZP, Fang CH, Huang SX, et al. Tensile properties of Moso bamboo (Phyllostachys pubescens) and its components with respect to its fiber-reinforced composite structure [J]. Wood Science and Technology,2010,44(4):655-666.
    [3]张齐生.我国竹材加工利用要重视科学和创新[J].浙江林学院学报,2003,20(1):1-4.
    [4]Gui YJ, Zhou Y, Wang Y, et al. Insights into the Bamboo Genome:Syntenic Relationships to Rice and Sorghum [J]. Journal of Integrative Plant Biology,2010,52(11):1008-1015.
    [5]Komatsu H, Onozawa Y, Kume T, et al. Stand-scale transpiration estimates in a Moso bamboo forest:Ⅱ. Comparison with coniferous forests [J]. Forest Ecology and Management,2010,260(8):1295-1302.
    [6]Chiwa M, Onozawa Y, Otsuki K. Hydrochemical characteristics of throughfall and stemflow in a Moso-bamboo (Phyllostachys pubescens) forest [J]. Hydrological Processes,2010,24(20):2924-2933.
    [7]Takahashi T, Mizuib K, Miyazawa M. Volatile compounds with characteristic odour in moso-bamboo stems (phyllostachys pubescens mazel ex houz. de ehaie) [J]. Phytochemical Analysis,2010,21(5): 489-495.
    [8]Vogtlander J, van der Lugt P, Brezet H. The sustainability of bamboo products for local and Western European applications. LCAs and land-use[J]. Journal of Cleaner Production,2010,18(13):1260-1269
    [9]Tsubaki T, Nakano T. Creep behavior of bamboo under various desorption conditions [J]. Holzforschung,2010,64(4):489-493.
    [10]Shao ZP, Zhou L, Liu YM, et al. Differences in structure and strength between internode and node sections of moso bamboo [J]. Journal of Tropical Forest Science,2010,22(2):133-138.
    [11]Zhao RJ, Jiang ZH, Hse CY, et al. Effects of steam treatment on bending properties and chemical composition of moso bamboo (phyllostachys pubescens) [J]. Journal of Tropical Forest Science,2010, 22(2):197-201.
    [12]Abe K, Yano H. Comparison of the characteristics of cellulose microfibril aggregates isolated from fiber and parenchyma cells of Moso bamboo (Phyllostachys pubescens) [J]. Cellulose,2010,17(2): 271-277.
    [13]肖良成,周早弘.食用笋集约经营开发技术[J],江西园艺,2004(3):19-21.
    [14]蒋乃翔,刘志明,任海清,等.不同竹龄毛竹细胞壁总酚酸类物质的含量变化[J],竹子研究汇刊,2010,29(1):24-31.
    [15]邵顺流,朱汤军,何正萍,等.毛竹无胶粘剂蒸爆板的制造和特性研究[J],浙江林业科技,2007,27(3):34-38.
    [16]唐文莉,彭镇华,高健.毛竹(Phyllostachys edulis)光系统Ⅰ基因LhcaPeO2全长的克隆与序列分析[J].安徽农业大学学报,2008,35(2):153-158.
    [17]林振清,郑郁善,李岱一,等.毛竹林丰产高效培育(第1版)[M].福建:福建科技出版社,2009
    [18]胡火生.楠竹资源开发和栽培技术要点[M],北京:中国农业科学技术出版社,2009
    [19]杨芳.浅谈毛竹科学栽培技术[J],中国新技术新产品,2009(18):232
    [20]Ohmae Y, Takato Nakano. Water adsorption properties of bamboo in the longitudinal direction, Wood Science Technology,2009,43:415-422
    [21]江泽慧.世界竹藤[M].沈阳:辽宁科学技术出版社,2002
    [22]刘广路,范少辉,官凤英,等.不同年龄毛竹营养器官主要养分元素分布及与土壤环境的关系[J],林业科学研究,2010,23(2):252-258.
    [23]罗华河.毛竹生物学特性与栽培管理措施,中国林副特产,2004,6:29-31
    [24]唐永裕.竹材资源的工业性开发利用[J].竹子研究汇刊,1997,16(2):26-33.
    [25]叶忠华.毛竹材特性及工业利用分析[J],林业科技,2002,27(3):39-43.
    [26]Obataya E, Kitin P, Yamauchi H. Bending characteristics of bamboo (Phyllostachys pubescens) with respect to its fiber-foam composite structure [J]. Wood Science and Technology,2007,41:385-400.
    [27]张齐生,关明杰,纪文兰.毛竹材质生成过程中化学成分的变化[J],南京林业大学学报(自然科学版),2002,26(2):7-13.
    [28]鲁顺保,申慧,张艳杰,等.厚壁毛竹的主要化学成分及热值研究[J],浙江林业科技,2010,30(1):57-61.
    [29]林金国,陈金明,王水英,等.不同种源毛竹材纤维形态和化学成分的变异[J],竹子研究汇刊,2010,29(1):54-58.
    [30]陈清林.毛竹叶化学成分对叶部主要害虫影响的通径分析[J],世界竹藤通讯,2006,4(3):36-38.
    [31]林金国,王水英,刘主凰,等.不同种源毛竹材纤维形态和化学成分的变异[C],第三届全国生物质材料科学与技术学术研讨会,2009:8-11.
    [32]Sun JX, Xu F, Geng ZC, et al. Comparative study of cellulose isolated by totally chlorine-free method from wood and cereal straw [J]. Journal of Applied Polymer Science,2005,97(1):322-335.
    [33]娄瑞,武书彬,谭扬,等.毛竹酶解/温和酸解木素的热解特性[J],南京理工大学学报(自然科学版),2009,33(6):824-828.
    [34]石磊,赵由才,柴晓得.我国农林物秸秆的综合利用技术进展[J],中国沼气,2005,23(2):11-14.
    [35]刘力,郭建忠,卢凤珠.几种农林植物秸秆与废弃物的化学成分及灰分特性[J],浙江林学院学报,2006,23(4):388-392.
    [36]Briggs D. Multi-Functional Materials and Structures Ⅱ,2nd International Conference on Multi-functional Materials and Structures, October 9-12,2009, Qingdao, Shandong, P. R. China
    [37]周芳纯著.竹林培育和利用[M].南京:南京林业大学《竹类研究》编委会,1998:178-267
    [38]李武,张占宽,李伟光.弧形竹片干燥过程中半径变化规律的研究[J],竹子研究汇刊,2010,29(1):45-50.
    [39]汪佑宏,田根林,刘杏娥,等.不同海拔高度对毛竹主要物理力学性质的影响[J].安徽农业大学学报,2007,34(2):222-225.
    [40]杜凡.云南重要经济竹种特性及其生产中存在问题[J],西南林学院学报,2003,23(2):26-31.
    [41]谢芳.毛竹节间性状及其海拔效应研究[J].江西农业大学学报,2002,24(1):86-89.
    [42]郑蓉.不同海拔毛竹竹材化学组成成份分析[J].浙江林业科技,2001,21(1):17-21.
    [43]邹跃国.海拔对毛竹林经济性状的影响研究[J].世界竹藤通讯2010,8(2):11-16.
    [44]李坚.生物质复合材料科学[M].北京:科学出版社,2008.
    [45]http://www.fao.org/:Global Forest Resources Assessment, FAO,2005.
    [46]王正,郭文静.丛生竹物理力学性能及其对制造竹建筑材料的影响[J],世界竹藤通讯,2003,1(1):25-28.
    [47]Lee A, Bai X, Peralta P. Physical and mechanical properties of strandboard made from Moso Bemboo [J].Forest Prodcts,1996,46:84-88.
    [48]Liese W. Advances in bamboo research [J].Journal of Nanjing Forestry University (Natural Sciences Edition),2001,25(4):1-6.
    [49]汪奎宏,黄伯惠.中国毛竹[M].杭州:浙江科学技术出版社,1996.
    [50]Loretta Gratani, Maria Fiore Crescente, Laura Varone, Giuseppe Fabrini and Eleonora Digiulio. Growth pattern and photosynthetic activity of different bamboo species growing in the Botanical Garden of Rome [J]. Flora-Morphology, Distribution, Functional Ecology of Plants,2008,203(1):77-84.
    [51]Wang Hui, Sheng Kuichuan. Sustainable Utilization of Bamboo Forests to Contribute Abatement of Greenhouse Effect and Petroleum Crisis in China [C]. Harvard University Symposium on Climate: Human and Science, March 2-5,2010, Oral presentation, Boston, MA, USA.
    [52]张齐生等著.中国竹材工业化利用[M].北京:中国林业出版社,1995,7.
    [53]张齐生,孙丰文.我国竹材工业发展展望[J],林产工业,1999,26(4):3-5.
    [54]李敏秀,李克忠,胡景初.以节约材料为目标的木质家具产品设计方法[J],林产工业,2009(6):45-48.
    [55]邴娟林,李承志.透过金融危机看国内PVC产业的发展前景[J],聚氯乙烯,2010,38(5):1-12.
    [56]钱伯章.国内外PVC行业分析[J],聚氯乙烯,2010,38(9):1-12.
    [57]Xie YJ, Xiao ZF, Gruneberg T, et al. Effects of chemical modification of wood particles with glutaraldehyde and 1,3-dimethylol-4,5-dihydroxyethyleneurea on properties of the resulting polypropylene composites [J]. Composites Science and Technology,2010,70(13-Sp.):2003-2011.
    [58]Liu DT, Chen Y. The impact behavior of ecofriendly cellulosic fiber-based packaging composites [J]. Wood and Fiber Science,2010,42(4):460-466.
    [59]Yeh SK, Gupta RK. Nanoclay-reinforced, polypropylene-based wood plastic composites [J]. Polymer Engineering and Science,2010,50(10):2013-2020.
    [60]Aminullah A, Mustafa SJS, Azlan MRN, et al. Effect of filler composition and incorporation of additives on the mechanical properties of polypropylene composites with high loading lignocellulosic materials [J]. Journal of Reinforced Plastics and Composites,2010,29(20):3115-3124.
    [61]Deng SQ, Tang YH. Increasing load-bearing capacity of wood-plastic composites by sandwiching natural and glass fabrics [J]. Journal of Reinforced Plastics And Composites,2010,29(20):3133-3148.
    [62]Lee CH, Wu TL, Chen YL, et al. Characteristics and discrimination of five types of wood-plastic composites by FTIR spectroscopy combined with principal component analysis [J]. Holzforschung, 2010,64(6):699-704.
    [63]Cheng QZ, Shaler S. Moisture movement in wood polypropylene composites [J]. European Journal of Wood and Wood Products,2010,68(4):463-468.
    [64]Clemons C. Elastomer modified polypropylene-polyethylene blends as matrices for wood flour-plastic composites[J]. Composites Part A-Applied Science and Manufacturing,2010,41(11):1559-1569.
    [65]Mahdavi S, Kermanian H, Varshoei A. Comparison of mechanical properties of date palm fiber-polyethylene composite [J]. Bioresources,2010,5(4):2391-2403.
    [66]Sheshmani S, Ashori A, Hamzeh Y. Physical properties of polyethylene-wood fiber-clay nanocomposites [J]. Journal of Applied Polymer Science,2010,118(6):3255-3259.
    [67]Yao F, Wu QL. Coextruded polyethylene and wood-flour composite:effect of shell thickness, wood loading, and core quality [J]. Journal of Applied Polymer Science,2010,118(6):3594-3601.
    [68]Zhou JA, Sheng JS, Wang YH, et al. Interface research of wood/plastic composites modified by long chain segment block graft [J]. Rare Metal Materials and Engineering,2010,39(Suppl.2):390-393.
    [69]Cruz-Estrada RH, Martinez-Tapia GE, Canche-Escamilla G, et al. A preliminary study on the preparation of wood-plastic composites from urban wastes generated in Merida, Mexico with potential applications as building materials [J]. Waste Management and Research,2010,28(9):838-847.
    [70]Nourbakhsh A, Ashori A, Tabari HZ, et al. Mechanical and thermo-chemical properties of wood-flour/polypropylene blends [J]. Polymer Bulletin,2010,65(7):691-700.
    [71]Ashori A, Nourbakhsh A. Performance properties of microcrystalline cellulose as a reinforcing agent in wood plastic composites [J]. Composites Part B-Engineering,2010,41(7):578-581.
    [72]Mohanty, A. K., A. Wibowo, et al. Development of renewable resource-based cellulose acetate bioplastic:Effect of process engineering on the performance of cellulosic plastics [J]. Polymer Engineering and Science,2003).43(5):1151-1161.
    [73]Fabiyi JS, McDonald AG. Effect of wood species on property and weathering performance of wood plastic composites [J]. Composites Part A-Applied Science And Manufacturing,2010,41(10): 1434-1440.
    [74]Albertsson AC. Biodegradation of synthetic-polymers.2. limited microbial conversion of C-14 in polyethylene to (CO-2)-C-14 by some soil fungi [J]. Journal of Applied Polymer Science,1978,22: 3419.
    [75]Andersson M. Acetylation of jute-effects on strength, rots resistance, and hydrophobicity [J]. Journal of Applied Polymer Science,1989,37:3437.
    [76]Matuana, L. M., J. J. Balatinecz, et al.. Effect of surface properties on the adhesion between PVC and wood veneer laminates [J]. Polymer Engineering and Scienc,1998,38(5):765-773.
    [77]Stark NM, White RH, Mueller SA, et al. Evaluation of various fire retardants for use in wood flour-polyethylene composites [J]. Polymer Degradation And Stability,2010,95(9):1903-1910.
    [78]Khoathane MC, Vorster, OC. Sadiku ER. Hemp fiber-reinforced 1-pentene/polypropylene copolymer: The effect of fiber loading on the mechanical and thermal characteristics of the composites [J]. Journal of Reinforced Plastics and Composites,2008,27(14):1533-1544.
    [79]Chaharmahali M, Tajvidi M, Najafi SK. Mechanical properties of wood plastic composite panels made from waste fiberboard and particleboard [J]. Polymer Composites,2008,29(6):606-610.
    [80]Valle GCX, Tavares MIB, Luetkmeyer L, et al. Effect of wood content on the thermal behavior and on the molecular dynamics of wood/plastic composites [J]. Macromolecular Symposia,2007,258: 113-118.
    [81]蔡红珍、柏雪源、易维明、彭思来、高振棠,麦秸/聚乙烯复合材料的研究[J],林业科技,2007,32(6):42-44.
    [82]张庐陵,张沂泉,蒋天弟,等.竹屑粉酚醛树脂复合材料及其力学性能[J],南京林业大学学报(自然科学版),2006,30(1):95-97.
    [83]朱晓群,周亨近,魏浩,等.木粉/HDPE复合材料的力学性能与流动性能[J],北京化工大学学报(自然科学版),2001,28(1):56-58.
    [84]何莉萍,田永,吴振军,等.剑麻纤维增强聚丙烯复合材料的拉伸性能[J],材料科学与工程学报,2008,26(3):395-399.
    [85]闰明涛,姚晨光,宋洪赞,等.PEN短纤维增强PTT复合材料的流变性能及力学性能[J],高分子材料科学与工程,2008,24(2):67-70.
    [86]Gacitua W, Bahr D, Wolcott M. Damage of the cell wall during extrusion and injection molding of wood plastic composites [J]. Composites Part A-Applied Science and Manufacturing,2010,41(10): 1454-1460.
    [87]Gwon JG, Lee SY, Chun SJ, et al. Effects of chemical treatments of hybrid fillers on the physical and thermal properties of wood plastic composites [J]. Composites Part A-Applied Science and Manufacturing,2010,41(10):1491-1497.
    [88]Ou RX, Zhao H, Sui SJ, et al. Reinforcing effects of Kevlar fiber on the mechanical properties of wood-flour/high-density-polyethylene composites [J]. Composites Part A-Applied Science and Manufacturing,2010,41(9):1272-1278.
    [89]Kushwaha PK, Kumar R. Bamboo fiber reinforced thermosetting resin composites:effect of graft copolymerization of fiber with methacrylamide [J]. Journal of Applied Polymer Science,2010,118(2): 1006-1013.
    [90]李兰杰,朱胜杰,刘赞,等.干燥处理对PE/松木粉复合材料性能的影响[J].合成树脂及塑料,2005,22(3): 22-25.
    [91]Tokoro R, Vu DM, et al. How to improve mechanical properties of polylactic acid with bamboo fibers [J]. Journal of Materials Science,2008,43(2):775-787.
    [92]Renneckar S, Zink-Sharp A, Glasser WG. Fiber surface modification by steam-explosion:Sorption studies with co-refined wood and polyolefins [J]. Wood and Fiber Science,2006,38(3):427-438.
    [93]Renneckar S, Johnson RK, Zink-Sharp A, et al. Fiber modification by steam-explosion:C-13 NMR and dynamic mechanical analysis studies of co-refined wood and polypropylene [J]. Composite Interfaces, 2005,12(6):559-580.
    [94]Quintana G, Velasquez J, Betancourt S, et al. Binderless fiberboard from steam exploded banana bunch [J]. Industrial Crops and Products,2009,29(1):60-66.
    [95]Paul SA, Piast D, Spange S, et al., Solvatochromic and electrokinetic studies of banana fibrils prepared from steam-exploded banana fiber [J]. Biomacromolecules,2008.9(7):1802-1810.
    [96]Yin SZ, Wang SQ, Rials GT, et al., Polypropylene composites filled with steam-exploded wood fibers from beetle-killed loblolly pine by compression-molding [J]. Wood and Fiber Science,2007,39(1): 95-108.
    [97]Renneckar S, Zink-Sharp A, Glasser WG. Fiber modification by steam-explosion:Microscopic analysis of co-refined wood and polypropylene [J]. Iawa Journal,2007,28(1):13-27.
    [98]Angles MN, Ferrando F, Farriol X, et al., Suitability of steam exploded residual softwood for the production of binderless panels. Effect of the pre-treatment severity and lignin addition [J]. Biomass and Bioenergy,2001.21(3):211-224.
    [99]Wolkenhauer A, Avramidis G, Hauswald E, et al. Plasma treatment of wood-plastic composites to enhance their adhesion properties [J]. Journal of Adhesion Science and Technology,2008,22 (16) 2025-2037.
    [100]Wolkenhauer A, Avramidis G, Hauswald E, et al. Sanding vs. plasma treatment of aged wood:A comparison with respect to surface energy [J]. International Journal of Adhesion and Adhesives,2009, 29(1):18-22.
    [101]Liu Y, Tao Y, Lv XY, et al. Study on the surface properties of wood/polyethylene composites treated under plasma [J]. Applied Surface Science,2010,257 (3):1112-1118.
    [102]Scholz G, Nothnick E, Avramidis G, et al. Adhesion of wax impregnated solid beech wood with different glues and by plasma treatment [J]. European Journal Of Wood And Wood Products,2010, 68(3):315-321.
    [103]Liu Y, Lu XY, Tao Y, et al. Plasma surface treatment of wood powder/polyethylene composites-effect of treatment time on surface characteristics of the composites [J]. Acta Polymerica Sinica,2010,6: 782-787.
    [104]钟鑫,薛平,丁筠.木塑复合材料性能研究的关键问题[J].工程塑料应用,2003,31(1):67-72.
    [105]Albano C, Reyes J, Gonzalez M, et al., Mathematical analysis of the mechanical behavior of C-60(o)-irradiated polyolefin blends with and without woodflour [J]. Polymer Degradation and Stability,2001.73(1):39-45.
    [106]Albano C, Reyes J, Ichazo M, et al., Analysis of the mechanical, thermal and morphological behaviour of polypropylene compounds with sisal fibre and wood flour, irradiated with gamma rays [J]. Polymer Degradation and Stability,2002.76(2):191-203.
    [107]Albano C, Reyes J, Ichazo M, et al., Influence of gamma irradiation on the thermal stability of blends of PP with previously treated sisal fiber [J]. Polymer Degradation and Stability,2001.73(2):225-236.
    [108]Reyes J, Albano C, Davidson E, et al., Effects of gamma irradiation on polypropylene, polypropylene plus high density polyethylene and polypropylene plus high density polyethylene plus wood flour [J]. Materials Research Innovations,2001.4(5-6):294-300.
    [109]Cetin NS, Tingaut P, Ozmen N, et al. Acetylation of Cellulose Nanowhiskers with Vinyl Acetate under Moderate Conditions [J]. Macromolecular Bioscience,2009,9(10):997-1003.
    [110]Dikobe DG, Luyt AS. Comparative study of the morphology and properties of PP/LLDPE/wood powder and MAPP/LLDPE/wood powder polymer blend composites [J]. Express Polymer Letters, 2010,4(11):729-741.
    [111]Qiu WL, Zhang FR, Endo T, et al. Effect of maleated polypropylene on the performance of polypropylene/cellulose composite [J]. Polymer Composites,2005,26(4):448-453.
    [112]Zhang YC, Zhang JL, Shi JL, et al. Flexural properties and micromorphologies of wood flour/carbon nanofiber/maleated polypropylene/polypropylene composites [J]. Composites Part A-Applied Science and Manufacturing,2009,40(6-7):948-953.
    [113]Nourbakhsh A, Kokta BV, Ashori A, et al. Effect of a novel coupling agent, polybutadiene isocyanate, on mechanical properties of wood-fiber polypropylene composites [J]. Journal of Reinforced Plastics and Composites,2008,27(16-17):1679-1687.
    [114]Karmarkar A, Chauhan SS, Modak JM, et al. Mechanical properties of wood-fiber reinforced polypropylene composites:Effect of a novel compatibilizer with isocyanate functional group [J]. Composites Part A-Applied Science and Manufacturing,2007,38(2):227-233.
    [115]Lopattananon N, Payae Y, Seadan M, et al. Influence of fiber modification on interfacial adhesion and mechanical properties of pineapple leaf fiber-epoxy composites [J]. Journal of Applied Polymer Science,2008,110(1):433-443.
    [116]Towo AN, Ansell MP. Fatigue of sisal fibre reinforced composites:Constant-life diagrams and hysteresis loop capture [J]. Composites Science and Technology,2008,68(3-4):915-924.
    [117]Sinha E, Rout SK. Influence of fibre-surface treatment on structural, thermal and mechanical properties of jute [J]. Journal of Materials Science,2008,43(8):2590-2601.
    [118]Pothan VLA, Laly A, Saxena NS, et al. Temperature dependence of thermo-mechanical properties of banana fiber-reinforced polyester composites [J]. Advanced Composite Materials,2008,17(1):89-99.
    [119]Rahman MM, Mallik AK, Khan MA. Influences of various surface pretreatments on the mechanical and degradable properties of photografted oil palm fibers [J]. Journal of Applied Polymer Science,2007, 105(5):3077-3086.
    [120]Mengeloglu F, Kurt R, et al. Mechanical properties of extruded high density polyethylene and polypropylene wood flour decking boards [J]. Iranian Polymer Journal,2007,16(7):477-487.
    [121]Matuana LM, Park CB, Balatinecz JJ. Cell morphology and property relationships of microcellular foamed PVC/wood-fiber composites [J]. Polymer Engineering and Science,1998,38(11):1862-1872.
    [122]Matuana LM, Woodhams RT, Balatinecz JJ, et al. Influence of interfacial interactions on the properties of PVC cellulosic fiber composites [J]. Polymer Composites,1998,19(4):446-455.
    [123]Abu Bakar A, Baharulrazi N. Mechanical properties of benzoylated oil palm empty fruit bunch short fiber reinforced poly(vinyl chloride) composites [J]. Polymer-Plastics Technology and Engineering, 2008,47(10):1072-1079.
    [124]Abu Bakar A, Hassan A, Mohd Yusof AF. Mechanical and thermal properties of oil palm empty fruit bunch-filled unplasticized poly (vinyl chloride) composites [J]. Polymers and Polymer Composites, 2005,13(6):607-617.
    [125]Abu Bakar A, Hassan A, Mohd Yusof AF. Comparative Study of the Effects of Chlorinated Polyethylene and Acrylic Impact Modifier on the Thermal Degradation of Poly(vinyl chloride) Compounds and Poly(vinyl chloride)/(Oil Palm Empty Fruit Bunch) Composites [J]. Journal of Vinyl and Additive Technology,2010,16(2):135-140.
    [126]Abu Bakar A, Keat TB, Hassan A. Tensile Properties of a Poly(vinyl chloride) Composite Filled with Poly(methyl methacrylate) Grafted to Oil Palm Empty Fruit Bunches [J]. Journal of Applied Polymer Science,2010,115(1):91-98.
    [127]Hui Wang, Rui Chang, Kuichuan Sheng, et al. Impact response of bamboo-plastic composites with the properties of bamboo and polyvinylchloride [J]. Journal of Bionic Engnieering, Suppl.2008:28-33.
    [128]Hui Wang, Kuichuan Sheng, Tian Lan, et al. Role of surface treatment on water absorption of poly(vinyl chloride) composites reinforced by phyllostachys pubescens particles [J]. Composites Science and Technology,2010,70:847-853.
    [129]Hui Wang, Tian Lan, Kuichuan Sheng, et al. Role of alkali treatment on mechanical and thermal properties of bamboo particles reinforced polyvinylchloride composites [J]. Advanced Materials Research,2009, (79-82):545-548.
    [130]Hui Wang, Kuichuan SHENG, Jie Chen, Hailiang Mao, Xiangqun QIAN. Mechanical and thermal properties of sodium silicate treated moso bamboo particles reinforced PVC composites [J]. Science China:Technological Sciences,2010,53(1):2932-2935.
    [131]Kritzer P, Dinjus E. An assessment of supercritical water oxidation (SCWO)-Existing problems, possible solutions and new reactor concepts [J]. Chemical Engineering Journal,2001,83(3):207-214.
    [132]Savage PE. Organic chemical reactions in supercritical water [J]. Chemical Research,1999,99, 603-621.
    [133]Suryawati L, Wilkins MR, Bellmer DD, et al. Simulteneous sacchrification and fermentation of Kanlow Switchgrass pretreated by hydrothermolysis using Kluyveromyces marxianus IMB4 [J]. Biotechnology and Bioengineering,2008,101 (5),894-902.
    [134]Bobleter O. Hydrothermal degradation of polymers derived from plants [J]. Progress of Polymer Science,1994,19:797-841.
    [135]Lai YZ. Chemical Degradation. In Wood and Cellulosic Chemistry [M]; David, N.-S., Hon, N. S., Eds.; Marcel Dekker, Inc.:New York,2001:443-512.
    [136]Malester IA, Green M, Shelef G. Kinetics of dilute acid hydrolysis of cellulose originating from municipa solid wastes [J]. Industrial and Engineering Chemistry Research,1992.31(8),1998-2003.
    [137]Karagoz S, Bhaskar T, Muto A, et al. Low-temperature hydrothermal treatment of biomass:effect of reaction parameters on products and boiling point distributions [J]. Energy and Fuels,2004,18(1): 234-241.
    [138]Karagoz S, Bhaskar T, Muto A, et al. Low-temperature catalytic hydrothermal treatment of wood biomass:analysis of liquid products [J]. Chemical Engineering Journal,2005,108(1-2):127-137.
    [139]Tagaya H, Shibasaki Y, Kato C, et al. Decomposition reactions of epoxy resin and polyetheretherketone resin in sub-and supercritical water [J]. Journal of Material Cycles and Waste Management,2004,6(1): 1-5.
    [140]Bicker M, Endres S, Ott L,et al. Catalytical conversion of carbohydrates in subcritical water:A new chemical process for lactic acid production [J]. Journal of Molecular Cataysis A:chemical,2005,239, 151-157.
    [141]Kristensen J B, Thygesen LG, Felby C, et al. Cell-wall structural changes in wheat straw pretreated for bioethanol production [J]. Biotechnology for Biofuels,2008,1(1):5-16.
    [142]Ramos LP. The chemistry involved in the steam treatment of lignocellulosic materials [J]. Quimica Nova,2003,26:863-871.
    [143]Chang VS, Holtzapple MT. Fundamental factors affecting biomass enzymatic reactivity [J]. Applied Biochemistry and Biotechnology,2000,84:5-37.
    [144]Minowa T, Zhen F, Ogi T. Cellulose decomposition in hotcompressed water with alkali or nickel catalyst [J]. The Journal of Supercritical Fluids,1997,13:253-259.
    [145]Minowa T, Zhen F, Ogi T, et al. Decomposition of cellulose and glucose in hot-compressed water under catalyst-free conditions [J]. Journal of Chemical Engineering of Japan,1998,31:131-134.
    [146]Pickering KL, Beckermann GW, Alam SN, et al. Optimising industrial hemp fibre for composites [J]. Composites Part A:Applied Science and Manufacturing,2007,38(2):461-468.
    [147]Sreekumar PA, Saiah R, et al. Effect of chemical treatment on dynamic mechanical properties of sisal fiber-reinforced polyester composites fabricated by resin transfer molding [J]. Composite Interfaces, 2008,15(2-3):263-279.
    [148]Kumari R, Ito H, et al. Fundamental studies on wood/cellulose-plastic composites:effects of composition and cellulose dimension on the properties of cellulose/PP composite [J]. Journal of Wood Science,2007,53(6):470-480.
    [149]Mizuta K, Ichihara Y, Matsuoka T, et al. Mechanical properties of loosing natural fiber reinforced polypropylene [J]. High Performance Structures and Materials Ⅲ,2006,85:189-198.
    [150]宋艳江,章刚,朱鹏,等.玻璃纤维改性热塑性聚酰亚胺复合材料弯曲性能(Ⅱ)——高温力学性能[J],南京工业大学学报(自然科学版),2008,30(3):43-46.
    [151]王春红,王瑞,沈路,等.亚麻落麻纤维/聚乳酸基完全可降解复合材料的成型工艺[J],复合材料学报,2008,25(2):63-67.
    [152]雷文,张长生.苎麻布/聚丙烯复合材料的力学性能[J],复合材料学报,2008,25(1):40-45.
    [153]易回阳,肖建中.正交设计确定模压条件对HDPE/CB复合材料PTC强度的影响[J],高分子材料科学与工程,2008,24(1):120-123.
    [154]American Society for Testing and Materials (ASTM).ASTMD570-98:In:2002 Annual book of ASTM Standards, West Conshohocken, PA:ASTM; 2002.
    [155]American Society for Testing and Materials (ASTM).ASTM D618-99:In:2002 Annual book of ASTM Standards, West Conshohocken, PA:ASTM; 2002.
    [156]American Society for Testing and Materials (ASTM).ASTMD638-01:In:2002 Annual book of ASTM Standards, West Conshohocken, PA:ASTM; 2002.
    [157]American Society for Testing and Materials (ASTM).ASTMD790-00:In:2002Annual book of ASTM Standards, West Conshohocken, PA:ASTM; 2002.
    [158]Stokke D D, Gardner D J. Fundamental aspects of wood as a component of thermoplastic composites [J]. Journal of Vinyl and Additive Technology,2003,9(2):96-104.
    [159]Shito T, Okubo K, Fujii T. Development of eco-composites using natural bamboo fibers and their mechanical properties [J]. High Performance Structures and Materials,2002,4:175-182.
    [160]Fujii T, Okubo K, Yamashita N. Development of high performance bamboo composites using micro fibrillated cellulose [J]. High Performance Structures and Materials,2004, (Ⅱ):421-431.
    [161]郭文静,王正.LLDPE/PS塑料合金及其与木纤维形成复合材料的研究[J].林业科学,2006,42(3):59-66.
    [162]王正,王志玲,任一萍,等.功能性共聚物偶联剂制备麦秸-回收LDPE复合材料的性能及其影响因子[J].林业科学,2007,43(7):67-73.
    [163]许民,王克奇.麦秸/聚苯乙烯复合材料工艺参数研究[J].林业科学,2006,42(3):67-71.
    [164]许民,陈磊,李坚.基于ANSYS的稻秸/PS层合复合材料保温性能仿真分析[J].林业科学,2007,43(12):122-125.
    [165]Higuchi T. Biochemical studies of lignin formation [J]. Plant Physiology,1957,10:633-648.
    [166]Sherely AP, Abderrahim B, Laurent I, et al. Effect of fiber loading and chemical treatments on thermophysical properties of banana fiber/polypropylene commingled composite materials [J]. Composites Part A-Applied Science and Manufacturing,2008,39(9):1582-1588.
    [167]Mubarak A Khan, Hassan M Masudul, Taslima Rownak, et al. Role of pretreatment with potassium permanganate and urea on mechanical and degradable properties of photocured coir (cocos nucifera) fiber with 1,6-Hexanediol Diacrylate [J]. Journal of Applied Polymer Science,2006,100(6): 4361-4368.
    [168]Agarwal R, Saxena NS, Sharma KB, et al. Temperature dependence of effective thermal conductivity and thermal diffusivity of treated and untreated polymer composites [J]. Journal of Applied Polymer Science,2003,89(6):1708-1714.
    [169]Zadorecki P, Flodin P. Surface modification of cellulose fibers.1. Spectroscopic characterization of surface-modified cellulose fibers and their copolymerization with styrene [J]. Journal of Applied Polymer Science,1985,30(6):2419-2429.
    [170]Lee YJ, Chung CH, Day DF. Sugarcane bagasse oxidation using a combination of hypochlorite and peroxide [J]. Bioresource Technology,2009,100(2):935-941.
    [171]Laser M, Schulman D, Allen SG, et al. A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol [J]. Bioresource Technology,2002,81(1):33-44.
    [172]Ross DS, Alto P, Jayaweera, et al. Environmentally acceptable waste disposal by hydrothermal decomposition of labile compounds with nitrite [P]. United States Patent:5709800,1998.
    [173]李建新,王永川,张美琴,等.国内城市生活垃圾特性及其处理技术研究[J].热力发电,2006,1:11-15.
    [174]Goto M, Obuchi R, Hirose T, et al. Hydrothermal conversion of municipal organic waste into resources [J]. Bioresource Technology,2004,93(3):279-284.
    [175]Jomaa S, Shanableh A, Khalil W, et al. Hydrothermal decomposition and oxidation of the organic component of municipal and industial waste products [J]. Advances in Environmental Research,2003, 7(3):647-653.
    [176]孔令照,李光明,张波,等.纤维素废弃物水热处理制H2的研究进展[J].环境污染治理技术与设备,2006,7(9):7-12.
    [177]Sasaki M, Kabyemela B, Malauan R, et al. Cellulose hydrolysis in subcritical and supercritical water [J]. Journal of Supercritical Fluids,1998,13(1-3):261-268.
    [178]Yoshida H, Terashima M, Takahashi Y. Production of organic acids and amino acids from fish meat by sub-critical water hydrolysis [J]. Biotechnology Progress,1999,15(6):1090-1094.
    [179]Jin FM, Zhou ZY, Moriya T, et al. Controlling hydrothermal reaction pathways to improve acetic acid production from carbohydrate [J]. Environmental Science and Technology,2005,39(6):1893-1902.
    [180]Jin F, Zhou Z, Kishita A, et al. Hydrothermal conversion of biomass into acetic acid [J]. Journal of Materials Science,2006,41:1495-1500.
    [181]Kastnev H, Kaminsky W. Recycle of plastics into feedstocks [J]. Hydrocarbon Process,1995, 74:109-112.
    [182]杨胜.饲料分析及饲料质量检测技术[M].北京:北京农业大学出版社,1993.
    [183]王晓燕.生物油及相关生物质原料的特性分析[D].长春:吉林农业大学,2005.
    [184]近藤精一,石川达雄,安部郁夫(日本).吸附科学(原著第2版)[M].北京:化学工业出版社,2007.
    [185]Kim TH, Lee YY. Pretreatment and fractionation of corn stover by ammonia recycle percolation process [J]. Bioresource Technology,2005,96 (18):2007-2013.
    [186]Fang Z, Sato T, Smith RL Jr, et al. Reaction chemistry and phase behaviour of lignin in high-temperature and super critical water [J]. Bioresource Technology,2008,99(9):3424-3430.
    [187]Schwald W, Bobleter O. Hydrothermolysis of cellulose under static and dynamic conditions at high temperatures [J]. Journal of Carbohydrate Chemistry,1989,8 (4):565-578.
    [188]Mok WSL, Antal MJ, Varhegyi G. Productive and parasitic pathways in dilute-acid-catalyzed hydrolysis of cellulose [J]. Industrial and Engineering Chemistry Research,1992,31(1):94-100.