冲击压缩下纳米多晶金属塑性及相变机制的分子动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冲击压缩下金属材料的塑性变形及相变机制一直以来都是材料学和冲击波物理研究的重点和难点。本文以纳米多晶延性金属铝、铜和铁为研究对象,使用分子动力学模拟为研究手段研究了面心立方结构的铝和铜的微观塑性变形及体心立方结构的铁的冲击相变过程。由于冲击波阵面是冲击压缩下材料塑性变形和相变中十分重要的宏观表现,所以在研究中重点关注了冲击波阵面的详细结构、影响冲击波阵面结构的因素和冲击波阵面与微观塑性变形或相变过程的对应关系。
     首先,研究了构建分子动力学模拟所需的纳米多晶金属样本的方法。构建样本包括两个步骤:一是用Voronoi几何方法生成纳米多晶样本的初始结构,二是对初始的几何构型进行弛豫以降低由非物理晶界带来的高能量和高应力。在此过程中我们首次使用了样本的残余内应力来判定纳米多晶样本是否与实验制备的纳米多晶金属样品相一致。弛豫纳米多晶样本时,可首先快速冷凝Voronoi方法生成的初始样本10ps左右使之达到局域最低能量状态,更长时间的快速冷凝对降低能量和内应力没有明显的效果。之后样本可在恒温零应力周围环境下模拟退火40~100ps后达到最低能量和最小残余内应力状态,选取的温度越高则退火时间可设置的越短,但退火温度不能高于材料熔点的0.65倍,更长时间的退火也没有必要。同时,我们在弛豫过程中监测了晶界结构、体系平均内应力和能量的总体和局域变化情况,并计算了不同弛豫条件下终态样本的弹性常数。研究结果表明终态样本的能量、残余内应力和弹性常数都接近实验制备的纳米多晶金属。
     其次,定性研究了晶界对纳米多晶铝的冲击波阵面结构及塑性变形机制的影响,定量研究了纳米多晶铜的冲击波阵面宽度与冲击压缩条件的关系。通过观察冲击应力和粒子速度剖面与塑性变形过程的原子尺度图像获得了晶界相关的塑性变形对冲击波阵面的影响。通过计算一系列压缩条件下的冲击波阵面宽度粗略得到了冲击应力与波阵面宽度的定量关系,与他人的定量关系符合的比较好。研究结果表明:在弹性先驱波之后,是晶界的滑移和变形主导了前期的塑性变形机制;然后是不全位错在晶界上成核向晶粒内传播,并在晶粒内形成堆垛层错、孪晶和全位错的过程主导了后期的塑性变形机制。冲击波阵面扫过之后留下的结构特征是堆垛层错和孪晶留在晶粒内,大部分全位错则湮灭于对面晶界。同时发现对纳米多晶铝而言,晶界相关的塑性变形对冲击波阵面的贡献与位错相关的塑性变形的贡献是可以比拟的。
     然后,比较研究了具有相同织构和晶粒度的纳米多晶铝和铜的塑性变形机制及冲击波阵面结构。通过比较铝和铜在相同应力或应变的冲击压缩下的一维、二维冲击波剖面和塑性变形过程的原子图像发现:纳米多晶铜在弹性变形阶段的速率快于纳米多晶铝,其原因是铝的晶格常数大于铜导致需要更长时间压缩来使其发生塑性变形;晶界主导的塑性变形的持续时间和对冲击波阵面宽度的贡献小于纳米多晶铝,整体的冲击波阵面宽度小于纳米多晶铝的宽度,塑性变形后的位错密度高于纳米多晶铝。纳米多晶铝和铜的塑性变形机制也略有不同,在纳米多晶铝中观察到了不全位错,全位错和形变孪晶,而在纳米多晶铜中却只有不全位错。另一方面,这两种纳米多晶金属的晶界都会发生滑移和增厚等晶界主导的塑性变形,但是我们还在纳米多晶铝的塑性变形过程中发现了晶界的弯曲,而在纳米多晶铜中却没有。产生这些塑性变形机制差异的主要原因是诸如晶格常数、层错能和剪切模量等材料本征参数使得铝中发射位错的临界分切应力高于铜,从而使纳米多晶铝中晶界相关的塑性变形持续时间更长,产生的位错少,晶界相关的变形机制更多,并最终使冲击波阵面更宽。
     最后,研究了不同晶粒度的纳米多晶铁在冲击压缩下的结构相变过程。研究显示纳米多晶铁的冲击结构相变发生的临界冲击应力在15 GPa左右。纳米多晶铁在经过弹性压缩变形后,晶界导致的塑性变形开始发生,然后大多数相变从晶界成核并最终发展为大规模相变。不同变形过程在应力和粒子速度剖面上能得到清晰的体现,并通过微观原子结构分析分辨。冲击压缩后除了晶界处的铁原子外大部分发生了结构相变,最终的微观结构以晶界原子和六角密排结构原子为主,少量面心立方结构原子充当了六角密排结构新相的孪晶界。在所研究的晶粒度范围内,晶粒越大包含的晶界缺陷原子数越少并且最终的相变比例越高,消耗的能量更多并进一步使得终态的冲击应力越低。
     本文初步探讨了晶界这种材料中普遍存在的缺陷对冲击压缩下延性金属的塑性变形及相变机制的影响,并如何进一步影响冲击波阵面这一宏观表现。研究结果有助于深刻理解材料的塑性变形及相变机制,并对揭示纳秒-微米尺度的宏观-微观过程之间的联系和构建微观过程的物理图像具有参考意义。虽然一些定量结果与传统粗晶材料的冲击压缩实验结果存在差异,但本文获得的认识对于一般的粗晶材料动态响应机制研究也有帮助,例如在解读冲击波阵面结构的微观机理上。
The mechanisms of plastic deformation and phase transformation of metals under shock compression have been important and difficult subjects in material sciences and shock wave physics for a long time. In this paper, we have studied the microscopic mechanisms of plastic deformation of the face-centered cubic (fcc) structured nanocrystalline (nc) aluminum and copper, and phase transformation of body-centered cubic (bcc) structured nc iron under shock compression by means of molecular dynamics (MD) simulations. Because the shock front is one of the most important macroscopic representations of the plastic deformation and phase transformation processes of materials under shock compression, in this paper we focus on the detailed structures of shock front, the influencing factors on the shock-front structure and the atomistic processes of plastic deformations or phase transformations occuring in the shock-front regions.
     First, we investigate the method to construct metallic nc samples for MD simulations. There are two procedures in this method. First, we construct the initial nc samples by Voronoi geometrical method. Secondly, the initial samples are relaxed to reduce the high energy and stress caused by the unphysical grain boundaries (GBs). The residual internal stress is employed to define the difference between the simulated and the experimental synthesized samples for the first time. The initial nc samples generated by Voronoi method can reach their local minimum energy states after quenching about 10ps, and there is no evidence that much longer quenching time can reduce the energy and stress further. Then the simulated annealing at ambient temperature and stress for 40 ~ 100ps is needed to approach the lowest global energy and the lowest residual stress state. It is not necessary to anneal the samples longer. We find that the higher annealing temperature is set, the less annealing time is needed, but the annealing temperature must not be higher than 65% of the melting point. Meanwhile, we monitor the structures of GBs, the temperature descending processes and the local distributions of averaged internal stresses and the energies of the samples during the relaxation processes, and calculate the elastic constants of the nc samples under various conditions at the end of relaxations. The results show that the energy, residual internal stress and elastic constants of the computer generated samples at final state are close to the experimental preparation of nc metals.
     Secondly, the effects of GBs on the shock-front structures and the mechanisms of plastic deformations of nc aluminum under shock compression are qualitatively investigated, and the quantitative relationship between shock stress and width of shock front of nc copper is also studied. The influences of GBs-related plastic deformation on the shock-front structures are obtained by observing the shock stress and particle velocity profile and the atomistic views of plastic deformation processes. The quantitative relationship between the shock-front width of nc copper and the shock stress can be calculated by a series of MD simulations at different shock compression conditions, and it is almost alike to other MD simulation results. The results show that: after the elastic wave generates, the GBs sliding and deformation dominated the early plastic deformation procedure, then the partial dislocations are nucleated at the deformed GBs and spread within grains, finally the process of stacking faults, deformation twins and full dislocations forming in grains dominated the latter part of the plastic deformation. The structural characteristics after the shock front swept over are that the stacking faults and the deformation twins are left in grains and the majority of the full dislocations are annihilated at the opposite GBs. We also find that the contribution of GB-mediated plasticity to the shock-front is comparable to dislocation-mediated plasticity for nc aluminum.
     Then, a comparative study of plastic deformation mechanisms and the shock-front structures between nc aluminum and copper with the same texture and grain size is carried out. By comparing the one-dimensional (1D), 2D shock wave profiles and the atomistic views of plastic deformation processes of aluminum and copper at the same shock stress and strain, we find that the rise rate of nc copper in the elastic deformation is higher than that of nc aluminum. The reason may be that the lattice constant of aluminum is slightly larger than copper, leading to a more extended deformation range before softening, it will need more time to compress aluminum atom than copper. We also find that the duration of GB-dominated plastic deformation of nc copper is shorter than that of nc aluminum, and that the contribution to shock-front width from the GB-dominated plastic deformation is smaller than that of nc aluminum. The overall width of the shock front of nc copper is less than the width of nc aluminum, and the dislocation densities of nc copper are higher than the densities of nc aluminum. The mechanisms of plastic deformation for nc copper and aluminum are also different slightly, that is to say, we have observed partial dislocations, full dislocations and deformation twins in nc aluminum, but only partial dislocations are observed in nc copper. On the other hand, we find some GB-related plastic mechanisms like GB sliding, GB thickening and GB bending in nc aluminum, but no GB bending is found in nc copper. The main reason for these differences of plastic mechanisms between these two nc ductile metals is that the intrinsic parameters, such as lattice constants, stacking fault energies and shear modulus and so on result in a higher critical resolved shear stress for the leading dislocation emission of aluminum than that of copper, and finally lead to less dislocations emitted and more GB-related mechanisms and wider shock-front widths in nc aluminum.
     Finally, the shock-induced phase transformations of nc irons with different grain sizes are investigated. The study shows that the critical shock stress for shock-induced phase transformation of nc irons is about 15 GPa. Under shock compression, the nc irons first experience elastic deformation, then plastic deformation purely caused by grain boundaries, after that phase transformation nucleated mostly at the grain boundaries, and finally nucleation areas expanding into the entire samples. These processes can be reflected by the stress and particle velocity profiles, and also be distinguished by local atomic structures analyses in the corresponding areas. Most of the bcc irons atoms transform to hexagonal-closed packed (hcp) structure except the GB atoms. The major microstructures of the nc iron samples at final state are GBs and hcp atoms with small amount of fcc atoms as the twin boundaries. There are more GB atoms for the larger grains in the range of grain sizes studied in this paper, and more bcc iron atoms transform to hcp iron atoms, and more energy are dissipated during phase change, and turn out to bring down the final shock stress.
     This study primarily discuss the effects of GB which is a type of prevalent defect in materials on the mechanisms of plastic deformation and phase transformation of ductile metals, and how to further affect the typical macroscopic response of materials subject to shock compression–– shock front. The results can improve the understanding of physical procedure of the plasticity and phase transformation, and also have reference significance for revealing the links between macro-micro processes at nanosecond- micrometer scale and building the physical images of micro-processes. Although some quantitative results presented in this study for nc metals are different to the results in shock compression experiments for traditional coarse-grained (cg) metals, but the understanding achieved in this paper is also helpful to investigate the dynamic responses of ordinary cg metals, such as interpretations of microscopic mechanisms of the shock-front structures.
引文
[1] Bringa E M, Rosolankova K, Rudd R E, Remington B A, Wark J S, Duchaineau M, Kalantar D H, Hawreliak J and Belak J. Shock deformation offace-centred-cubic metals on subnanosecond timescales [J]. Nat. Mater. 2006, 5: 805.
    [2] Asay J R and Chhabildas L C. Paradigms and challenges in shock wave research [A]. In: High-pressure shock compression of solids VI [C]. Eds. Horie Y, Davison L, Thadhani N N. New York: Springer, 2003. p.57.
    [3] Holian B L. What is a shock wave?—the view from atomic scale [A]. In: High-pressure shock compression of solids VI [C]. Eds. Horie Y, Davison L, Thadhani N N. New York: Springer, 2003. p.149.
    [4] Gleiter H. Nanocrystalline materials [J]. Prog. Mater. Sci. 1989, 33: 223.
    [5] Meyers M A. Dynamic behavior of materials [M]. New York: JOHN WILEY & SONS, INC.; 1994.
    [6]经福谦.实验物态方程导引[M].北京:科学出版社; 1999.
    [7]黄筑平,杨黎明,潘客麟.材料的动态损伤和失效[J].力学进展1993, 23: 433.
    [8]谭华.实验冲击波物理导引[M].北京:国防工业出版社; 2007.
    [9] Holian B L. Molecular dynamics comes of age for shockwave research [J]. Shock Waves 2004, 13: 489.
    [10] Gleiter H. Nanostructured materials: State of the art and perspectives [J]. Nanostruct. Mater. 1995, 6: 3.
    [11] Gleiter H. Nanostructured materials: Basic concepts and microstructure [J]. Acta Mater. 2000, 48: 1.
    [12]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社; 2001.
    [13]冯端.金属物理学第一卷:结构与缺陷[M].北京:科学出版社; 1987.
    [14]葛庭燧.固体内耗理论基础[M].北京:科学出版社; 2000.
    [15]刘孝敏.工程材料的微细观结构和力学性能[M].合肥:中国科技大学出版社; 2003.
    [16] Hirth J P and Lothe J. Theory of dislocations [M]. New York: Willey; 1982.
    [17] Kumar K S, Van Swygenhoven H and Suresh S. Mechanical behavior of nanocrystalline metals and alloys [J]. Acta Mater. 2003, 51: 5743.
    [18]王宏涛,杨卫.纳晶金属的力学行为[J].力学进展2004, 34: 314.
    [19] Jiang B and Weng G J. A generalized self-consistent polycrystal model for the yield strength of nanocrystalline materials [J]. J. Mech. Phys. Solids 2004, 52: 1125.
    [20] Hall E O. The deformation and ageing of mild steel: III Discussion of results [J]. Proceedings of the Physical Society. Section B 1951, 64: 747.
    [21] Hall E O. The deformation and ageing of mild steel: II Characteristics of the Lüders deformation [J]. Proceedings of the Physical Society. Section B 1951, 64: 742.
    [22] Petch N J. The cleavage strength of polycrystals [J]. J. Iron Steel Inst. 1953, 174: 25.ty
    [23] Schi(?)tz J, Tolla F D D and Jacobsen K. Softening of nanocrystalline metals at very small grain sizes [J]. Nature 1998, 391: 561.
    [24] Wang Y M, Bringa E M, McNaney J M, Victoria M, Caro A, Hodge A M, Smith R, Torralva B, Remington B A, Schuh C A, Jamarkani H and Meyers M A. Deforming nanocrystalline nickel at ultrahigh strain rates [J]. Appl. Phys. Lett. 2006, 88: 061917.
    [25] Chen M, Ma E, Hemker K J, Sheng H, Wang Y and Cheng X. Deformation twinning in nanocrystalline aluminum [J]. Science 2003, 300: 1275.
    [26] Shan Z, Stach E A, Wiezorek J M K, Knapp J A, Follstaedt D M and Mao S X. Grain boundary–mediated plasticity in nanocrystalline nickel [J]. Science 2004, 305: 654.
    [27] Wu X L, Tao N R, Wei Q M, Jiang P, Lu J and Lu K. Microstructural evolution and formation of nanocrystalline intermetallic compound during surface mechanical attrition treatment of cobalt [J]. Acta Mater. 2007, 55: 5768.
    [28] Shan Z W, Wiezorek J M K, Knapp J A, Follstaedt D M, Stach E A and Mao S X. Large lattice strain in individual grains of deformed nanocrystalline Ni [J]. Appl. Phys. Lett. 2008, 92: 091917.
    [29] Wang L, Han X, Liu P, Yue Y, Zhang Z and Ma E. In situ observation of dislocation behavior in nanometer grains [J]. Phys. Rev. Lett. 2010, 105: 135501.
    [30] Shan Z W, Mishra R K, Asif S A S, Warren O L and Minor A M. Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals [J]. Nat. Mater. 2008, 7: 115.
    [31] Wang Y, He H, Boustie M and Sekine T. Measurement of dynamic tensile strength of nanocrystalline copper by laser irradiation [J]. J. Appl. Phys. 2007, 101: 103528.
    [32] Kalantar D H, Belak J F, Collins G W, Colvin J D, Davies H M, Eggert J H, Germann T C, Hawreliak J, Holian B L, Kadau K, Lomdahl P S, Lorenzana H E, Meyers M A, Rosolankova K, Schneider M S, Sheppard J, Stolken J S and Wark J S. Direct observation of theα-εtransition in shock-compressed iron via nanosecond X-ray diffraction [J]. Phys. Rev. Lett. 2005, 95: 075502.
    [33] Makarov P V. Shear strength and viscosity of metals in shock waves [A]. In: High-pressure shock compression of solids VII [C]. Eds. Fortov V E, Trunin R F, Al'tshuler L V, Funtikov A I. New York: Springer-Verlag, 2004. p.297.
    [34]谭华,俞宇颖,胡建波,戴诚达.单轴应变:本构关系—它的内容、方法和意义[J].高能量密度物理2009, 3: 133.
    [35] Gahagan K T, Moore D S, Funk D J, Rabie R L, Buelow S J and Nicholson J W. Measurement of shock wave rise times in metal thin films [J]. Phys. Rev. Lett. 2000, 85: 3205.
    [36] Zhakhovskii V V, Zybin S V, Nishihara K and Anisimov S I. Shock wave structure in Lennard-Jones crystal via molecular dynamics [J]. Phys. Rev. Lett. 1999, 83: 1175.
    [37] Bringa E M, Caro A, Victoria M and Park N. The atomistic modeling of wave propagation in nanocrystals [J]. JOM 2005, 57: 67.
    [38] Bringa E M, Caro A, Wang Y M, Victoria M, McNaney J M, Remington B A, Smith R F, Torralva B R and Van Swygenhoven H. Ultrahigh strength in nanocrystalline materials under shock loading [J]. Science 2005, 309: 1838.
    [39] Holian B L and Lomdahl P S. Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations [J]. Science 1998, 280: 2085.
    [40] Jarmakani H N, Bringa E M, Erhart P, Remington B A, Wang Y M, Vo N Q and Meyers M A. Molecular dynamics simulations of shock compression of nickel: From monocrystals to nanocrystals [J]. Acta Mater. 2008, 56: 5584.
    [41] Kadau K, Germann T C, Lomdahl P S, Albers R C, Wark J S, Higginbotham A and Holian B L. Shockwaves in polycrystalline iron [J]. Phys. Rev. Lett. 2007, 98: 135701.
    [42] Meyers M A, Mishra A and Benson D J. Mechanical properties of nanocrystalline materials [J]. Prog. Mater. Sci. 2006, 51: 427.
    [43]钱学森.物理力学讲义[M].北京:科学出版社; 1964.
    [44]彭建祥. Johnson-Cook本构模型和Steinberg本构模型的比较研究[D].博士学位论文.绵阳:中国工程物理研究院; 2006.
    [45] Alder B J and Wainwright T E. Phase transition for a hard sphere system [J]. J. Chem. Phys 1957, 27: 1208.
    [46] Allen M P and Tildesley D J. Computer simulation of liquids [M]. Oxford: Oxford University Press; 1987.
    [47] Frenkel D and Smit B. Understanding molecular simulation [M]. San Diego: Acedemic Press; 1996.
    [48] Leach A R. Molecular modelling: Principles and applications [M]. London: Pearson Education;312 2001.
    [49] Rapaport D C. The art of molecular dynamics simulation [M]. Cambridge: Cambrige University Press; 2004.
    [50] Bulatov V V and Cai W. Computer simulations of dislocations [M]. Oxford: Oxford University Press; 2006.
    [51] Van Swygenhoven H. Grain boundaries and dislocations [J]. Science 2002, 296: 66.
    [52] Schi(?)tz J, Vegge T, Di Tolla F D and Jacobsen K W. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals [J]. Phys. Rev. B 1999, 60: 11971.
    [53] Schi(?)tz J and Jacobsen K W. A maximum in the strength of nanocrystalline copper [J]. Science 2003, 301: 1357.
    [54] Youssef K M, Scattergood R O, Murty K L, Horton J A and Koch C C. Ultrahigh strength and high ductility of bulk nanocrystalline copper [J]. Appl. Phys. Lett. 2005, 87: 091904.
    [55] Van Swygenhoven H and Caro A. Molecular dynamics computer simulation of nanophase Ni: Structure and mechanical properties [J]. Nanostruct. Mater. 1997, 9: 669.
    [56] Van Swygenhoven H and Caro A. Plastic behavior of nanophase Ni: A molecular dynamics computer simulation [J]. Appl. Phys. Lett. 1997, 71: 1652.
    [57] Van Swygenhoven H and A.Caro. Plastic behavior of nanophase metals studied by molecular dynamics [J]. Phys. Rev. B 1998, 58: 246.
    [58] Van Swygenhoven H, Spaczér M and Caro A. Role of low and high angle grain boundary in the deformation mechanism of nanophase Ni: A molecular dynamics simulation study [J]. Nanostruct. Mater. 1998, 10: 819.
    [59] Van Swygenhoven H, Spacér M and Caro A. Microscopic description of plasticity in computer generated metallic nanophase samples: A comparison between Cu and Ni [J]. Acta Mater. 1999, 47: 3117.
    [60] Van Swygenhoven H, Spaczer M and Caro A. Characterisation of the microstructure of nanophase Ni: A molecular dynamics simulation study [J]. Nanostruct. Mater. 1999, 12: 629.
    [61] Van Swygenhoven H, Spaczér M, Caro A and Farkas D. Competing plastic deformation mechanisms in nanophase metals [J]. Phys. Rev. B 1999, 60: 22.
    [62] Van Swygenhoven H, Farkas D and Caro A. Grain-boundary structures in polycrystalline metals at the nanoscale [J]. Phys. Rev. B 2000, 62: 831.
    [63] Derlet P M, Meyer R, Lewis L J, Stuhr U and Van Swygenhoven H. Low-frequency vibrational properties of nanocrystalline materials [J]. Phys. Rev. Lett. 2001, 87: 205501.
    [64] Van Swygenhoven H, Caro A and Farkas D. A molecular dynamics study of polycrystalline fcc metals at the nanoscale: Grain boundary structure and its influence on plastic deformation [J]. Mater. Sci. Eng. A 2001, 309-310: 440.
    [65] Van Swygenhoven H and Derlet P M. Grain-boundary sliding in nanocrystalline fcc metals [J]. Phys. Rev. B 2001, 64: 224105.
    [66] Dalla Torre F, Van Swygenhoven H and Victoria M. Nanocrystalline electrodeposited Ni: Microstructure and tensile properties [J]. Acta Mater. 2002, 50: 3957.
    [67] Derlet P M and Van Swygenhoven H. Length scale effects in the simulation of deformation properties of nanocrystalline metals [J]. Scripta Mater. 2002, 47: 719.
    [68] Hasnaoui A, Van Swygenhoven H and Derlet P M. On non-equilibrium grainboundaries and their effect on thermal and mechanical behaviour: A molecular dynamics computer simulation [J]. Acta Mater. 2002, 50: 3927.
    [69] Hasnaoui A, Van Swygenhoven H and Derlet P M. Cooperative processes during plastic deformation in nanocrystalline fcc metals: A molecular dynamics simulation [J]. Phys. Rev. B 2002, 66: 184112.
    [70] Samaras M, Derlet P M, Van Swygenhoven H and Victoria M. Computer simulation of displacement cascades in nanocrystalline Ni [J]. Phys. Rev. Lett. 2002, 88: 125505.
    [71] Van Swygenhoven H, Derlet P M and Hasnaoui A. Atomic mechanism for dislocation emission from nanosized grain boundaries [J]. Phys. Rev. B 2002, 66: 024101.
    [72] Derlet P M and Van Swygenhoven H. Atomic positional disorder in fcc metal nanocrystalline grain boundaries [J]. Phys. Rev. B 2003, 67: 014202.
    [73] Hasnaoui A, Van Swygenhoven H and Derlet P M. Dimples on nanocrystalline fracture surfaces as evidence for shear plane formation [J]. Science 2003, 300: 1550.
    [74] Samaras M, Derlet P M, Van Swygenhoven H and Victoria M. Movement of interstitial clusters in stress gradients of grain boundaries [J]. Phys. Rev. B 2003, 68: 224111.
    [75] Van Swygenhoven H, Derlet P M, Budrovic Z and Hasnaoui A. Unconventional deformation mechanism in nanocrystalline metals? [J]. Z. Metallkd. 2003, 94: 1.
    [76] Van Swygenhoven H, Derlet P M and Hasnaoui A. Atomistic modeling of strength of nanocrystalline metals [J]. Adv. Eng. Mater. 2003, 5: 345.
    [77] Van Swygenhoven H and Weertman J R. Mechanical properties of fully dense nanocrystalline metals [J]. Scripta Mater. 2003, 49: 625.
    [78] Budrovic Z, Van Swygenhoven H, Derlet P M, Van Petegem S and Schmitt B. Plastic deformation with reversible peak broadening in nanocrystalline nickel [J]. Science 2004, 304: 273.
    [79] Derlet P M and Van Swygenhoven H. High-frequency vibrational properties of metallic nanocrystalline grain boundaries [J]. Phys. Rev. Lett. 2004, 92: 035505.
    [80] Fr(?)seth A, Van Swygenhoven H and Derlet P M. The influence of twins on the mechanical properties of nc-Al [J]. Acta Mater. 2004, 52: 2259.
    [81] Fr(?)seth A G, Derlet P M and Van Swygenhoven H. Dislocations emitted from nanocrystalline grain boundaries: Nucleation and splitting distance [J]. Acta Mater. 2004, 52: 5863.
    [82] Fr(?)seth A G, Derlet P M and Van Swygenhoven H. Grown-in twin boundaries affecting deformation mechanisms in nc-metals [J]. Appl. Phys. Lett. 2004, 85: 5863.
    [83] Hasnaoui A, Derlet P M and Van Swygenhoven H. Interaction betweendislocations and grain boundaries under an indenter– a molecular dynamics simulation [J]. Acta Mater. 2004, 52: 2251.
    [84] Van Swygenhoven H, Derlet P M and Fr?seth A G. Stacking fault energies and slip in nanocrystalline metals [J]. Nat. Mater. 2004, 3: 309.
    [85] Brandstetter S, Budrovic Z, Van Petegem S, Schmitt B, Stergar E, Derlet P and Van Swygenhoven H. Temperature-dependent residual broadening of X-ray diffraction spectra in nanocrystalline plasticity [J]. Appl. Phys. Lett. 2005, 87: 231910.
    [86] Budrovic Z, Van Petegem S, Derlet P, Schmitt B, Van Swygenhoven H, Schafler E and Zehetbauer M. Footprints of deformation mechanisms during in situ X-ray diffraction: Nanocrystalline and ultrafine grained Ni [J]. Appl. Phys. Lett. 2005, 86: 231910.
    [87] Derlet P M, Van Petegem S and Van Swygenhoven H. Calculation of X-ray spectra for nanocrystalline materials [J]. Phys. Rev. B 2005, 71: 024114.
    [88] Fr(?)seth A G, Derlet P M and Van Swygenhoven H. Twinning in nanocrystalline fcc metals [J]. Adv. Eng. Mater. 2005, 7: 16.
    [89] Fr(?)seth A G, Swygenhoven H V and Derlet P M. Developing realistic grain boundary networks for use in molecular dynamics simulations [J]. Acta Mater. 2005, 53: 4847.
    [90] Van Swygenhoven H, Budrovic Z, Derlet P M, Fr?seth A G and Petegem S V. In situ diffraction profile analysis during tensile deformation motivated by molecular dynamics [J]. Mater. Sci. Eng. A 2005, 400-401: 329.
    [91] Fr(?)seth A G, Derlet P M and Van Swygenhoven H. Vicinal twin boundaries providing dislocation sources in nanocrystalline Al [J]. Scripta Mater. 2006, 54: 477.
    [92] Gianola D S, Van Petegem S, Legros M, Brandstetter S, Van Swygenhoven H and Hemker K J. Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films [J]. Acta Mater. 2006, 54: 2253.
    [93] Van Swygenhoven H, Derlet P M and Fr?seth A G. Nucleation and propagation of dislocations in nanocrystalline fcc metals [J]. Acta Mater. 2006, 54: 1975.
    [94] Brandl C, Bitzek E, Derlet P M and Van Swygenhoven H. Slip transfer through a general high angle grain boundary in nanocrystalline aluminum [J]. Appl. Phys. Lett. 2007, 91: 111914.
    [95] Brandl C, Derlet P M and Van Swygenhoven H. General-stacking-fault energies in highly strained metallic environments: Ab initio calculations [J]. Phys. Rev. B 2007, 76: 054124.
    [96] Bitzek E, Brandl C, Derlet P M and Van Swygenhoven H. Dislocation cross-slip in nanocrystalline fcc metals [J]. Phys. Rev. Lett. 2008, 100: 235501.
    [97] Bitzek E, Derlet P M, Anderson P M and Van Swygenhoven H. Thestress–strain response of nanocrystalline metals: A statistical analysis of atomistic simulations [J]. Acta Mater. 2008, 56: 4846.
    [98] Brandstetter S, Derlet P M, Van Petegem S and Van Swygenhoven H. Williamson–Hall anisotropy in nanocrystalline metals: X-ray diffraction experiments and atomistic simulations [J]. Acta Mater. 2008, 56: 165.
    [99] Yamakov V, Wolf D, Phillpot S R and Gleiter H. Deformation twinning in nanocrystalline al by molecular-dynamics simulation [J]. Acta Mater. 2002, 50: 5005.
    [100] Yamakov V, Wolf D, Phillpot S R, Mukherjee A K and Gleiter H. Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation [J]. Nat. Mater. 2002, 1: 45.
    [101] Huang C X, Wang K, Wu S D, Zhang Z F, Li G Y and Li S X. Deformation twinning in polycrystalline copper at room temperature and low strain rate [J]. Acta Mater. 2006, 54: 655.
    [102] Liao X Z, Srinivasan S G, Zhao Y H, Baskes M I, Zhu Y T, Zhou F, Lavernia E J and Xu H F. Formation mechanism of wide stacking faults in nanocrystalline Al [J]. Appl. Phys. Lett. 2004, 84: 3564.
    [103] Liao X Z, Zhou F, Lavernia E J, He D W and Zhu Y T. Deformation twins in nanocrystalline Al [J]. Appl. Phys. Lett. 2003, 83: 5062.
    [104] Liao X Z, Zhou F, Lavernia E J, Srinivasan S G, Baskes M I, He D W and Zhu Y T. Deformation mechanism in nanocrystalline Al: Partial dislocation slip [J]. Appl. Phys. Lett. 2003, 83: 632.
    [105] Ma X and Yang W. MD simulation for nanocrystals [J]. Acta Mech. Sin. 2003, 19: 485.
    [106] Ma X and Yang W. Molecular dynamics simulation on burst and arrest of stacking faults in nanocrystalline Cu under nanoindentation [J]. Nanot. 2003, 14: 1208.
    [107] Ma X and Yang W. Dislocation-assisted grain growth in nanocrystalline copper under large deformation [J]. Scripta Mater. 2008, 59: 792.
    [108]杨卫,马新玲,王宏涛,洪伟.纳米力学进展[J].力学进展2002, 32: 161.
    [109]杨卫,王宏涛,马新玲.纳米力学进展(续) [J].力学进展2003, 33: 175.
    [110] Dao M, Lu L, Shen Y F and Suresh S. Strength, strain-rate sensitivity and ductility of copper with nanoscale twins [J]. Acta Mater. 2006, 54: 5421.
    [111] Lu K. Nanocrystalline metals crystallized from amorphous solids: Nanocrystallization, structure, and properties [J]. Materials Science and Engineering R 1996, 16: 161.
    [112] Lu K and Hansen N. Structural refinement and deformation mechanisms in nanostructured metals [J]. Scripta Mater. 2009, 60: 1033.
    [113] Lu K, Lu L and Suresh S. Strengthening materials by engineering coherentinternal boundaries at the nanoscale [J]. Science 2009, 324: 349.
    [114] Lu L, Chen X, Huang X and Lu K. Revealing the maximum strength in nanotwinned copper [J]. Science 2009, 323: 607.
    [115] Lu L, Dao M, Zhu T and Li J. Size dependence of rate-controlling deformation mechanisms in nanotwinned copper [J]. Scripta Mater. 2009, 60: 1062.
    [116] Lu L, Schwaiger R, Shan Z W, Dao M, Lu K and Suresh S. Nano-sized twins induce high rate sensitivity of flow stress in pure copper [J]. Acta Mater. 2005, 53: 2169.
    [117] Lu L, Shen Y, Chen X, Qian L and Lu K. Ultrahigh strength and high electrical conductivity in copper [J]. Science 2004, 304: 422.
    [118]卢柯,卢磊.金属纳米材料力学性能的研究进展[J].金属学报2000, 36: 785.
    [119] Wu X and Hong Y. Microstructural evolution of a laser-cladded coating [J]. Scripta Mater. 2000, 43: 123.
    [120] Wu X L, Liao X Z, Srinivasan S G, Zhou F, Lavernia E J, Valiev R Z and Zhu Y T. New deformation twinning mechanism generates zero macroscopic strain in nanocrystalline metals [J]. Phys. Rev. Lett. 2008, 100: 095701.
    [121] Wu X L and Ma E. Dislocations in nanocrystalline grains [J]. Appl. Phys. Lett. 2006, 88: 231911.
    [122] Wu X L and Ma E. Deformation twinning mechanisms in nanocrystalline Ni [J]. Appl. Phys. Lett. 2006, 88: 061905.
    [123] Wu X L, Qi Y and Zhu Y T. Partial-mediated slips in nanocrystalline Ni at high strain rate [J]. Appl. Phys. Lett. 2007, 90: 221911.
    [124] Wu X L and Zhu Y T. Partial-dislocation-mediated processes in nanocrystalline Ni with nonequilibrium grain boundaries [J]. Appl. Phys. Lett. 2006, 89: 031922.
    [125] Wu X L and Zhu Y T. Inverse grain-size effect on twinning in nanocrystalline Ni [J]. Phys. Rev. Lett. 2008, 101: 025503.
    [126] Wu X L, Zhu Y T and Ma E. Predictions for partial-dislocation-mediated processes in nanocrystalline Ni by generalized planar fault energy curves: An experimental evaluation [J]. Appl. Phys. Lett. 2006, 88: 121905.
    [127] Derlet P M, Hasnaoui A and Van Swygenhoven H. Atomistic simulations as guidance to experiments [J]. Scripta Mater. 2003, 49: 629.
    [128] Tsai D H and Beckett C W. Shock wave propogration in cubic lattices [J]. J. Geophys. Res. 1966, 71: 2601.
    [129] Tsai D H and MacDonald R A. Molecular-dynamical study of second sound in a solid excited by a strong heat pulse [J]. Phys. Rev. B 1976, 14: 4714.
    [130] Hoover W G. Structure of a shock-wave front in a liquid [J]. Phys. Rev. Lett.1979, 42: 1531.
    [131] Hoover W G, Ladd A J C, Hickman R B and Holian B L. Bulk viscosity via nonequilibrium and equilibrium molecular dynamcis [J]. Phys. Rev. A 1980, 21: 1756.
    [132] Hoover W G. Generalization of Nose's isothermal molecular dynamics: Non-hamiltonian dynamis for the canonical ensemble [J]. Phys. Rev. A 1989, 40: 2814.
    [133] Hoover W G. Large-scale elastic-plastic indentation simulation via nonequilibrium molecular dynamics [J]. Phys. Rev. A 1990, 42: 5844.
    [134] Kallman J S, Hoover W G, Hoover C G, De Groot A J, Lee S M and Wooten F. Molecular dynamics of silicon indentation [J]. Phys. Rev. B 1993, 47: 7705.
    [135] Holian B L and Straub G K. Molecular dynamics of shock waves in one-dimensional chains [J]. Phys. Rev. B 1978, 1593.
    [136] Holian B L and Straub G K. Molecular dynamics of shock waves in three-dimensional solids: Transition from nonsteady to steady waves in perfect crystals and implications for the Rankine-Hugoniot conditions [J]. Phys. Rev. Lett. 1979, 43: 1598.
    [137] Straub G K, Holian B L and Petschek R G. Molecular dynamics of shock waves in one-dimensional chains. II. Thermalization [J]. Phys. Rev. B 1979, 19: 4049.
    [138] Holian B L. Shock-wave structure via nonequilibrium molecular dynamcis and Navier-Stokes continuum mechanics [J]. Phys. Rev. A 1980, 22: 2798.
    [139] Holian B L. Modeling shock-wave deformation via molecular dynamics [J]. Phys. Rev. A 1988, 37: 2562.
    [140] Wagner N J, B.L.Holian and A.F.Voter. Molecular dynamics simulation of two-dimensional materials at high strain rates [J]. Phys. Rev. A 1992, 45: 8457.
    [141] Holian B L and Ravelo R. Fracture simulations using large-scale molecular dynamics [J]. Phys. Rev. B 1995, 51: 11275.
    [142] Holian B L, Voter A F and Ravelo R. Thermostatted molecular dynamics: How to avoid the toda demon hidden in Nose-Hoover dynamics [J]. Phys. Rev. E 1995, 52: 2338.
    [143] Gumbsch P, Zhou S J and Holian B L. Molecular dynamics investigation of dynamic crack stability [J]. Phys. Rev. B 1997, 55: 3445.
    [144] Zhou S J, Baezley D M, Lomdahl P S and Holian B L. Large-scale molecular dynamics simulations of three-dimensional ductile failure [J]. Phys. Rev. Lett. 1997, 78: 479.
    [145] Kress J D, S R Bickham, L A Collins and Holian B L. Tight-binding molecular dynamics of shock waves in methane [J]. Phys. Rev. Lett. 1999, 83: 3896.
    [146] Germann T C, Holian B L, Lomdahl P S and Ravelo R. Orientation dependence in molecular dynamics simulations of shocked single crystals [J]. Phys. Rev. Lett. 2000, 84: 5351.
    [147] Holian B L, Germann T C, Maillet J B and White C T. Atomistic mechanismfor hot spot initiation [J]. Phys. Rev. Lett. 2002, 89: 285501.
    [148] Kadau K, Germann T C, Lomdahl P S and Holian B L. Microscopic view of structural phase transitions induced by shock waves [J]. Science 2002, 296: 1681.
    [149] Tanguy D, Mareschal M, Lomdahl P S, Germann T C, Holian B L and Ravelo R. Dislocation nucleation induced by a shock wave in a perfect crystal: Molecular dynamics simulations and elastic calculations [J]. Phys. Rev. B 2003, 68: 144111.
    [150] Kadau K, Germann T C, Lomdahl P S, Holian B L, Kadau D, Entel P, Kreth M, Westerhoff F and Wolf D E. Molecular-dynamics study of mechanical deformation in nano-crystalline aluminum [J]. Metall. Mater. Trans. A 2004, 35A: 2719.
    [151] Kadau K, Germann T C, Lomdahl P S and Holian B L. Atomistic simulations of shock-induced transformations and their orientation dependence in bcc Fe single crystals [J]. Phys. Rev. B 2005, 72: 064210.
    [152] Fu H H, Benson D J and Meyers M A. Computational description of nanocrystalline deformation based on crystal plasticity [J]. Acta Mater. 2004, 52: 4413.
    [153] Lubarda V A, Schneider M S, Kalantar D H, Remington B A and Meyers M A. Void growth by dislocation emission [J]. Acta Mater. 2004, 52: 1397.
    [154] Schneider M S, Kad B K, Gregori F, Kalantar D, Remington B A and Meyers M A. Laser-induced shock compression of copper: Orientation and pressure decay effects [J]. Metall. Mater. Trans. A 2004, 35A.
    [155] Davila L P, Erhart P, Bringa E M, Meyers M A, Lubarda V A, Schneider M S, Becker R and Kumar M. Atomistic modeling of shock-induced void collapse in copper [J]. Appl. Phys. Lett. 2005, 86: 161902.
    [156] Meyers M A, Mishra A and Benson D J. The deformation physics of nanocrystalline metals: Experiments, analysis, and computations [J]. JOM 2006, 58: 41.
    [157] Cao B, Bringa E M and Meyers M A. Shock compression of monocrystalline copper: Atomistic simulations [J]. Metall. Mater. Trans. A 2007, 38A: 2681.
    [158] Jarmakani H, Wang Y M, Bringa E and Meyers M A. Modeling of the slip-twinning transition in nanocrystalline nickel and nickel-tungsten under shock compression [A]. In: Shock Compression of Condensed Matter [C]. Eds. Elert M, Furnish M D, R. Cliau, Holmes N, Nguyen J. 2007. p.239.
    [159] Traiviratana S, Bringa E M, Benson D J and Meyers M A. Void growth in metals: Atomistic calculations [J]. Acta Mater. 2008, 56: 3874.
    [160] Bringa E M, Wirth B D, Caturla M J, St?lken J and Kalantar D. Metals far from equilibrium: From shocks to radiation damage [J]. Nucl. Instrum. Methods Phys. Res. B 2003, 202: 56.
    [161] Bringa E M, Cazamias J U, Erhart P, Stolken J, Tanushev N, Wirth B D, Rudd R E and Caturla M J. Atomistic shock hugoniot simulation of single-crystal copper [J]. J. Appl. Phys. 2004, 96: 3793.
    [162] Erhart P, Bringa E M, Kumar M and Albe K. Atomistic mechanism of shock-induced void collapse in nanoporous metals [J]. Phys. Rev. B 2005, 72: 052104.
    [163] Shehadeh M A, Bringa E M, Zbib H M, McNaney J M and Remington B A. Simulation of shock-induced plasticity including homogeneous and heterogeneous dislocation nucleations [J]. Appl. Phys. Lett. 2006, 89: 171918.
    [164] Jarmakani H, Maddox B, Kalantar D H and Meyer M A. Laser shock-induced spalling and fragmentation in vanadium [J]. Acta Mater. 2010, 58: 4604.
    [165] Tang Y, Bringa E M, Remington B A and Meyer M A. Growth and collapse of nanovoids in tantalum monocrystals [J]. Acta Mater. 2011, 59: 1354.
    [166] Bringa E M, Sirirat T and Meyer M A. Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects [J]. Acta Mater. 2010, 58: 4458.
    [167] Luo S N, An Q, Germann T C and Han L-B. Shock-induced spall in solid and liquid Cu at extreme strain rates [J]. J. Appl. Phys. 2009, 106: 013502.
    [168] Luo S N, Germann T C and Tonks D L. Spall damage of copper under supported and decaying shock loading [J]. J. Appl. Phys. 2009, 106: 123508.
    [169] Luo S N, Germann T C, Desai T G, Tonks D L and An Q. Anisotropic shock response of columnar nanocrystalline Cu [J]. J. Appl. Phys. 2010, 107: 123507.
    [170] Luo S N, Germann T C and Tonks D L. The effect of vacancies on dynamic response of single crystal Cu to shock waves [J]. J. Appl. Phys. 2010, 107: 056102.
    [171] Luo S N, Germann T C, Tonks D L and An Q. Shock wave loading and spallation of copper bicrystals with asymmetric S3 <110> tilt grain boundaries [J]. J. Appl. Phys. 2010, 108: 093526.
    [172]陈军,经福谦,张景琳,陈栋泉.冲击作用下金属表面微喷射的分子动力学模拟[J].物理学报2005, 51: 2386.
    [173]陈军,徐云,陈栋泉,孙锦山.冲击作用下纳米孔洞动力学行为的多尺度方法模拟研究[J].物理学报2008, 57: 6437.
    [174]何安明,邵建立,秦承森,王裴.单晶Cu冲击加载及卸载下塑性行为的微观模拟[J].物理学报2009, 58: 5667.
    [175]邵建立,何安明,段素青,王裴,秦承森.单轴应变驱动铁bcc-hcp相转变的微观模拟[J].物理学报2010, 59: 4888.
    [176]邵建立,何安明,秦承森,王裴.一维应变加载下单晶铁结构转变的微观研究[J].物理学报2009, 58: 5610.
    [177]邵建立,秦承森,王裴.动态压缩下马氏体相变力学性质的微观研究[J].物理学报2009, 58: 1936.
    [178]邵建立,秦承森,王裴,周洪强.铁冲击相变的分子动力学研究[J].物理学报2007, 56: 5389.
    [179]邵建立,秦承森,王裴,周洪强.冲击加载下孔洞诱导相变形核分析[J].物理学报2008, 57: 1254.
    [180]崔新林,祝文军,邓小良,李英骏,贺红亮.冲击波压缩下含纳米孔洞单晶铁的结构相变研究[J].物理学报2006, 55: 5545.
    [181]邓小良,祝文军,贺红亮,伍登学,经福谦.〈111〉晶向冲击加载下单晶铜中纳米孔洞增长的早期动力学行为[J].物理学报2006, 55: 4767.
    [182]邓小良,祝文军,罗晋,贺红亮,伍登学,经福谦.单晶铜中冲击波阵面结构的数值模拟研究[J].高压物理学报2006, 20: 172.
    [183] Zhu W J, Song Z F, Deng X L, He H L and Cheng X Y. Lattice orientation effect on the nanovoid growth in copper under shock loading [J]. Phys. Rev. B 2007, 75: 024104.
    [184] Cui X L, Zhu W J, He H L, Deng X L and Li Y J. Phase transformation of iron under shock compression: Effects of voids and shear stress [J]. Phys. Rev. B 2008, 78: 024115.
    [185] Wang H Y, Zhu W J, Liu S J, Song Z F, Deng X L, Chen X R and He H L. Atomistic simulation of the elastic properties of helium bubble embedded aluminum [J]. Nucl. Instrum. Methods Phys. Res. B 2009, 267: 849.
    [186]邓小良,祝文军,宋振飞,贺红亮,经福谦.冲击加载下孔洞贯穿的微观机理研究[J].物理学报2009, 58: 4772.
    [187]王海燕,祝文军,邓小良,宋振飞,陈向荣.冲击加载下铝中氦泡和孔洞的塑性变形特征研究[J].物理学报2009, 58: 1154.
    [188] Deng X, Zhu W, Zhang Y, He H and Jing F. Configuration effect on coalescence of voids in single-crystal copper under shock loading [J]. Comput. Mater. Sci. 2010, 50: 234.
    [189] Ma W, Zhu W J and Jing F Q. The shock-front structure of nanocrystalline aluminum [J]. Appl. Phys. Lett. 2010, 97: 121903.
    [190]陈开果,祝文军,马文,邓小良,贺红亮,经福谦.冲击波在纳米金属铜中的传播:分子动力学模拟研究[J].物理学报2010, 59: 1225.
    [191]马文,祝文军,陈开果,经福谦.晶界对纳米多晶铝中冲击波阵面结构影响的分子动力学研究[J].物理学报2011, 60: 016107.
    [192]马文,祝文军,张亚林,经福谦.纳米多晶铁的冲击相变研究[J].物理学报2011, 60: 066404.
    [193]马文,祝文军,张亚林,陈开果,邓小良,经福谦.纳米多晶金属样本构建的分子动力学模拟研究[J].物理学报2010, 59: 4781.
    [194] Ma W, Zhu W J and Jing F Q. A comparative study on the shock compression of nanocrystalline aluminum and copper: The shock-front structure and microview of plasticity [J]. Phys. Rev. B 2011, Submitted.
    [1]文玉华,朱如曾,周富信,王崇愚.分子动力学模拟的主要技术[J].力学进展2003, 33: 65.
    [2] Alder B J and Wainwright T E. Phase transition for a hard sphere system [J]. J. Chem. Phys 1957, 27: 1208.
    [3] Kadau K, Germann T C and Lomdahl P S. Large-scale molecular-dynamics simulation of 19 billion particles [J]. Int. J. Mod. Phys. C 2004, 15: 193.
    [4] Bringa E M, Rosolankova K, Rudd R E, Remington B A, Wark J S, Duchaineau M, Kalantar D H, Hawreliak J and Belak J. Shock deformation of face-centred-cubic metals on subnanosecond timescales [J]. Nat. Mater. 2006, 5: 805.
    [5] Allen M P and Tildesley D J. Computer simulation of liquids [M]. Oxford: Oxford University Press; 1987.
    [6] Heermann D W. Computer simulation methods in theoretical physics [M]. Heidelberg: Springer-Velag; 1990.
    [7] Frenkel D and Smit B. Understanding molecular simulation [M]. San Diego: Acedemic Press; 1996.
    [8] Raabe D. Computational materials science [M]. Weinheim: WILEY-VCH; 1998.
    [9] Leach A R. Molecular modelling: Principles and applications [M]. London: Pearson Education; 2001.
    [10] Bulatov V V and Cai W. Computer simulations of dislocations [M]. Oxford: Oxford University Press; 2006.
    [11] Rapaport D C. The art of molecular dynamics simulation [M]. Cambridge: Cambrige University Press; 2004.
    [12] Born M and Huang K. Dynamical theory of crystal lattices [M]. Oxford: Oxford University Press; 1954.
    [13] Morse P M. Diatomic molecules according to the wave mechanics II: Vibrational levels [J]. Phys. Rev. 1929, 34: 57.
    [14] Born M and Mayer J E. Zur gittertheorie der ionenkristalle [J]. Z. Phys. 1931, 75: 1.
    [15] Cyrot-Lackmann F. On the electronic structure of liquid transitional metals [J]. Adv. Phys. 1967, 16: 393.
    [16] Norskov J K and Lang N D. Effective-medium theory of chemical binding: Application to chemisorption [J]. Phys. Rev. B 1980, 21: 2131.
    [17] Daw M S and Baskes M I. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals [J]. Phys. Rev. Lett. 1983, 50: 1285.
    [18] Ercolessi F, Tosatti E and Parinello M. Au (100) surface reconstruction [J]. Phys. Rev. Lett. 1986, 57: 719.
    [19] Finnis M W and Sinclair J E. A simple empirical N-body potential for transition metals [J]. Philos. Mag. A 1984, 50: 45.
    [20] Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F and Kress J D. Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations [J]. Phys. Rev. B 2001, 63: 224106.
    [21] Mishin Y, Parkas D, Mehl M J and Papaconstantopoulos D. Interatomic potentials for Al and Ni from experimental data and ab initio calculations [J]. Mater. Res. Soc. Symp. Proc. 1999, 538: 535.
    [22]马文,祝文军,陈开果,经福谦.晶界对纳米多晶铝中冲击波阵面结构影响的分子动力学研究[J].物理学报2011, 60: 016107.
    [23] Harrison P, Voter A F and Chen S P. Embedded atom potential for bcc iron [A]. In: Atomistic simulation of materials: Beyond pair potentials [C]. Eds. Vitek V, Srolovitz D J. New York: Plenum Press, 1989. p.219.
    [24]崔新林,祝文军,邓小良,李英骏,贺红亮.冲击波压缩下含纳米孔洞单晶铁的结构相变研究[J].物理学报2006, 55: 5545.
    [25]崔新林,贺红亮,祝文军,李英骏.关于铁的势函数的研究[J].原子与分子物理学报2008, 25: 1067.
    [26]张邦维,胡望宇,舒小林.嵌入原子方法理论及其在材料科学中的应用[M].长沙:湖南大学出版社; 2002.
    [27]汪志诚.热力学·统计物理[M].北京:高等教育出版社; 1993.
    [28] Hoffmann K H and Schreiber M. Computational physics [M]. Heidelberg: Springer-Verlag; 1996.
    [29] Berendsen H J C, Postma J P M, Gunsteren W F V and et.al. Moleclar dynamics with coupling to an external bath [J]. J. Chem. Phys. 1984, 81: 3684.
    [30] Andersen H C. Molecular dynamics simulations at constant pressure and/or temperature [J]. J. Chem. Phys. 1980, 72: 2384.
    [31] Nose S and Klein M L. Structural transformations in solid nitrogen at highpressure [J]. Phys. Rev. Lett. 1983, 50: 1207.
    [32] Nose S and Yonezawa F. Isothermal-isobaric computer simulations of melting and crystallization of a Lennard-Jones system. [J]. J. Chem. Phys. 1986, 84: 1803.
    [33] Hoover W G. Generalization of Nose's isothermal molecular dynamics: Non-Hamiltonian dynamis for the canonical ensemble [J]. Phys. Rev. A 1989, 40: 2814.
    [34] Schneider T and Stoll E. Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions [J]. Phys. Rev. B 1978, 17: 1302.
    [35] Dai J Y and Yuan J M. Large scale efficient Langevin dynamics, and why it works [J]. Europhys. Lett. 2009, 88: 20001.
    [36] Parrinello M and Rahman A. Crystal structure and pair potentials: A molecular-dynamics study [J]. Phys. Rev. Lett. 1980, 45: 1196.
    [37] Parrinello M and Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method [J]. J. Appl. Phys. 1981, 52: 7182.
    [38] Parrinello M and Rahman A. Strain fluctuations and elastic constants [J]. J. Chem. Phys. 1982, 76: 2622.
    [39] Van Swygenhoven H and Derlet P M. Atomistic simulations of dislocations in fcc metallic nanocrystalline materials [A]. In: Dislocations in solids Vol. 13 [C]. Eds. Hirth J P. Amsterdam: Elsevier B. V., 2008. p.1.
    [40] Verlet L. Computer experiments on classical fluids, I. Thermodynamical properities of lennard-jones molecules [J]. Phys. Rev. 1967, 159: 98.
    [41] Gear C W. Numerical initial value problems in ordinary differential equation [M]. Englewood Cliffs, NJ: Prentice-Hall; 1971.
    [42] Hockney R W and Eastwood J W. Computer simulation using particles [M]. New York: McGraw-Hill; 1981.
    [43] Swope W C, Anderson H C, Berens P H and Wilson K R. A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters [J]. J. Chem. Phys. 1982, 76: 637.
    [44] Sinclair J E, Gehlen P C, Hoagland R G and Hirth J P. Flexible boundary-conditions and non-linear geometric effects in atomic dislocation modeling [J]. J. Appl. Phys. 1978, 49: 3890.
    [45] Cai W, deKoning M, Bulatov V V and Yip S. Minimizing boundary reflections in coupled-domain simulations [J]. Phys. Rev. Lett. 2000, 85: 3213.
    [46]曹小林,莫则尧,张景琳. MPP并行机上数亿次粒子规模的分子动力学模拟[J].高技术通讯2004, 14: 55.
    [47] Mishin Y, Suzuki A, Uberuaga B P and Voter A F. Stick-slip behavior of grain boundaries studied by accelerated molecular dynamics [J]. Phys. Rev. B 2007, 75: 224101.
    [48] Plimpton S J. Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys. 1995, 117: 1.
    [49]张亚林,肖永浩,祝文军.金属空洞数值模拟并行程序的优化设计[J].计算机应用研究2010, 27(增刊): 825.
    [50] Holian B L. Atomistic computer simulations of shock waves [J]. Shock Waves 1995, 5: 149.
    [51] Gibson J B, Goland A N, Milgram M and Vineyard G H. Dynamics of radiation damage [J]. Phys. Rev. 1960, 120: 1229.
    [52] Holian B L. What is a shock wave?—the view from atomic scale [A]. In: High-pressure shock compression of solids VI [C]. Eds. Horie Y, Davison L, Thadhani N N. New York: Springer, 2003. p.149.
    [53] Holian B L. Molecular dynamics comes of age for shockwave research [J]. Shock Waves 2004, 13: 489.
    [54] Holian B L. A history of constitutive modeling via molecular dynamics: Shock waves in fluids and gases [A]. In: New Models and Hydrocodes for Shock Wave Processes in Condensed Matter-2010 [C]. Eds. Soulard L. Paris: EDP Sciences, 2010. p.00002.
    [55] Holian B L and Lomdahl P S. Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations [J]. Science 1998, 280: 2085.
    [56] Lutsko J F. Stress and elastic constants in anisotropic solids: Molecular dynamics techniques [J]. J. Appl. Phys. 1988, 64: 1152.
    [57] Cormier J, Rickman J M and Delph T J. Stress calculation in atomistic simulations of perfect and imperfect solids [J]. J. Appl. Phys. 2001, 89: 99.
    [58] Zimmerman J A, Webb III E B, Hoyt J J, Jones R E, Klein P A and Bammann D J. Calculation of stress in atomistic simulation [J]. Modell. Simul. Mater. Sci. Eng. 2004, 12: S319.
    [59] Honeycutt J D and Andersen H C. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters [J]. J. Phys. Chem. 1987, 91: 4950.
    [60] Sapozhnikov F, Ionov G and Dremov V. An adaptive template method for analyzing crystal structures and defects in molecular dynamics simulations of high-rate deformations [J]. Russ. J. Phys. Chem. B 2008, 2: 238.
    [61] Kelchner C L, Plimpton S J and Hamilton J C. Dislocation nucleation and defect structure during surface indentation [J]. Phys. Rev. B 1998, 58: 11085.
    [62] Shimizu F, Ogata S and Li J. Theory of shear banding in metallic glasses and molecular dynamics calculations [J]. Materials Transactions 2007, 48: 2923.
    [63] Falk M L and Langer J S. Dynamics of viscoplastic deformation in amorphous solids [J]. Phys. Rev. E 1998, 57: 7192.
    [64] Luo S N, Germann T C, Desai T G, Tonks D L and An Q. Anisotropic shockresponse of columnar nanocrystalline Cu [J]. J. Appl. Phys. 2010, 107: 123507.
    [65] Luo S N, Germann T C, Tonks D L and An Q. Shock wave loading and spallation of copper bicrystals with asymmetric ?3 <110> tilt grain boundaries [J]. J. Appl. Phys. 2010, 108: 093526.
    [1] Weertman J R. Mechanical behaviour of nanocrystalline metals [A]. In: Nanostructured materials: Processing, properties, and potential applications [C]. Eds. Koch C C. New York: William Andrew Publishing, 2002. p.397.
    [2]王宏涛,杨卫.纳晶金属的力学行为[J].力学进展2004, 34: 314.
    [3] Jiang B and Weng G J. A generalized self-consistent polycrystal model for the yield strength of nanocrystalline materials [J]. J. Mech. Phys. Solids 2004, 52: 1125.
    [4] Agnew S R, Elliott B R, Youngdahl C J, Hemker K J and Weertman J R. Microstructure and mechanical behavior of nanocrystalline metals [J]. Mater. Sci. Eng. A 2000, 285: 391.
    [5] Kumar K S, Van Swygenhoven H and Suresh S. Mechanical behavior of nanocrystalline metals and alloys [J]. Acta Mater. 2003, 51: 5743.
    [6] Dao M, Lu L, Asaro R J, Hosson J T M D and Ma E. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals [J]. Acta Mater. 2007, 55: 4041.
    [7] Meyers M A, Mishra A and Benson D J. Mechanical properties of nanocrystalline materials [J]. Prog. Mater. Sci. 2006, 51: 427.
    [8] Meyers M A, Mishra A and Benson D J. The deformation physics of nanocrystalline metals: Experiments, analysis, and computations [J]. JOM 2006, 58: 41.
    [9] Van Swygenhoven H and Weertman J R. Deformation in nanocrystalline metals [J]. Mater. Today 2006, 9: 24.
    [10] Wolf D, Yamakov V, Phillpot S R, Mukherjee A and Gleiter H. Deformation of nanocrystalline materials by molecular-dynamics simulation: Relationship to experiments? [J]. Acta Mater. 2005, 53: 1.
    [11] Van Swygenhoven H and Derlet P M. Atomistic simulations of dislocations in fcc metallic nanocrystalline materials [A]. In: Dislocations in solids vol. 13 [C]. Eds. Hirth J P. Amsterdam: Elsevier B. V., 2008. p.1.
    [12] Kadau K, Germann T C, Lomdahl P S, Holian B L, Kadau D, Entel P, Kreth M, Westerhoff F and Wolf D E. Molecular-dynamics study of mechanical deformation in nano-crystalline aluminum [J]. Metall. Mater. Trans. A 2004, 35A: 2719.
    [13] Keblinski P, Wolf D, Phillpot S R and Gleiter H. Structure of grain boundaries in nanocrystalline palladium by molecular dynamics simulation [J]. Scripta Mater. 1999, 41: 631.
    [14] Chen D. Structural modeling of nanocrystalline materials [J]. Comput. Mater. Sci. 1995, 3: 327.
    [15] Van Swygenhoven H and Caro A. Molecular dynamics computer simulation of nanophase Ni: Structure and mechanical properties [J]. Nanostruct. Mater. 1997, 9: 669.
    [16] Schi(?)tz J, Vegge T, Di Tolla F D and Jacobsen K W. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals [J]. Phys. Rev. B 1999, 60: 11971.
    [17] Van Swygenhoven H and Caro A. Plastic behavior of nanophase metals studied by molecular dynamics [J]. Phys. Rev. B 1998, 58: 246.
    [18] Van Swygenhoven H and Derlet P M. Grain-boundary sliding in nanocrystalline fcc metals [J]. Phys. Rev. B 2001, 64: 224105.
    [19] Van Swygenhoven H, Derlet P M and Hasnaoui A. Atomic mechanism for dislocation emission from nanosized grain boundaries [J]. Phys. Rev. B 2002, 66: 024101.
    [20] Van Swygenhoven H, Farkas D and Caro A. Grain-boundary structures in polycrystalline metals at the nanoscale [J]. Phys. Rev. B 2000, 62: 831.
    [21] Van Swygenhoven H, Spaczér M, Caro A and Farkas D. Competing plasticdeformation mechanisms in nanophase metals [J]. Phys. Rev. B 1999, 60: 22.
    [22] Yamakov V, Wolf D, Phillpot S R and Gleiter H. Deformation twinning in nanocrystalline Al by molecular-dynamics simulation [J]. Acta Mater. 2002, 50: 5005.
    [23] Yamakov V, Wolf D, Phillpot S R and Gleiter H. Dislocation–dislocation and dislocation–twin reactions in nanocrystalline Al by molecular dynamics simulation [J]. Acta Mater. 2003, 51: 4135.
    [24] Yamakov V, Wolf D, Phillpot S R, Mukherjee A K and Gleiter H. Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation [J]. Nat. Mater. 2002, 1: 45.
    [25] Yamakov V, Wolf D, Salazar M, Phillpot S R and H.Gleiter. Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation [J]. Acta Mater. 2001, 49: 2713.
    [26] Bringa E M, Caro A, Victoria M and Park N. The atomistic modeling of wave propagation in nanocrystals [J]. JOM 2005, 57: 67.
    [27] Bringa E M, Caro A, Wang Y M, Victoria M, McNaney J M, Remington B A, Smith R F, Torralva B R and Van Swygenhoven H. Ultrahigh strength in nanocrystalline materials under shock loading [J]. Science 2005, 309: 1838.
    [28] Jarmakani H N, Bringa E M, Erhart P, Remington B A, Wang Y M, Vo N Q and Meyers M A. Molecular dynamics simulations of shock compression of nickel: From monocrystals to nanocrystals [J]. Acta Mater. 2008, 56: 5584.
    [29]陈开果,祝文军,马文,邓小良,贺红亮,经福谦.冲击波在纳米金属铜中的传播:分子动力学模拟研究[J].物理学报2010, 59: 1225.
    [30]梁海弋,王秀喜,吴恒安,王宇.纳米多晶铜微观结构的分子动力学模拟[J].物理学报2002, 51: 2308.
    [31]孙伟,常明,杨保和.分子动力学模拟纳米晶体铜的结构与性能[J].物理学报1998, 47: 591.
    [32]徐洲,王秀喜,梁海弋,吴恒安.纳米单晶与多晶铜薄膜力学行为的数值模拟研究[J].物理学报2004, 53: 3637.
    [33] Dremov V, Petrovtsev A, Sapozhnikov P, Smirnova M, Preston D L and Zocher M A. Molecular dynamics simulations of the initial stages of spall in nanocrystalline copper [J]. Phys. Rev. B 2006, 74: 144110.
    [34] Voronoi G Z. J. Reine Angew. Math. 1908, 134: 198.
    [35]傅廷亮,尹雪涛,张扬. Voronoi算法模型及其程序实现[J].计算机仿真2006, 23: 89.
    [36]张有会,李秀丽,杨立平,王运格. Voronoi图画法的改进与实现[J].计算机科学1999, 26: 86.
    [37] Van Swygenhoven H, Spaczér M and Caro A. Role of low and high anglegrain boundary in the deformation mechanism of nanophase Ni: A molecular dynamics simulation study [J]. Nanostruct. Mater. 1998, 10: 819.
    [38]陈开果.分子动力学模拟冲击波在纳米金属铜中的传播[D].硕士学位论文.绵阳:中国工程物理研究院; 2009年6月.
    [39]崔新林,祝文军,邓小良,李英骏,贺红亮.冲击波压缩下含纳米孔洞单晶铁的结构相变研究[J].物理学报2006, 55: 5545.
    [40]邓小良,祝文军,罗晋,贺红亮,伍登学,经福谦.单晶铜中冲击波阵面结构的数值模拟研究[J].高压物理学报2006, 20.
    [41] Zhu W J, Song Z F, Deng X L, He H L and Cheng X Y. Lattice orientation effect on the nanovoid growth in copper under shock loading [J]. Phys. Rev. B 2007, 75: 024104.
    [42] Plimpton S J. Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys. 1995, 117: 1.
    [43] Parrinello M and Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method [J]. J. Appl. Phys. 1981, 52: 7182.
    [44] Nose S and Yonezawa F. Isothermal-isobaric computer simulations of melting and crystallization of a Lennard-Jones system. [J]. J. Chem. Phys. 1986, 84: 1803.
    [45] Hoover W G. Generalization of Nose's isothermal molecular dynamics: Non-hamiltonian dynamis for the canonical ensemble [J]. Phys. Rev. A 1989, 40: 2814.
    [46] Mishin Y, Parkas D, Mehl M J and Papaconstantopoulos D. Interatomic potentials for Al and Ni from experimental data and ab initio calculations [J]. Mater. Res. Soc. Symp. Proc. 1999, 538: 535.
    [47] Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F and Kress J D. Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations [J]. Phys. Rev. B 2001, 63: 224106.
    [48] Honeycutt J D and Andersen H C. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters [J]. J. Phys. Chem. 1987, 91: 4950.
    [49] Bulatov V V and Cai W. Computer simulations of dislocations [M]. Oxford: Oxford University Press; 2006.
    [50] Schi(?)tz J and Jacobsen K W. A maximum in the strength of nanocrystalline copper [J]. Science 2003, 301: 1357.
    [51] Schi(?)tz J, Tolla F D D and Jacobsen K. Softening of nanocrystalline metals at very small grain sizes [J]. Nature 1998, 391: 561.
    [52]张林,王绍青,叶恒强.大角度Cu晶界在升温、急冷条件下晶界结构的分子动力学研究[J].物理学报2004, 53: 2497.
    [53] Kadau K, Germann T C, Lomdahl P S, Albers R C, Wark J S, Higginbotham A and Holian B L. Shockwaves in polycrystalline iron [J]. Phys. Rev. Lett. 2007, 98: 135701.
    [54]刘孝敏.工程材料的微细观结构和力学性能[M].合肥:中国科技大学出版社; 2003.
    [55]王海燕,祝文军,宋振飞,刘绍军,陈向荣,贺红亮.氦泡对铝的弹性性质的影响[J].物理学报2008, 57: 3703.
    [56]王海燕.氦泡对延性金属材料静态和动态力学性质影响的研究[D].博士学位论文.成都:四川大学; 2008年6月.
    [1] Zhakhovski(?) V V, Zybin S V, Nishihara K and Anisimov S I. Shock wave structure in Lennard-Jones crystal via molecular dynamics [J]. Phys. Rev. Lett. 1999, 83: 1175.
    [2] Jones O E and Holland J R. Effects of grain size on dynamic yielding in explosively loaded mild steel [J]. Acta Metall. 1968, 16: 1037.
    [3] Jones O E and Mote J D. Shock-induced dynamic yielding in copper single crystals [J]. J. Appl. Phys. 1969, 40: 4920.
    [4] Chhabildas L C and Asay J R. Rise-time measurements of shock transitions in aluminum, copper, and steel [J]. J. Appl. Phys. 1979, 50: 2749.
    [5] Gahagan K T, Moore D S, Funk D J, Rabie R L, Buelow S J and Nicholson J W. Measurement of shock wave rise times in metal thin films [J]. Phys. Rev. Lett. 2000, 85: 3205.
    [6] Holian B L. What is a shock wave?—The view from atomic scale [A]. In: High-pressure shock compression of solids VI [C]. Eds. Horie Y, Davison L, Thadhani N N. New York: Springer, 2003. p.149.
    [7] Grady D E. Strain-rate dependence of the effective viscosity under steady-wave shock compression [J]. Appl. Phys. Lett. 1981, 38: 825.
    [8] Swegle J W and Grady D E. Shock viscosity and the prediction of shock wave rise times [J]. J. Appl. Phys. 1985, 58: 692.
    [9] Grady D E. Structured shock waves and the fourth-power law [J]. J. Appl. Phys. 2010, 107: 013506.
    [10] Meyers M A and Carvalho M S. Shock-front irregularities in polycrystalline metals [J]. Mater. Sci. Eng. 1976, 24: 131.
    [11] Meyers M A. A model for elastic precursor waves in the shock loading of polycrystalline metals [J]. Mater. Sci. Eng. 1977, 30: 99.
    [12] Barber J L and Kadau K. Shock-front broadening in polycrystalline materials [J]. Phys. Rev. B 2008, 77: 144106.
    [13] Holian B L and Lomdahl P S. Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations [J]. Science 1998, 280: 2085.
    [14] Germann T C, Holian B L, Lomdahl P S and Ravelo R. Orientation dependence in molecular dynamics simulations of shocked single crystals [J]. Phys. Rev. Lett. 2000, 84: 5351.
    [15] Bringa E M, Cazamias J U, Erhart P, Stolken J, Tanushev N, Wirth B D, Rudd R E and Caturla M J. Atomistic shock hugoniot simulation of single-crystal copper [J]. J. Appl. Phys. 2004, 96: 3793.
    [16] Cao B, Bringa E M and Meyers M A. Shock compression of monocrystalline copper: Atomistic simulations [J]. Metall. Mater. Trans. A 2007, 38A: 2681.
    [17] Kubota A, Reisman D B and Wolfer W G. Dynamic strength of metals in shock deformation [J]. Appl. Phys. Lett. 2006, 88: 241924.
    [18] Van Swygenhoven H and Weertman J R. Deformation in nanocrystalline metals [J]. Mater. Today 2006, 9: 24.
    [19] Weertman J R. Mechanical behaviour of nanocrystalline metals [A]. In: Nanostructured materials: Processing, properties, and potential applications [C]. Eds. Koch C C. New York: William Andrew Publishing, 2002. p.397.
    [20] Meyers M A, Mishra A and Benson D J. Mechanical properties of nanocrystalline materials [J]. Prog. Mater. Sci. 2006, 51: 427.
    [21] Bringa E M, Caro A, Wang Y M, Victoria M, McNaney J M, Remington B A, Smith R F, Torralva B R and Van Swygenhoven H. Ultrahigh strength in nanocrystalline materials under shock loading [J]. Science 2005, 309: 1838.
    [22] Jarmakani H N, Bringa E M, Erhart P, Remington B A, Wang Y M, Vo N Q and Meyers M A. Molecular dynamics simulations of shock compression of nickel: From monocrystals to nanocrystals [J]. Acta Mater. 2008, 56: 5584.
    [23] Bringa E M, Caro A, Victoria M and Park N. The atomistic modeling of wave propagation in nanocrystals [J]. JOM 2005, 57: 67.
    [24] Van Swygenhoven H. Grain boundaries and dislocations [J]. Science 2002, 296: 66.
    [25] Shan Z, Stach E A, Wiezorek J M K, Knapp J A, Follstaedt D M and Mao S X. Grain boundary–mediated plasticity in nanocrystalline nickel [J]. Science 2004, 305: 654.
    [26] Van Swygenhoven H and Derlet P M. Grain-boundary sliding in nanocrystalline fcc metals [J]. Phys. Rev. B 2001, 64: 224105.
    [27] Van Swygenhoven H, Derlet P M and Hasnaoui A. Atomic mechanism for dislocation emission from nanosized grain boundaries [J]. Phys. Rev. B 2002, 66: 024101.
    [28] Van Swygenhoven H, Farkas D and Caro A. Grain-boundary structures in polycrystalline metals at the nanoscale [J]. Phys. Rev. B 2000, 62: 831.
    [29] Mishin Y, Parkas D, Mehl M J and Papaconstantopoulos D. Interatomic potentials for Al and Ni from experimental data and ab initio calculations [J]. Mater. Res. Soc. Symp. Proc. 1999, 538: 535.
    [30] Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F and Kress J D. Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations [J]. Phys. Rev. B 2001, 63: 224106.
    [31]邓小良,祝文军,罗晋,贺红亮,伍登学,经福谦.单晶铜中冲击波阵面结构的数值模拟研究[J].高压物理学报2006, 20: 172.
    [32]邓小良,祝文军,宋振飞,贺红亮,经福谦.冲击加载下孔洞贯穿的微观机理研究[J].物理学报2009, 58: 4772.
    [33]王海燕,祝文军,邓小良,宋振飞,陈向荣.冲击加载下铝中氦泡和孔洞的塑性变形特征研究[J].物理学报2009, 58: 1154.
    [34] Honeycutt J D and Andersen H C. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters [J]. J. Phys. Chem. 1987, 91: 4950.
    [35] Cheung K S and Yip S. Atomic-level stress in an inhomogenous system [J]. J. Appl. Phys. 1991, 70: 5688.
    [36] Cormier J, Rickman J M and Delph T J. Stress calculation in atomistic simulations of perfect and imperfect solids [J]. J. Appl. Phys. 2001, 89: 99.
    [37] Zimmerman J A, Webb III E B, Hoyt J J, Jones R E, Klein P A and Bammann D J. Calculation of stress in atomistic simulation [J]. Modell. Simul. Mater. Sci. Eng. 2004, 12: S319.
    [38] Van Swygenhoven H, Derlet P M and Fr?seth A G. Nucleation and propagation of dislocations in nanocrystalline fcc metals [J]. Acta Mater. 2006, 54: 1975.
    [39] Li L and Ghoniem N M. Twin-size effects on the deformation of nanotwinned copper [J]. Phys. Rev. B 2009, 79: 075444.
    [40]经福谦.实验物态方程导引[M].北京:科学出版社; 1999.
    [41] Marsh P S. LANL shock Hugoniot data [M]. Berkeley: University of California Press; 1980.
    [42] Huang H and Asay J R. Compressive strength measurements in aluminum for shock compression over the stress range of 4–22 GPa [J]. J. Appl. Phys. 2005, 98: 033524.
    [43] Kimminau G, Erhart P, Bringa E M, Remington B and Wark J S. Phonon instabilities in uniaxially compressed fcc metals as seen in molecular dynamics simulations [J]. Phys. Rev. B 2010, 81: 092102.
    [44] Gupta Y M, Winey J M, Trivedi P B, LaLone B M, Smith R F, Eggert J H and Collins G W. Large elastic wave amplitude and attenuation in shocked pure aluminum [J]. J. Appl. Phys. 2009, 105: 036107.
    [45] Kadau K, Germann T C, Lomdahl P S, Albers R C, Wark J S, Higginbotham A and Holian B L. Shockwaves in polycrystalline iron [J]. Phys. Rev. Lett. 2007, 98: 135701.
    [46] Schi?tz J and Jacobsen K W. A maximum in the strength of nanocrystalline copper [J]. Science 2003, 301: 1357.
    [47] Isbell W M. Shock waves - measuring the dynamic response of materials [M]. London: Imperial College Press; 2005.
    [48] Kumar K S, Van Swygenhoven H and Suresh S. Mechanical behavior of nanocrystalline metals and alloys [J]. Acta Mater. 2003, 51: 5743.
    [49] Dao M, Lu L, Asaro R J, Hosson J T M D and Ma E. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals [J]. Acta Mater. 2007, 55: 4041.
    [50] Zhu Y T, Liao X Z, Srinivasan S G, Zhao Y H, Baskes M I, Zhou F and Lavernia E J. Nucleation and growth of deformation twins in nanocrystalline aluminum [J]. Appl. Phys. Lett. 2004, 85: 5049.
    [51] Asaro R J and Suresh S. Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins [J]. Acta Mater. 2005, 53: 3369.
    [52] Van Swygenhoven H, Derlet P M and Fr?seth A G. Stacking fault energies and slip in nanocrystalline metals [J]. Nat. Mater. 2004, 3: 309.
    [1] Lu K, Lu L and Suresh S. Strengthening materials by engineering coherent internal boundaries at the nanoscale [J]. Science 2009, 324: 349.
    [2] Lu L, Chen X, Huang X and Lu K. Revealing the maximum strength in nanotwinned copper [J]. Science 2009, 323: 607.
    [3] Lu L, Shen Y, Chen X, Qian L and Lu K. Ultrahigh strength and high electricalconductivity in copper [J]. Science 2004, 304: 422.
    [4] Kumar K S, Van Swygenhoven H and Suresh S. Mechanical behavior of nanocrystalline metals and alloys [J]. Acta Mater. 2003, 51: 5743.
    [5] Meyers M A, Mishra A and Benson D J. Mechanical properties of nanocrystalline materials [J]. Prog. Mater. Sci. 2006, 51: 427.
    [6] Dao M, Lu L, Asaro R J, Hosson J T M D and Ma E. Toward a quantitative understanding of mechanical behavior of nanocrystalline metals [J]. Acta Mater. 2007, 55: 4041.
    [7] Weertman J R. Mechanical behaviour of nanocrystalline metals [A]. In: Nanostructured materials: Processing, properties, and potential applications [C]. Eds. Koch C C. New York: William Andrew Publishing, 2002. p.397.
    [8] Van Swygenhoven H. Grain boundaries and dislocations [J]. Science 2002, 296: 66.
    [9] Van Swygenhoven H and Weertman J R. Deformation in nanocrystalline metals [J]. Mater. Today 2006, 9: 24.
    [10] Schi(?)tz J and Jacobsen K W. A maximum in the strength of nanocrystalline copper [J]. Science 2003, 301: 1357.
    [11] Schi(?)tz J, Tolla F D D and Jacobsen K. Softening of nanocrystalline metals at very small grain sizes [J]. Nature 1998, 391: 561.
    [12] Schuh C A, Nieh T G and Yamasaki T. Hall–Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel [J]. Scripta Mater. 2002, 46: 735.
    [13] Vo N Q, Averback R S, Bellon P, Odunuga S and Caro A. Quantitative description of plastic deformation in nanocrystalline Cu: Dislocation glide versus grain boundary sliding [J]. Phys. Rev. B 2008, 77: 134108.
    [14] Makarov P V. Shear strength and viscosity of metals in shock waves [A]. In: High-pressure shock compression of solids VII [C]. Eds. Fortov V E, Trunin R F, Al'tshuler L V, Funtikov A I. New York: Springer-Verlag, 2004. p.297.
    [15] Asay J R and Chhabildas L C. Paradigms and challenges in shock wave research [A]. In: High-pressure shock compression of solids VI [C]. Eds. Horie Y, Davison L, Thadhani N N. New York: Springer, 2003. p.57.
    [16] Chhabildas L C and Asay J R. Rise-time measurements of shock transitions in aluminum, copper, and steel [J]. J. Appl. Phys. 1979, 50: 2749.
    [17] Gahagan K T, Moore D S, Funk D J, Rabie R L, Buelow S J and Nicholson J W. Measurement of shock wave rise times in metal thin films [J]. Phys. Rev. Lett. 2000, 85: 3205.
    [18] Mishin Y, Parkas D, Mehl M J and Papaconstantopoulos D. Interatomic potentials for Al and Ni from experimental data and ab initio calculations [J]. Mater. Res. Soc. Symp. Proc. 1999, 538: 535.
    [19] Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F and Kress J D.Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations [J]. Phys. Rev. B 2001, 63: 224106.
    [20] Honeycutt J D and Andersen H C. Molecular dynamics study of melting and freezing of small Lennard-Jones clusters [J]. J. Phys. Chem. 1987, 91: 4950.
    [21] Cheung K S and Yip S. Atomic-level stress in an inhomogenous system [J]. J. Appl. Phys. 1991, 70: 5688.
    [22] Cormier J, Rickman J M and Delph T J. Stress calculation in atomistic simulations of perfect and imperfect solids [J]. J. Appl. Phys. 2001, 89: 99.
    [23] Zimmerman J A, Webb III E B, Hoyt J J, Jones R E, Klein P A and Bammann D J. Calculation of stress in atomistic simulation [J]. Modell. Simul. Mater. Sci. Eng. 2004, 12: S319.
    [24] Holian B L and Lomdahl P S. Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations [J]. Science 1998, 280: 2085.
    [25] Mitchell A C and Nellis W J. Shock compression of aluminum, copper, and tantalum [J]. J. Appl. Phys. 1981, 52: 3363.
    [26] Jones O E and Mote J D. Shock-induced dynamic yielding in copper single crystals [J]. J. Appl. Phys. 1969, 40: 4920.
    [27] Arvidsson T E, Gupta Y M and Duvall G E. Precursor decay in 1060 aluminum [J]. J. Appl. Phys. 1975, 46: 4474.
    [28] Gupta Y M, Winey J M, Trivedi P B, LaLone B M, Smith R F, Eggert J H and Collins G W. Large elastic wave amplitude and attenuation in shocked pure aluminum [J]. J. Appl. Phys. 2009, 105: 036107.
    [29] Sano Y and Sano T. Dynamic yielding in lithium fluoride and aluminum [J]. J. Appl. Phys. 2010, 107: 043506.
    [30] Ogata S, Li J and Yip S. Ideal pure shear strength of aluminum and copper [J]. Science 2002, 298: 807.
    [31] Asaro R J, Krysl P and Kad B. Deformation mechanism transitions in nanoscale fcc metals [J]. Philos. Mag. Lett. 2003, 83: 733
    [32] Asaro R J and Suresh S. Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins [J]. Acta Mater. 2005, 53: 3369.
    [33] Yamakov V, Wolf D, Salazar M, Phillpot S R and H.Gleiter. Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation [J]. Acta Mater. 2001, 49: 2713.
    [34] Yamakov V, Wolf D, Phillpot S R and Gleiter H. Deformation twinning in nanocrystalline Al by molecular-dynamics simulation [J]. Acta Mater. 2002, 50: 5005.
    [35] Yamakov V, Wolf D, Phillpot S R, Mukherjee A K and Gleiter H. Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation [J]. Nat. Mater. 2002, 1: 45.
    [36] Van Swygenhoven H, Derlet P M and Fr?seth A G. Nucleation and propagation of dislocations in nanocrystalline fcc metals [J]. Acta Mater. 2006, 54: 1975.
    [37] Ma W, Zhu W J and Jing F Q. The shock-front structure of nanocrystalline aluminum [J]. Appl. Phys. Lett. 2010, 97: 121903.
    [38]马文,祝文军,陈开果,经福谦.晶界对纳米多晶铝中冲击波阵面结构影响的分子动力学研究[J].物理学报2011, 60: 016107.
    [39] Schi?tz J, Vegge T, Di Tolla F D and Jacobsen K W. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals [J]. Phys. Rev. B 1999, 60: 11971.
    [40] Jarmakani H N, Bringa E M, Erhart P, Remington B A, Wang Y M, Vo N Q and Meyers M A. Molecular dynamics simulations of shock compression of nickel: From monocrystals to nanocrystals [J]. Acta Mater. 2008, 56: 5584.
    [41] Van Swygenhoven H, Derlet P M and Hasnaoui A. Atomic mechanism for dislocation emission from nanosized grain boundaries [J]. Phys. Rev. B 2002, 66: 024101.
    [42] Van Swygenhoven H, Derlet P M and Fr?seth A G. Stacking fault energies and slip in nanocrystalline metals [J]. Nat. Mater. 2004, 3: 309.
    [43] Zhu Y T, Liao X Z, Srinivasan S G, Zhao Y H, Baskes M I, Zhou F and Lavernia E J. Nucleation and growth of deformation twins in nanocrystalline aluminum [J]. Appl. Phys. Lett. 2004, 85: 5049.
    [44] Zhu Y T, Wu X L, Liao X Z, Narayan J, Mathaudhu S N and Kecskes L J. Twinning partial multiplication at grain boundary in nanocrystalline fcc metals [J]. Appl. Phys. Lett. 2009, 95: 031909.
    [45] Germann T C, Holian B L, Lomdahl P S and Ravelo R. Orientation dependence in molecular dynamics simulations of shocked single crystals [J]. Phys. Rev. Lett. 2000, 84: 5351.
    [46] Bringa E M, Cazamias J U, Erhart P, Stolken J, Tanushev N, Wirth B D, Rudd R E and Caturla M J. Atomistic shock hugoniot simulation of single-crystal copper [J]. J. Appl. Phys. 2004, 96: 3793.
    [47] Hirth J P and Lothe J. Theory of dislocations [M]. New York: Willey; 1982.
    [48] Luo S N, Germann T C, Desai T G, Tonks D L and An Q. Anisotropic shock response of columnar nanocrystalline Cu [J]. J. Appl. Phys. 2010, 107: 123507.
    [49] Cheng S, Spencer J A and Milligan W W. Strength and tension/compression asymmetry in nanostructured and ultrafine-grain metals [J]. Acta Mater. 2003, 51: 4505.
    [50] Lund A C, Nieh T G and Schuh C A. Tension/compression strength asymmetry in a simulated nanocrystalline metal [J]. Phys. Rev. B 2004, 69: 012101.
    [51] Lund A C and Schuh C A. Strength asymmetry in nanocrystalline metalsunder multiaxial loading [J]. Acta Mater. 2005, 53: 3193.
    [52] Randle V. The role of the coincidence site lattice in grain boundary engineering [M]. Cambridge: Cambridge University Press 1996.
    [53] Sanders P G, Youngdahl C J and Weertman J R. The strength of nanocrystalline metals with and without flaws [J]. Mater. Sci. Eng. A 1997, 234-236: 77.
    [54] Winning M. Grain boundary engineering by application of mechanical stresses [J]. Scripta Mater. 2006, 54: 987.
    [1] Bancroft D, Peterson E L and Minshall S. Polymorphism of iron at high pressure [J]. J. Appl. Phys. 1956, 27: 291.
    [2] Asay J R and Chhabildas L C. Paradigms and challenges in shock wave research [A]. In: High-pressure shock compression of solids VI [C]. Eds. Horie Y, Davison L, Thadhani N N. New York: Springer, 2003. p.57.
    [3] Kalantar D H, Belak J F, Collins G W, Colvin J D, Davies H M, Eggert J H, Germann T C, Hawreliak J, Holian B L, Kadau K, Lomdahl P S, Lorenzana H E, Meyers M A, Rosolankova K, Schneider M S, Sheppard J, Stolken J S and Wark J S. Direct observation of theα–εtransition in shock-compressed iron via nanosecond X-ray diffraction [J]. Phys. Rev. Lett. 2005, 95: 075502.
    [4] Kadau K, Germann T C, Lomdahl P S, Albers R C, Wark J S, Higginbotham A and Holian B L. Shockwaves in polycrystalline iron [J]. Phys. Rev. Lett. 2007, 98: 135701.
    [5] Kadau K, Germann T C, Lomdahl P S and Holian B L. Microscopic view of structural phase transitions induced by shock waves [J]. Science 2002, 296: 1681.
    [6] Kadau K, Germann T C, Lomdahl P S and Holian B L. Atomistic simulations of shock-induced transformations and their orientation dependence in bcc Fe single crystals [J]. Phys. Rev. B 2005, 72: 064210.
    [7] Cui X L, Zhu W J, He H L, Deng X L and Li Y J. Phase transformation of iron under shock compression: Effects of voids and shear stress [J]. Phys. Rev. B 2008, 78: 024115.
    [8]崔新林,祝文军,邓小良,李英骏,贺红亮.冲击波压缩下含纳米孔洞单晶铁的结构相变研究[J].物理学报2006, 55: 5545.
    [9]邵建立,何安明,秦承森,王裴.一维应变加载下单晶铁结构转变的微观研究[J].物理学报2009, 58: 5610.
    [10]邵建立,秦承森,王裴,周洪强.铁冲击相变的分子动力学研究[J].物理学报2007, 56: 5389.
    [11]邵建立,秦承森,王裴,周洪强.冲击加载下孔洞诱导相变形核分析[J].物理学报2008, 57: 1254.
    [12] Ma W, Zhu W J and Jing F Q. The shock-front structure of nanocrystalline aluminum [J]. Appl. Phys. Lett. 2010, 97: 121903.
    [13]马文,祝文军,陈开果,经福谦.晶界对纳米多晶铝中冲击波阵面结构影响的分子动力学研究[J].物理学报2011, 60: 016107.
    [14]马文,祝文军,张亚林,陈开果,邓小良,经福谦.纳米多晶金属样本构建的分子动力学模拟研究[J].物理学报2010, 59: 4781.
    [15] Holian B L and Lomdahl P S. Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations [J]. Science 1998, 280: 2085.
    [16] Harrison P, Voter A F and Chen S P. Embedded atom potential for bcc iron [A]. In: Atomistic simulation of materials: Beyond pair potentials [C]. Eds. Vitek V, Srolovitz D J. New York: Plenum Press, 1989. p.219.
    [17] Gupta Y M, Winey J M, Trivedi P B, LaLone B M, Smith R F, Eggert J H and Collins G W. Large elastic wave amplitude and attenuation in shocked pure aluminum [J]. J. Appl. Phys. 2009, 105: 036107.
    [18]王宏涛,杨卫.纳晶金属的力学行为[J].力学进展2004, 34: 314.
    [19]陈开果,祝文军,马文,邓小良,贺红亮,经福谦.冲击波在纳米金属铜中的传播:分子动力学模拟研究[J].物理学报2010, 59: 1225.