高分子量PDLLA的合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚乳酸是一种具有优良的生物相容性和可生物降解性的聚合物,随着高分子材料聚乳酸及其共聚物在生物材料领域,特别是作为组织工程支架材料、药物释放材料和骨折内固定件的应用日益广泛,其研制与开发日益受到人们的重视,同时聚合单体丙交酯也越来越受到重视。长期以来丙交酯的成本一直是制约聚乳酸推广应用的最重要的因素之一,本文致力于设计出一套能最大限度降低丙交酯成本的工艺过程,并对丙交酯聚合过程中影响聚乳酸分子量的因素进行了初步探讨。可以相信,聚乳酸一旦工业化,它在医用材料和降解塑料方面将有难以估量的应用前景。
     本文在总结了目前众多聚乳酸单体——丙交酯的合成技术的基础上,选用减压蒸馏工艺并加以改进,设计出最佳的实验装置,使丙交酯的产率从30%提高到45%,并对重结晶后的母液进行有效的回收,回收率也能达到40%,对回收后的丙交酯进行了测试分析,证明了回收过程的可行性。
     首先,从改善合成丙交酯反应的条件入手,通过对丙交酯合成反应的机理分析,对反应过程中催化剂用量、种类、脱水温度、时间、压力、解聚温度、时间、压力等做了详细的研究,得出最佳的合成条件和工艺过程。脱水温度,140℃;脱水时间,4小时,使脱水量达到94%左右;解聚温度,240℃;解聚时间,2小时;终止温度,270℃。
     其次,回收重结晶母液使损失在乙酸乙酯中的丙交酯得到循环利用,对回收工艺过程进行了周密分析和探讨,并比较了以上两种过程的异同。
     然后,用甲醇钠非水滴定法测定丙交酯中残存乳酸,卡尔-费休法测定丙交酯中残存水的含量,用提勒管测定精制丙交酯熔点,用红外吸收光谱、紫外光谱、差热分析对合成的丙交酯以及回收的丙交酯进行表征。结果表明重结晶三次后丙交酯纯度在99.5%以上。
     最后,对精制后的丙交酯本体开环熔融聚合过程进行分析,对反应过程中聚合温度、聚合时间以及引发剂用量做了详细研究,并对PDLLA的性能进行多种测试分析,证明工艺过程是可行的。
Polylactide is one of polymer materials that have good biocompatibility and no poisonousness can be degraded by organisms. The application of Polylactide and its copolymers is increasing in the fields of biomaterial, especially in the tissue engineering as scaffold material, carrier for pharmaceutical release and internal fixation of bone fracture. The development of
    PLA and synthesis of its monomer-lactide are catching more attention in this
    field. The cost of lactide is one of the most important factors that hamper the PLA from widely use for a long time. In this paper a series of apparatus which can boost the product ratio to the utmost was focused on. Meanwhile the factors affecting the molecular weight of PLA in the polymerization were also discussed. Once the manufacture of polylactide is industrialized, it can be of wide application in the fields of medicine materials and degraded plastics without a doublt.
    This apparatus was designed based on summarizing the most synthetic processes of lactide presently. The reduced pressure distillation was choosed and improved to obtain lactide with high product ratio. The product ratio was increased to 45% from 30%. Furthermore, lactide was recycled from the ethyl acetate recrystallization solution, and structure was investigated with IR and UV spectrum. The result indicated that the process is suitable and feasible, and the product ratio is beyond 40%.
    Firstly, through analysis for the synthetic mechanism of lactide and according to improve the condition of synthetic process the factors related were studied in detail. These factors included the amount of activator, temperature and time of dehydration, temperature and time of depolymerization, pressure of the vessel et al. The optimal synthetic condition and process engineering were draw ultimately. The optimal dehydration temperature is 140℃, dehydration time is 4 hours, dehydration amount reach 94%, depolymerization temperature is 240℃, depolymerization time is 2 hours and finish at 270℃.
    Secondly, the recover of lactide from the ethyl acetate recrystallization solution reutilized the waste solution and heighten the general product ratio. The recovery process was analyzed and studied carefully. Moreover the two processa
    
    
    
    above were compared in different aspects.
    Afterwards, the remnant lactic acid in lactide was measured by non-aqueous titration with sodium methoxide and the remnant water was surveyed by Karl-Fisher method. The melting point was investigated by Thiele tube and the characteristics of lactide were analyzed by IR, UV spectrum,TG and DSC respectively. The result indicated the purity of lactide which had been recrystallized thrice can reach 99.5%.
    Finally, the process of ring-opening polymerization of cyclic dilactides which has been purified was analyzed. The main factors which may affect the molecular weight of polylactide were studied in detail. The performance of PDLLA was investigated comprehensively. The results prove that the process is feasible.
引文
[1] Fkuda K. An overview of the activities of the Biodegradable Plastic Society. Biodegrable Polymers and Plastics, 1992. 169
    [2] 戈进杰.生物降解高分子材料及其应用.北京:化学工业出版社,2002.392~402
    [3] R Chandra, Renu Rustgi. Biodegradable Polymers. Prog. Polym. Sci, 1998.23: 1273~1335
    [4] 柴平海,张文清,金鑫荣.甲壳素、壳聚糖研究和开发的新动向.化学通报,1999.7:8~11
    [5] Griffin G J L. Starch polymer blends. Polymer Degradable and Stability, 1994.45(2):241
    [6] Warminaton A. Green progress:suppliers of biodegradable plastics have continued to make quite progress. European Plastics News, 2001. 28(5):49~50
    [7] Masahiko Okada. Chemical syntheses of biodegradable polymers. Prog. Polym. Sci, 2002.27:87~133
    [8] 翁云煊,陈家琪,刘山生.降解PE膜、发泡PS餐盒评价方法的研究.中国塑料,1999.13(2):78~83
    [9] 胡晓兰,梁国正.生物降解高分子材料研究进展.化工新型材料,2002.(3):7~10
    [10] 汪多仁.现代高分子材料生产及应用手册.北京:中国石化出版社,2002.5
    [11] Yabanna Var, V.M. Wang, D.I. Extractive Fermentation for Lactic Acid Production Biotech & Bioeng, 1991. (37):1095~1100
    [12] 刘伟雄.乳酸和聚乳酸的最新进展.食品与发酵工业,2000.27(3):61~65
    [13] 汪多仁.合成树脂与工程塑料生产技术.北京:中国轻工业出版社,2001.8
    [14] 全大萍.PDLLA/HA复合材料及其作为生物可吸收骨折内固定材料的研究:[博士学位论文].武汉:武汉工业大学材料学院,1998
    [15] 李世普.生物医用材料导论.武汉:武汉工业大学出版社,2000.1
    [16] 潘祖仁.高分子化学.北京:化学工业出版社,1997.6
    [17] Jorge Heller, Abraham J Domb. Recent developments with biodegrable polymers. Advanced Drug Delivery Reviews, 2003.55:445~446
    [18] Kulkarni R K, Pani K C, Neuman C and Leonard F. Polylactic acid for surgical implants. Arch. Surg., 1966.93:839~843.
    
    
    [19] R K Kulkarni, E G Moone, A F Hegneli et al, J. Biomed. Mater. Res. 1971.5: 169~181
    [20] Kalleta I,Tulamo R M, Lindqvist C. Fixation of mandibular body osteotomies using biodegradable amorphous self-reinforced(70 L:30 DL)Polylactide or metal lag screws:an experimental study in sheep. Journal of Cranio-maxillo-facial Surgery , 1999.27 (2):124~127
    [21] Swada H. The status of the biodegradable plastics industry in japan. ACS Symposium Series, 2001.7:56
    [22] 李洪权,全大萍,廖凯荣.聚乳酸类生物可降解塑料概述.化工新型材枓,1999.27(8):3~6
    [23] 罗彦凤,王远亮,潘君,曹雪波.PLA单体——丙交酯合成方法的研究进展.高分子材料科学与工程,2003.19(1):21
    [24] Ajoka M, Enomoto K, Suzuki K et al. Basic properties of polylactic acid produced by the direct condensation polymerization of lactic acid. Bull Chem Soc Jpn, 1995.68:2125~2131
    [25] Sung I M, Chan W L, Masatoshi M, et al. Melt polycondensation of L-lactide acid with Sn(Ⅱ)catalysts activated by various proton acids: A direct manufacturing route to high molecular weight Poly(L-lactic acid).J Polym Sci:Polym Chem, 2000.38:1673~1679
    [26] Hiltunen Kari, Seppaelae J, Haerkoenen M. Effect of catalyst and polymerization conditions on the preparation of low molecular weight lactic acid polymers. Macromolecules, 1997.30(3):363~369
    [27] 李曹.固体超强酸催化合成丙交酯的研究:[硕士学位论文].重庆大学材料学院,2002
    [28] 刘俊,刘义荣.聚乳酸的合成及应用.生物医学工程学杂志,2001.18(2):285
    [29] 张倩,梁海林,张小华.生物降解材料聚丙交酯的合成.塑料工业,2002.30(2):10
    [30] 赵耀明,麦杭珍,陈军武.生物降解材枓——聚丙交酯合成的研究.华南理工大学学报(自然科学版),2000.28(10):53
    [31] Hans R Kricheldorf. Syntheses and application of polylactides. Chemosphere, 2001.43:49~54
    [32] Suong-Hyu Hyon, Khosrow Jamshidi and Yoshito Ikada. Synthesis of polylactides with different molecularweights. Bimaterials. 1997.18:1503~
    
    1508
    [33] 孙俊全,崔立强,吴兰亭.乙酰基丙酮络合物催化合成聚乳酸.功能高分子学报,1996.9(2):252~256
    [34] Kricheldorf H R, Kreiser-Saunder Ⅰ, Boettcher C. Polylactones: Sn(Ⅱ) octoate-initiate polymerization of L-lactide:a mechanistic study. Polymer, 1995.36(6):1253~1259
    [35] 吴之中,张政朴,鲁格,何灿林.聚乳酸合成降解及在骨折内固定材料的应用.高分子通报,2000.3:1
    [36] S-H Hyon, K Jamshidi and Y Ikada. Synthesis of polylactides withdifferent molecular weights. Biomaterials. 1997.18,1503~1508
    [37] Chen Lianxi, Wang Jun, Fu Jie, Lei Jiaheng. The Synthesesand Properties of Poly(L-Lactide). Wuhan University Journal of Natural Science. 2002.7(4):473~475
    [38] H R Kricheidorf. Sytheses and application of polylactides. Chemosphere, 2001.43:49~54
    [39] 王晨宏,李弘,王玉琴.聚乳酸类生物降解性高分子材料研究进展.离子交换与吸附,2001.4:369~378
    [40] 苏涛,覃玉莹,马华等.常压CO_2气流法制D,L-丙交酯.精细化工,1999.16(3): 41~43
    [41] Lipinsky E S. Chemicals from Biomass:Petrochemical Substitution Options. Science, 1981.212:1465~1471
    [42] Benecke, Herman P,Markle. Catalytic production of lactide directly from lactic acid. US 5332839,1994
    [43] Jin T, Yamaguchi T, Tanabe K. Structural analysis of solid superacid. J phys chem. 1986.9:4797
    [44] Muller Manfred, Hess Joachim. Meso-lactide. US 521459,1993
    [45] Vanhummel G J, Harkemas, Kohnfe et al. Structure of 3,6-Dimethyl-1,4-dione[D-,D-(L-,L-)Lactide]. Acta Cryst, 1982. B38:1679~1681
    [46] Muller Manfred, Hess Joachim. Processes for preparing it and polymers and copolymers produced therefrom. US 4983745,1991
    [47] 朱久进,谷俐,王远亮等.高产丙交酯的合成.重庆大学学报,2003.11(26):41~47
    [48] 陈里,丁米欣.固体酸SO_4~(2-)/Ti-LaO制备及催化醋化活性的研究.化学物理学报,
    
    1997.1: 84~87
    [49] 苏涛,李超文,黄上游.减压法制备丙交脂.化工时刊,1998.12(6):14
    [50] Gul, Wang Y L, Zhu J J et al. The preparation of Ultra pure D,L-lactide Catalyzed by Nanocrystalline La-Ti Composite Oxide. International Congress on Biological and Medical Engineering. Singapore, 2002.12
    [51] 李曹,王远亮.固体超强酸SO_4~2/ZnO-SnO_2/La~(3+)催化合成丙交酯.化学与粘合,2003.1:13~16
    [52] Sinclair R G, Gynn G M. Preparation and Evaluation of Glycolic and Lactic Acid-Based Polymers for Implant Devices Used in Management of Maxillofacial Trauma. NTIS AD-A 748411,1972
    [53] Suong-Hyu Hyon, Khosrow Jamshidi and Yoshito Ikada. Synthesis of polylactides with different molecular weights. Bimaterials. 1997. 18: 1503~1508
    [54] 王远亮,赵建华.高纯丙交酯的合成研究.1996.1(19):112~117
    [55] 祖国瑞,王振荣,宋克祥等.生物降解材料聚丙交酯的研究——丙交酯单体的合成条件研究.黑龙江大学自然科学学报,1999.16(2):96
    [56] 关烨第,李翠娟,葛树丰.有机化学实验.北京:北京大学出版社,2002.11
    [57] 傅春玲,陈时忠.有机化学实验.浙江大学出版社,2001.7
    [58] 陈德灿,陈连喜,王均等.生物降解性塑料的研究概况.粮食与饲料工业,2002.4:42~45
    [59] Erwin T H Vink, Karl R Rabago, David A et al. Applications of life cycle assessment to NatureworksTM polylactide (PLA) production. Polymer Degradation and Stability, 2003.80:403~419
    [60] Sven Jacobsen , Hans-Gerhard Fritz, Philippe Degee. et al. New developments on the ring opening polymerization of polylactide. Industrial Crops and Products, 2000. 11:265~275
    [61] John C. Middleton, Arthur J. Tipton. Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 2000.21:2335~2346
    [62] 李汝珍,苏涛.丙交酯中残存乳酸和水的定量测定.化学世界,2000.2:103~107
    [63] 冯新德.21世纪的高分子化学展望.高分子通报,1999.3:1
    [64] 张贞浴,苏义华,张艳红等.生物降解材料聚丙交酯的研究(Ⅱ)丙交酯单体的纯化方法研究.黑龙江大学自然科学学报,1998.15(1):110~112
    [65] 张子勇,陈燕琼.丙交酯单体的制备及纯化.高分子材料科学与工程,2003.19
    
    (2): 52
    [66]江昕,陈连喜,贺建华,李世普.丙交酯的合成与纯化研究.武汉理工大学学报,2002.24(4):42~44
    [67]张贞裕,苏义华,戴建新等.生物降解材烽聚丙交酯的研究Ⅱ——丙交涨单体的纯化方法研究.黑龙江大学自然科学学报,1998.15(1):110
    [68]石淑先,夏宇正,郭祖鹏等.D,L-丙文酯的合成及表征.北京化工大学学报,2003.3。(2):32~34
    [69]关烨第,李翠娟,葛树丰.有机化学实验.北京:北京大学出版社,2002.11
    [70]何永吉,夏淑贞,吴蒙等.医用聚乳酸的合成及其管型材料性能的测定.高分子材料科学与工程,1993.2:24~28
    [71]李兆陇,阴金香,林天舒.有机化学实验.北京:清华大学出版社,2001.43
    [72]高家武.高分子材料近代测试技术.北京航空航天大学出版社,1994.12
    [73]Gupta M G. and Deshmukh V G. Thermal oxidative degradation of poly-lactic acid Part Ⅰ : Activation energy of thermal degradation in air. Cilloid Polymer Sci., 1982.260:308~311
    [74]Joseph B Lambert, Herbert F Shruell, David A Lighter, et al. Organic Structural Spectroscopy. New Jersey: Prentice-Hall Inc. 1998.5
    [75]Harri Korbonen, Antti Helminen, Jukka V. Seppala. Synthesis of polylactides in the presence of co-initiators with different numners of hydroxyl groups. Polymer, 2000.42:7541~7549
    [76]宇恒星,王朝生,黄南薰,唐志凉.聚乳酸的聚合方法.化工新型材料,2002.30(3):16
    [77]张国栋,杨纪元,冯新德.聚乳酸的研究进展.化学进展,2000.12(1):89
    [78]原续波,刘平,朱登武等.聚d,1-乳酸的合成.化学工业与工程,2002.19(1):124
    [79]全大萍,袁润章,卢泽俭,廖凯荣,王海华.高分子量聚 DL-丙交酯的合成及热降解.应用化学,2000.17(6):268
    [80]史铁钧,董智贤.聚乳酸的性能、合成方法及应用.化工新型材料,2001.19(5):13
    [81]赵剑豪,廖凯荣,全大萍,卢泽俭.1H NMR法研究聚丙交酯的链结构.中山大学学报(自然科学版),2002.41(4):45
    [82]Vanduk J, Smit J. Characterization of poly(d,1-lactic acid) by gel permeation chromatography. J. Polym Sci:Polym Chem Ed, 1983.21:197~208
    
    
    [83] Sinclair R G, Gynn G M. Preparation and Evalution of Glycolic and Lactic Acid-Based Polymer for Implant Devices Used in Management of Maxillofacial Trauma. NTIS AD-A748411,1972
    [84] Jing Ri guang. High Polymer Physics [M].Beijing:Chemical Industry Press, 1997.256~261