量子系统的状态跟踪控制及算符制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据是否与环境等相互作用可将量子系统分为封闭和开放量子系统。本论文在封闭量子系统的研究中,完成了状态转移和轨迹跟踪控制律的设计任务以及收敛性证明。在开放量子系统中,实现了状态转移控制和量子门算符制备与保持。
     在封闭量子系统中,在状态转移研究方面,在液态核磁共振体系中引入辅助系统,采用李雅谱诺夫方法设计控制律,实现了核磁共振体系从一个高度混合态转移到一个有效纯态(伪纯态)的转移任务。在轨迹跟踪控制方面,利用相互作用绘景变换将对量子系统自然演化轨迹的跟踪问题转变成状态转移问题,或者通过引入误差变量将状态跟踪变成误差调节问题,在选用同样李雅谱诺夫函数的情况下,两种方法得到一样的控制律。在状态转移收敛性研究方面,针对自由哈密顿量能级差各不相等,各个能级之间可以直接耦合的理想系统,当目标轨迹是系统自然演化轨迹的情况下,在相互作用绘景中采用基于虚拟力学量的李雅谱诺夫函数,借助Barbalat引理分析动力学系统的收敛性。通过设计虚拟力学量具有非退化本征谱,将不变集缩小到只包含与虚拟力学量对易的状态;进一步,调节虚拟力学量本征值的取值来保证收敛。为了简化虚拟力学量的设计,论文中给出了虚拟力学量的一种固定的取法,并且证明了在所取值方式下,不变集中除目标态之外其他状态都是临界稳定的充要条件。对于更实际的非理想系统,当目标态是本征态或者是以对角密度矩阵表示的伪纯态时,证明了系统收敛到目标态的充要条件。
     在开放量子系统的状态控制方面,论文分别对马尔科夫以及非马尔科夫开放量子系统进行了研究。在一个四能级马尔科夫开放量子系统中,借助无消相干技术,实现了对无消相干目标态的自由演化轨迹的跟踪控制,针对非理想系统,理论分析和系统仿真实验都显示了所设计的李雅谱诺夫控制律可以使系统收敛到目标态。在一个二能级非马尔科夫系统中,通过简化抵消漂移项的控制律的形式,避免了控制律奇异和状态转移路径的剧烈振荡的现象。在系统仿真实验过程中,设计一系列离散的目标纯态作为状态转移的中间路径,通过路径规划实现对状态轨迹的控制。
     论文采用李雅普诺夫控制方法实现了非马尔科夫开放量子系统中单比特量子门算符的快速制备和保持。分析了控制律奇异的问题并提出有效解决方案。基于控制任务进行控制律改进,理论分析说明在改进的控制律作用下,系统一定能够到达目标算符,实现了高精度单量子比特门的制备,并且通过系统仿真实验证明了控制律对系统参数,如耦合强度等有很好的鲁棒性。相比于基于梯度下降脉冲设计(GRAPE)的最优控制方法,所设计的李雅谱诺夫控制具有速度快,目标门算符可以保持的优点,且在李雅谱诺夫函数选取合适的情况下,也能达到最优精度。
Quantum systems are grouped into closed systems and open systems according to whether the systems interact with their environment. The dissertation researches state control and operator manipulation in quantum systems. In closed systems, Lyapunov control laws for state transferring and state tracking are designed. Besides, a detailed convergence proof is accomplished. In open systems, the work focuses on complete state transferring and quantum gates operator implementation.
     In closed quantum systems, state transferring and state tracking are considered. Firstly, state transferring is theoretically realized in liquid nuclear magnetic resonance (NMR) system. In this example, another quantum system, the so-called auxiliary system, is coupled to NMR. Lyapunov control law is designed to transfer NMR from a high-mixed initial thermal equilibrium state to an effective pure state (pseudo-pure state). Secondly, state tracking methods are discussed in detail. Error as a new controlled variable is introduced to change state tracking into state transferring. If the system's nature trajectory is tracked, interaction picture is also employed to change tracking into transferring. In this case, both the two methods produce the same control law if we choose the same Lyapunov function. Simulation experiments demonstrate that the tracking performance is related to target state and system structure. In the convergence proof, an ideal system, where energy differences between arbitrary levels of free Hamiltonian are different and the energy level is connected to each other, is investigated in interaction picture. To track the nature trajectory of the ideal controlled system, an average value of virtual observable quantity P is selected as Lyapunov function. The positive limit set of the controlled system is analyzed via Barbalat lemma. In the design process, P with non-degenerate eigen-spectrum is designed to shrink the limit set R to a smaller one, in which all the states in R commute with P; the eigenvalues of P is carefully selected to ensure convergence. To simplify the qualified P, the dissertation gives a candidate P, which is proved that the other states except the target one in the limit set under this P are critically stable. It is verified that a non-ideal system still converges to an eigen-state or pseudo-pure state described by diagonal density matrix, the sufficient and necessary condition of which is obtained.
     The open quantum systems interacted with Markovian and Non-Markovian environment are investigated. The dissipative dynamics in open quantum system prohibits the complete state tracking. In a four-level Markovian system, decoherence-free subspace is employed to track a nature trajectory of a decoherence-free target state. That this non-ideal system under the designed control law converges to target state is verified by theoretical description and simulation experiments.
     The Lyapunov control law is simplified to avoid oscillating state trajectory in a two-level Non-Markovian quantum system. Although a complete tracking is impossible except the case of equilibrium state tracking, a discrete target trajectory composed of pure states is implemented by path planning in simulation experiments.
     The single quantum gates in Non-Markovian system is manipulated by Lyapunov control. The singularity problem arising in control law is studied and solved. A redesigned Lyapunov control law brings an great improvement on control effectiveness:1) it ensures that the system reach target operator;2) the operator preparation process is finished in a short time because of the monotonically decreasing of Lyapunov function. Compare with optimal control, the fast preparation process is obvious and the adaptive control law has a peculiar advantage that it keeps target operator unchanged for a significant time. Moreover, the optimal accuracy is also obtained by a proper Lyapunov function. In the simulation experiments, another benefit of the proposed control law is the nice robustness against the variations of system parameters.
引文
Albertini F and D'Alessandro D.2003. Notions of controllability for bilinear multilevel quantum systems[J]. IEEE Transactions on Automatic Control.48:1399-1403.
    Albertinia F and D'Alessandro D.2002. The Lie Algebra Structure and Controllability of Spin Systems[J]. Linear Algebra and its Applications.35:213-235.
    Aliferis P, Gottesman D, Preskill J.2008. Accuracy threshold for postselected quantum computation[J]. Quantum Information & Computation.8:181-244.
    Altafin C.2003. Controllability properties for finite dimensional quantum Markovian master equations[J]. Journal of Mathematical Physics.44:2357-2372.
    Altafin C.2004. Coherent control of open quantum dynamical systems[J]. Physical Review A.70: 062321.
    Assion A.1998. Control of Chemical Reactions by Feedback-Optimized Phase-Shaped Femtosecond Laser Pulses[J]. Science.282:919-922.
    Assis P, de Souza R, da Silva P, et al.2006. Non-Markovian Fokker-Planck equation:Solutions and first passage time distribution[J]. Physical Review E.73.
    Bason MG, Viteau M, Malossi N, et al.2012. High-fidelity quantum driving[J]. Nature Physics.8: 147-152.
    Beaucharda K, Coronb JM, Mirrahimic M, et al.2007. Implicit Lyapunov control of finite dimensional Schrodinger equations[J]. Systems & Control Letters.56:388-395.
    Bloembergen N and Yablonovitch E.1978. Infrared-laser-induced unimolecular reactions[J]. Physics Today.31:23-30.
    Bonnard B and Sugny D.2009. Time-Minimal Control of Dissipative Two-Level Quantum Systems:The Integrable Case[J]. SIAM Journal on Control and Optimization.48:1289-1308.
    Bonneau S, Dahan M, Cohen LD.2005. Single quantum dot tracking based on perceptual grouping using minimal paths in a spatiotemporal volume[J]. IEEE Transactions on Image Processing.14:1384-1395.
    Boscain U and Mason P.2006. Time minimal trajectories for a spin 1/2 particle in a magnetic field[J]. Journal of Mathematical Physics.47:062101.
    Breuer H-P.2004. Genuine quantum trajectories for non-Markovian processes[J]. Physical Review A.70:012106.
    Breuer H-P and Petruccione F.2002. The Theory of Open Quantum Systems[M]. ed., New York Oxford University Press.
    Breuer H-P, Kappler B, Petruccione F.2001. The Time-Convolutionless Projection Operator Technique in the Quantum Theory of Dissipation and Decoherence[J]. Annals of Physics.291: 36-70.
    Brumer P and Shapiro M.1986. Control of unimolecular reactions using coherent light[J]. Chemical Physics Letters.126:541-546.
    Brumer P and Shapir M.1989. Coherence Chemistry:Controlling Chemical Reactions with Lasers[J]. Accounts of Chemical Research.22:407-413.
    Cao G, Li H-O, Tu T, et al.2013. Ultrafast universal quantum control of a quantum-dot charge qubit using Landau-Zener-Stiickelberg interference[J]. Nature Communications.4:1401.
    Chen BS, Chen WH, Hsu F, et al.2008. Optimal Tracking Control Design of Quantum Systems via Tensor Formal Power Series Method[J]. The Open Automation and Control System Journal. 1:50-64.
    Chen C and Elliott D.1990. Measurements of optical phase variations using interfering multiphoton ionization processes[J]. Physical Review Letters.65:1737-1740.
    Chen C, Yin Y-Y, Elliott D.1990. Interference between optical transitions[J]. Physical Review Letters.64:507-510.
    Chiuri A, Greganti C, Mazzola L, et al.2012. Linear optics simulation of quantum non-Markovian dynamics[J]. Scientific Reports.2:968.
    Chuang IL, Gershenfeld N, Kubinec M.1998. Experimental implementation of fast quantum searching[J]. Physical Review Letters.80:3408-3411.
    Cong S and Zhang YY.2008. Superposition state preparation based on Lyapunov stability theorem in quantum systems[J]. Journal of University of Science and Technology of China.38:821-827.
    Cong S, Yang J, Liu J.2012. State Transfer and Coherence Maintain Based on DFS in Open Quantum systems [C]. Proceedings of the 31st Chinese Control Converence, Hefei, China. 7135-7139.
    Coron J-M, Grigoriu A, Lefter C, et al.2009. Quantum control design by Lyapunov trajectory tracking for dipole and polarizability coupling[J]. New Journal of Physics.11:105034.
    Cory DG, Fahmy AF, Havel TF.1997. Ensemble quantum computing by NMR spectroscopy[C]. Proceedings of the National Academy of Science of the United States of America, USA.94: 1624-1639.
    Cory DG, Price MD, Havel TF.1998. Nuclear magnetic resonance spectroscopy:An experimentally accessible paradigm for quantum computing[J]. Physica D:Nonlinear Phenomena.120:82-101.
    Cui W, Xi ZR, Pan Y.2008. Optimal decoherence control in non-Markovian open dissipative quantum systems[J]. Physical Review A.77:032117.
    de Fouquieres P.2012. Implementing Quantum Gates by Optimal Control with Doubly Exponential Convergence[J]. Physical Review Letters.108:110504.
    Deffner S and Lutz E.2013. Quantum Speed Limit for Non-Markovian Dynamics[J]. Physical Review Letters.111:010402.
    Deffner S and Lutz E.2013. Energy-time uncertainty relation for driven quantum systems[J]. Journal of Physics A:Mathematical and Theoretical.46:335302.
    Doherty AC, Habib S, Jacobs K, et al.2000. Quantum feedback control and classical control theory[J]. Physical Review A.62.
    Du J, Rong X, Zhao N, et al.2009. Preserving electron spin coherence in solids by optimal dynamical decoupling[J]. Nature.461:1235-1268.
    Elsaesser T and Kaiser W.1991. Vibrational and vibronic relalxation of large polyatomic molecules in liquids[J]. Annual Review of Physical Chemistry.42:83-107.
    Esposito M and Gaspard P.2003. Quantum master equation for a system influencing its environment[J]. Phys Rev E Stat Nonlin Soft Matter Phys.68:066112.
    Fialko O.2014. Decoherence via coupling to a finite quantum heat bath[J]. Journal of Physics B: Atomic, Molecular and Optical Physics.47:045302.
    Floether FF, Fouquieres Pd, Schirmer SG.2012. Robust quantum gates for open systems via optimal control:Markovian versus non-Markovian dynamics[J]. New Journal of Physics.14: 073023.
    Frutos LM, Andruniow T, Santoro F, et al.2007. Tracking the excited-state time evolution of the visual pigment with multiconfigurational quantum chemistry[C]. Proceedings of the National Academy of Sciences of the United States of America.104:7764-7769.
    Fu H, Schirmer SG, Solomon AI.2001. Complete controllability of finite-level quantum systems[J]. Journal of Physics A:Mathematical and General.34:1679-1690.
    Gao F, Rey-de-Castro R, Donovan AM, et al.2014. Pathway dynamics in the optimal quantum control of rubidium:Cooperation and competition[J]. Physical Review A.89.
    Ge SS, Vu TL, Hang CC.2012. Non-smooth Lyapunov function-based global stabilization for quantum filters[J]. Automatica.48:1031-1044.
    Grace MD, Dominy J, Kosut RL, et al.2010. Environment-invariant measure of distance between evolutions of an open quantum system[J]. New Journal of Physics.12:015001.
    Grigoriu A, Rabitz H, Turinici G.2013. Controllability analysis of quantum systems immersed within an engineered environment[J]. Journal of Mathematical Chemistry.51:1548-1560.
    Haddad WM and Chellaboina V (2008). Nonlinear Dynamical Systems and Control:A Lyapunov-Based Approach. Princeton, Princeton University Press.
    Harno HG and Petersen IR.2010. Coherent Control of Linear Quantum Systems:A Differential Evolution Approach[J].2010 American Control Conference:1912-1917.
    Hou QZ, Yang WL, Feng M, et al.2013. Quantum state transfer using stimulated Raman adiabatic passage under a dissipative environment[J]. Physical Review A.88.
    Hu BL, Paz JP, Zhang Y.1992. Quantum Brownian motion in a general environment:Exact master equation with nonlocal dissipation and colored noise[J]. Physical Review D.45: 2843-2861.
    Huang GM.1983. On the controllability of quantum-mechanical systems[J]. Journal of Mathematical Physics.24:2608.
    Iida S, Yukawa M, Yonezawa H, et al.2012. Experimental Demonstration of Coherent Feedback Control on Optical Field Squeezing[J]. IEEE Transactions on Automatic Control.57: 2045-2050.
    Inoue R, Tanaka S-I-R, Namiki R, et al.2013. Unconditional Quantum-Noise Suppression via Measurement-Based Quantum Feedback[J]. Physical Review Letters.110.
    Jha A, Beltrani V, Rosenthal C, et al.2009. Multiple Solutions in the Tracking Control of Quantum Systems[J]. Journal of Physical Chemistry A.113:7667-7670.
    Jochym-O'Connor T and Laflamme R.2014. Using Concatenated Quantum Codes for Universal Fault-Tolerant Quantum Gates[J]. Physical Review Letters.112:010505.
    Judson R and Rabitz H.1992. Teaching lasers to control molecules[J]. Physical Review Letters. 68:1500-1503.
    Karasik RI, Marzlin KP, Sanders BC, et al.2008. Criteria for dynamically stable decoherence-free subspaces and incoherently generated coherences[J]. Physical Review A.77.
    Kerckhoff J, Nurdin HI, Pavlichin DS, et al.2010. Coherent-feedback formulation of continuous quantum error correction protocols[J].2010 Conference on Lasers and Electro-Optics (Cleo) and Quantum Electronics and Laser Science Conference (Qels).
    Kerckhoff J, Pavlichin DS, Chalabi H, et al.2011. Design of nanophotonic circuits for autonomous subsystem quantum error correction[J]. New Journal of Physics.13:055022.
    Khalil HK.1968. Nonlinear Systems(Third Edition)[M]. ed., New Jersey, Prentice Hall.
    Khaneja N, Reiss T, Kehlet C, et al.2005. Optimal control of coupled spin dynamics:design of NMR pulse sequences by gradient ascent algorithms[J]. Journal of Magnetic Resonance.172: 296-305.
    Khodjasteh K, Erd'elyi T, Viola L.2011. Limits on preserving quantum coherence using multipulse control[J]. Physical Review A.83:020305(R).
    Kim H, Bose R, Shen TC, et al.2013. A quantum logic gate between a solid-state quantum bit and a photon[J]. Nature Photonics.7:373-377.
    Kleiman VD, Zhu L, Allen J, et al.1995. Coherent control over the photodissociation of CH3I[J]. The Journal of Chemical Physics.103:10800.
    Kleiman VD, Zhu L, Li X, et al.1995. Coherent phase control of the photoionization of H2S[J]. The Journal of Chemical Physics.102:5863.
    Kong KY, Marcus AI, Hong JY, et al.2006. Automatic microtubule tracking for QD-based in vivo cell imaging and drug efficacy study[J]. Conf Proc IEEE Eng Med Biol Soc.1:3321-3324.
    Kuang S and Cong S.2008. Lyapunov control methods of closed quantum systems[J]. Automatica. 44:98-108.
    Kuang S and Cong S.2010a. Population control on equilibrium states of quantum systems via Lyapunov method[J]. Acta Automatica Sinica.36:1257-1263.
    Kuang S and Cong S.2010b. Lyapunov stabilization strategy of mixed-state quantum systems with ideal conditions[J]. Control and Decision.25:273-277.
    Lapert M, Assemat E, Zhang Y, et al.2013. Time-optimal control of spin-1/2 particles with dissipative and generalized radiation-damping effects[J]. Physical Review A.87.
    LaSalle J and Lefschetz S.1961. Stability By Liapunov's Direct Method With Applications[M]. ed., New York, Academic Press.
    Letokhov VS.1977. Photophysics and photochemistry [J]. Physics Today.30:23-32.
    Li B, Yu ZH, Fei SM, et al.2013. Time optimal quantum control of two-qubit systems[J]. Science China-Physics Mechanics & Astronomy.56:2116-2121.
    Li R and Gaitan F.2010. High-fidelity universal quantum gates through group-symmetrized rapid passage[J]. Quantum Information & Computation.10:936-946.
    Lindblad G.1976. On the Generators of Quantum Dynamical Semigroups[J]. Communications in Mathematical Physics.48:119-130.
    Liu BH, Li L, Huang YF, et al.2011. Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems[J]. Nature Physics.7:931-934.
    Liu J, Hai WH, Zhou Z.2013. Coherent control via interplay between driving field and two-body interaction in a double well[J]. Physics Letters A.377:3078-3083.
    Liu JX and Cong S.2011. Trajectory Tracking of Quantum States based on Lyapunov method[C]. The 9th IEEE International Conference on Control & Automation (ICCA), Santiago, Chile. 318-323.
    Liu JX, Cong S, Zhu Y.2012. Adaptive Trajectory Tracking of Quantum Systems[C].12th International Conference on Control, Automation and Systems, Jeju Island, Korea.322-327.
    Lou YS and Cong S.2011. State transfer control of quantum systems on the Bloch sphere[J]. Journal of Systems Science and Complexity.24.
    Lu S-P, Park SM, Xie Y, et al.1992. Coherent laser control of bound-to-bound transitions of HC1 and CO[J]. The Journal of Chemical Physics.96:6613.
    Maalouf AI and Petersen IR.2009. Coherent Hoo Control for a Class of Linear complex quantum systems[C]. American Control Conference, St. Louis, MO, USA.1472-1479.
    Mabuchi H and Doherty AC.2002. Cavity quantum electrodynamics:coherence in context[J]. Science.298:1372-1377.
    Malossi N, Bason MG, Viteau M, et al.2013. Quantum driving of a two level system:quantum speed limit and superadiabatic protocols-an experimental investigation[J]. Journal of Physics: Conference Series.442:012062.
    Marx R, Fahmy AF, Myers JM, et al.2000. Approaching five-bit NMR quantum computing[J]. Physical Review A.62.
    Mirrahimi M and Rouchon P.2004. Trajectory generation for quantum systems based on Lyapounov techniques[C]. Proceedings of the international symposium MTNS, Leuven, Belgium.
    Mirrahimi M, Rouchon P, Turinici G.2005. Lyapunov control of bilinear Schrodinger equations[J]. Automatica.41:1987-1994.
    Mishima K and Yamashita K.2009a. Free-time and fixed end-point optimal control theory in dissipative media:application to entanglement generation and maintenance[J]. The Journal of chemical physics.131:014109.
    Mishima K and Yamashita K.2009b. Free-time and fixed end-point optimal control theory in quantum mechanics:application to entanglement generation[J]. The Journal of chemical physics.130:034108.
    Mottonen M, de Sousa R, Zhang J, et al.2006. High fidelity one-qubit operations under random telegraph noise[J]. Physical Review A.73:022332.
    Murch KW, Weber SJ, Macklin C, et al.2013. Observing single quantum trajectories of a superconducting quantum bit[J]. Nature.502:211-214.
    Higham NJ.2008. Functions of matrices theory and computation[M]. ed., Philadelphia, Society for industrial and applied mathmatics.
    Nigmatullin R and Schirmer SG.2009. Implementation of fault-tolerant quantum logic gates via optimal control[J]. New Journal of Physics.11:105032.
    Nurdina HI, Jamesa MR, Ian R. Petersenb.2009. Coherent quantum LQG control[J]. Automatica. 45:1837-1846.
    Park SM, Lu S-P, Gordon RJ.1991. Coherent laser control of the resonance-enhanced multiphoton ionization of HC1[J]. The Journal of Chemical Physics.94:8622.
    Peng X, Suter D, Lidar DA.2011. High fidelity quantum memory via dynamical decoupling: theory and experiment[J]. Journal of Physics B:Atomic, Molecular and Optical Physics.44: 154003.
    Petta JR, Johnson AC, Taylor JM, et al.2005. Coherent manipulation of coupled electron spins in semiconductor quantum dots[J]. Science.309:2180-2184.
    Piltz C, Scharfenberger B, Khromova A, et al.2013. Protecting Conditional Quantum Gates by Robust Dynamical Decoupling[J]. Physical Review Letters.110.
    Potter ED, Herek JL, Pedersen S, et al.1992. Femtosecond laser control of a chemical reaction[J]. Nature.355:66-68.
    Press D, Ladd TD, Zhang B, et al.2008. Complete quantum control of a single quantum dot spin using ultrafast optical pulses[J]. Nature.456:218-221.
    Rabitz H.1995. Controllability of molecular systems[J]. Physical Review A.51:960-966.
    Rabitz H.2000. Whither the Future of Controlling Quantum Phenomena?[J]. Science.288: 824-828.
    Ralph JF, Jacobs K, Hill CD.2011. Frequency tracking and parameter estimation for robust quantum state estimation[J]. Physical Review A.84.
    Reich DM, Gualdi G, Koch CP.2013. Optimal Strategies for Estimating the Average Fidelity of Quantum Gates[J]. Physical Review Letters.111.
    Rothman A, Ho T, Rabitz H.2005. Quantum observable homotopy tracking control[J]. The Journal of Chemical Physics.123:134104.
    Rowland B and Jones JA.2012. Implementing quantum logic gates with gradient ascent pulse engineering:principles and practicalities[J]. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences.370:4636-4650.
    Salomon J and Turinici G.2006. On the relationship between the local tracking procedures and monotonic schemes in quantum optimal control[J]. The Journal of Chemical Physics.124: 074102.
    Santos LF and Viola L.2006. Enhanced Convergence and Robust Performance of Randomized Dynamical Decoupling[J]. Physical Review Letters.97:150501.
    Sauer S, Gneiting C, Buchleitner A.2013. Optimal Coherent Control to Counteract Dissipation[J]. Physical Review Letters.111.
    Schirmer SG and Wang XT.2010. Stabilizing open quantum systems by Markovian reservoir engineering[J]. Physical Review A.81.
    Schirmer SG, Fu H, Solomon AI.2001. Complete controllability of quantum systems[J]. Physical Review A.63:063410.
    Schmidt-Kaler F, Haffner H, Riebe M, et al.2003. Realization of the Cirac-Zoller controlled-NOT quantum gate[J]. Nature.422:408-411.
    Schulte-Herbriiggen T, Sporl A, Khaneja N, et al.2011. Optimal control for generating quantum gates in open dissipative systems[J]. Journal of Physics B:Atomic, Molecular and Optical Physics.44:154013.
    Shabani A and Lidar DA.2005. Completely positive post-Markovian master equation via a measurement approach[J]. Physical Review A.71:020101 (R).
    Shapiro M, Hepburn JW, Brumer P.1988. Simplified laser control of unimolecular reactions: Simultaneous (ω1,ω3) excitation[J]. Chemical Physics Letters.149:451-454.
    Shi S, Woody A, Rabitz H.1988. Optimal control of selective vibrational excitation in harmonic linear chain molecules[J]. The Journal of Chemical Physics.88:6870.
    Shibata F, Takahashi Y, Hashitsume N.1977. A Generalized Stochastic Liouville Equation. Non-Markovian Versus Memoryless Master Equations[J]. Journal of Statistical Physics.17: 171-187.
    Slotine JJE and Li WP.1991. Applied Nonlinear Control[M]. ed., Mexico, Prentice-Hall,Inc.
    Stephens AM and Evans ZWE.2009. Accuracy threshold for concatenated error detection in one dimension[J]. Physical Review A.80:022313.
    Sugawara M.2002. Local control theory for coherent manipulation of population dynamics[J]. Chemical physics letters.358:290-297.
    Sugny D, Kontz C, Jauslin H.2007. Time-optimal control of a two-level dissipative quantum system[J]. Physical Review A.76:023419.
    Tannor DJ and Rice SA.1985. Control of selectivity of chemical reaction via control of wave packet evolution[J]. The Journal of Chemical Physics.83:5013.
    Tannor DJ, Kosloff R, Rice SA.1986. Coherent pulse sequence induced control of selectivity of reactions:Exact quantum mechanical calculations[J]. The Journal of Chemical Physics.85: 5805.
    Taylor JM, Engel HA, Dur W, et al.2005. Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins[J]. Nature Physics.1:177-183.
    Ticozzi F, Nishio K, Altafi C.2013. Stabilization of Stochastic Quantum Dyanmics via Open and Closed loop Control[J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL.58:74-85.
    Ticozzi F, Lucchese R, Cappellaro P, et al.2012. Hamiltonian Control of Quantum Dynamical Semigroups:Stabilization and Convergence Speed[J]. IEEE Transactions on Automatic Control. 57:1931-1944.
    Tong QJ, An JH, Luo HG, et al.2010. Decoherence suppression of a dissipative qubit by the non-Markovian effect[J]. Journal of Physics B:Atomic, Molecular and Optical Physics.43: 155501.
    Toyoda K, Uchida K, Noguchi A, et al.2013. Realization of holonomic single-qubit operations[J]. Physical Review A.87.
    Tsumura K.2008. Global stabilization at arbitrary eigenstates of N-dimensional quantum spin systems via continuous feedback[C].2008 American Control Conference, Seattle, WA.1-12: 4148-4153.
    Uhrig GS.2008. Exact results on dynamical decoupling by π pulses in quantum information processes[J]. New Journal of Physics.10:083024.
    Wang S-C, Yu Z-W, Zou W-J, et al.2014. Protecting quantum states from decoherence of finite temperature using weak measuremen[J]. Physical Review A.89.
    Wang W, Wang LC, Yi XX.2010. Lyapunov control on quantum open systems in decoherence-free subspaces[J]. Physical Review A.82:034308.
    Wang W, Hou SC, Yi XX.2012. Adiabatic evolution under quantum control[J]. Annals of Physics. 327:1293-1303.
    Wang X and Schirmer S.2010a. Analysis of Lyapunov Method for Control of Quantum States[J]. IEEE Transactions on Automatic Control.55:2259-2270.
    Wang X and Schirmer S.2010b. Analysis of Effectiveness of Lyapunov Control for Non-generic Quantum States[J]. IEEE Transactions on Automation Control.55:1406-1411.
    Wang X, Bishop LS, Barnes E, et al.2014. Robust quantum gates for singlet-triplet spin qubits using composite pulses[J]. Physical Review A.89:022310.
    Warren WS, Rabitz H, Dahleh M.1993. Coherent Control of Quantum Dynamics:The Dream Is Alive[J]. Science.259:1581-1589.
    Weinstein YS, Pravia MA, Fortunato EM, et al.2001. Implementation of the quantum Fourier transform[J]. Physical Review Letters.86:1889-1891.
    West JR, Lidar DA, Fong BH, et al.2010. High Fidelity Quantum Gates via Dynamical Decoupling[J]. Physical Review Letters.105:230503.
    Wiseman HM.1994. Quantum theory of continuous feedback[J]. Physical Review A.49: 2133-2150.
    Yanagisawa M, Korotkov AN, James MR.2009. Regulation and Tracking of Two-Level Quantum Systems using Measurement Feedback[J].
    Yang J, Cong S, Yang F.2012. State transfer based on decoherence-free target state by Lyapunov-based control[J]. Journal of Control Theory and Applications.10:549-553.
    Yi XX, Huang XL, Wu Cf, et al.2009. Driving quantum systems into decoherence-free subspaces by Lyapunov control[J]. Physical Review A.80:052316.
    Yonezawa H, Aoki T, Furusawa A.2004. Demonstration of a quantum teleportation network for continuous variables[J]. Nature.431:430-433.
    Yuan H.2012. Reachable set of operators on controlled open quantum systems in a Markovian environment[J]. Systems & Control Letters.61:1085-1088.
    Yuan HD.2013. Reachable set of open quantum dynamics for a single spin in Markovian environment[J]. Automatica.49:955-959.
    Zewail AH.1980. Laser selective chemistry-is it possible?[J]. Physics Today.33:25-33.
    Zhang J, Li C-W, Wu R-B, et al.2005. Maximal suppression of decoherence in Markovian quantum systems[J]. Journal of Physics A:Mathematical and General.38:6587-6601.
    Zhang J, Wu RB, Liu YX, et al.2012. Quantum Coherent Nonlinear Feedback With Applications to Quantum Optics on Chip[J]. IEEE Transactions on Automatic Control.57:1997-2008.
    Zhang W and Chen B-S.2008. Stochastic affine quadratic regulator with applications to tracking control of quantum systems[J]. Automatica.44:2869-2875.
    Zhao SW, Lin H, Sun JT, et al.2012. An implicit Lyapunov control for finite-dimensional closed quantum systems[J]. International Journal of Robust and Nonlinear control.22:1212-1228.
    Zheng SB.2013. Implementation of Toffoli gates with a single asymmetric Heisenberg XY interaction[J]. Physical Review A.87.
    Zhu WS and Rabitz H.2003. Quantum control design via adaptive tracking[J]. The Journal of Chemical Physics.119:3619-3625.
    丛爽,朱亚萍,刘建秀.2012.不同目标函数的量子系统动态跟踪[J].系统科学与数学.32:719-730.
    周立仁.2007.矩阵同时对角化的条件讨论[J].湖南理工学院学报(自然科学版).20:8-10.