脊髓星形胶质细胞TLR3在神经病理性痛中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分脊神经结扎大鼠脊髓星形胶质细胞ToⅡ样受体(TLR3)的表达
     目的评价脊神经结扎疼痛模型大鼠脊髓星形胶质细胞TLR3的表达以及在慢性神经病理性痛中的作用。
     方法雄性SD大鼠66只,体重180~250g,随机分为两组:SHAM组(假手术组,n=30),分离右侧L_5脊神经但不结扎。SNL组(n=36),结扎右侧L_5脊神经。每组大鼠均于术前1d、术后1、3、5、7、10、14、21、28d行行为学实验;SNL组于结扎后7d随机取6只大鼠利用双重免疫荧光标记法观察脊髓背角GFAP和TLR3的表达;每组于术后3、7、14、21、28d各随机取6只大鼠断头处死,取L_(4-5)脊髓节段采用RT-PCR法测定TLR3 mRNA的表达。
     结果与SHAM组比较,SNL组PWPT和PWL降低(P<0.05);SNL组大鼠术后7d脊髓背角(术侧)GFAP阳性表达的细胞,TLR3也呈阳性表达。与基础值比较,SNL组脊髓背角TLR3 mRNA表达上调(P<0.05)。
     结论脊髓背角星形胶质细胞TLR3表达上调可能参与了脊神经结扎大鼠慢性神经病理性痛的发生与发展。
     第二部分脊髓星形胶质细胞TLR3在大鼠神经病理性痛中的作用
     实验一鞘内注射聚肌苷-多聚胞嘧啶核苷酸(poly(I:C))诱发神经病理性痛的实验研究
     目的评价脊髓星形胶质细胞TLR3在大鼠神经病理性痛中的作用。
     方法雄性SD大鼠,体重180~250g,126只鞘内置管成功的大鼠,随机分为3组,正常对照组(C组,n=42);生理盐水组(NS组,n=42)鞘内注射NS 0.5 ml/kg,1次/d,连续7 d;神经病理性痛组(NP组,n=42)腹腔注射米诺环素40 mg/kg+鞘内注射poly(I:C)0.5 mg/kg,1次/d,连续7 d。各组大鼠于鞘内给药前1 d和鞘内给药后1、3、5、7、10、14、21、28 d测定机械痛阈和热痛阈;各组于鞘内给药后7 d各取6只大鼠,取L_(4-5)脊髓节段,采用免疫组化法测定脊髓背角胶质纤维酸性蛋白(GFAP)的表达;各组于鞘内给药前1 d和后1、7、14、21、28 d各取处死6只大鼠,取L_(4-5)脊髓节段,采用RT-PCR法测定TLR3 mRNA的表达变化趋势,以及术后7 d IL-6、TNF-a、IFN-β和IP-10 mRNA的表达,并使用ELISA法测定IL-6和IP-10蛋白变化。
     结果与C组和NS组比较,NP组PWPT降低并持续至术后28天(P<0.05);NP组脊髓背角GFAP免疫反应阳性产物表达相对面积分别增加93.1%(P<0.01)和90.9%(P<0.01);与基础值比较,NP组脊髓背角TLR3 mRNA表达上调(P<0.05)。与NS组比较,NP组鞘内注射poly(I:C)后7 d天脊髓IL-6、TNF-a、IFN-β和IP-10 mRNA表达均上调(P<0.05),脊髓IL-6(9.5ng/g)和IP-10(12.3ng/g)蛋白表达显著上调(P<0.05)。
     结论脊髓背角星形胶质细胞TLR3可能参与了大鼠神经病理性痛的形成与维持。
     实验二鞘内注射TLR3反义寡聚核苷酸对脊神经结扎大鼠的镇痛作用
     目的探讨脊髓星形胶质细胞TLR3在神经病理性疼痛中的作用。
     方法雄性SD大鼠,体重180~250 g。实验Ⅰ108只鞘内置管大鼠随机分为:生理盐水(NS)20μl+脊神经结扎(SNL)(A组,n=36),错义寡聚核苷酸(MM-ODN)20μg/d+SNL(B组,n=36),反义寡聚核苷酸(AS-ODN)20μg/d+SNL(C组,n=36)。实验Ⅱ108只SNL后7d大鼠随机分为:SNL+NS 20μl(D组,n=36),SNL+MM-ODN 20μg/d(E组,n=36),SNL+AS-ODN 20μg/d(F组,n=36)。实验Ⅰ和实验Ⅱ分别于SNL前1d和后7d开始鞘注,每天一次,共7d;于术后-1、1、3、5、7、10、14d和-1、7、10、12、14 d行行为学实验。实验Ⅰ和实验Ⅱ分别于术后7d和14d每组各随机取6只大鼠利用免疫组织化学法观察脊髓背角GFAP的表达,并于术后-1、3、7、14d和术后-1、7、10、14d每组各随机取6只大鼠断头处死,取L_(4-5)脊髓节段采用RT-PCR法测定TLR3和IL-6mRNA的表达,以及于术后7 d和术后14 d使用ELISA法测定IL-6和IP-10蛋白变化。
     结果实验Ⅰ与A组比较,C组PWPT升高并持续至术后14d(P<0.05),C组各时点PWL无明显变化(P>0.05);与A组和B组比较,C组脊髓背角GFAP免疫反应阳性产物表达相对面积分别下降46.4%(P<0.01)和45.7%(P<0.01);与A组和B组比较,C组鞘内注射AS-ODN抑制了TLR3和IL-6 mRNA以及IL-6和IP-10蛋白的表达(P<0.05)。实验ⅡD组、E组和F组在PWPT、PWL、GFAP表达、TLR3和IL-6 mRNA以及IL-6和IP-10蛋白表达方面的差异无统计学意义(P>0.05)。
     结论脊髓背角星形胶质细胞TLR3可能参与了神经病理性疼痛的发生与发展。
     第三部分脊髓背角c-Jun氨基末端激酶(JNK)活化在TLR3介导的神经病理性痛中的作用
     目的观察大鼠鞘内注射poly(I:C)及TLR3反义寡聚核苷酸后脊髓背角c-Jun氨基末端激酶(JNK)活化水平的变化,探讨JNK在TLR3介导的神经病理性痛中作用。
     方法雄性SD大鼠24只,体重180~250g,随机分为4组:A组(n=6),鞘内注射poly(I:C)0.5mg/kg;B组(n=6),鞘内注射SP600125 50nmol+poly(I:C)0.5mg/kg,A和B组每天鞘内注射一次,共7 d;C组(n=6),鞘内注射MM-ODN20μg/d+脊神经结扎(SNL);D组(n=6),鞘内注射AS-ODN 20μg/d+SNL,C和D组于SNL前一天开始鞘内注射;每天一次,共7 d。A、B组和C、D组分别于鞘内注射和SNL后-1、1、3、5、7d行行为学实验,并分别于鞘内注射和SNL后7d每组取6只大鼠利用免疫荧光组织化学法观察脊髓背角pJNK的表达。
     结果与A组比较,B组PWPT下降被SP600125阻止(P<0.05),PWL无明显变化(P>0.05);与C组比较,D组AS-ODN阻止了PWPT下降(P<0.05),PWL无明显变化(P>0.05)。与A组比较,B组大鼠脊髓背角pJNK表达明显减少,阳性细胞数减至20±3(P<0.05);与C组比较,D组大鼠脊髓背角pJNK表达亦明显减少,阳性细胞数为27±5(P<0.05)。
     结论脊髓背角JNK活化水平增加,JNK通路激活,可能参与了TLR3介导的神经病理性痛的形成。
Part 1 TLR3 expression in spinal astrocytes in rats following spinal nerveligation
     Objective To investigate the role of changes in TLR3 expression in spinalastrocytes induced by spinal nerve ligation(SNL).
     Methods Sixty-six male SD rats weighing 180~250 g were randomly divided into 2groups: SHAM group(n=30) and SNL group(n=36). The animals were anesthetizedwith intraperitoneal 10% Chloral Hydrate 0.3~0.35ml/100g. Neuropathic pain wasinduced by L_5 spinal nerve ligation. The right spinal nerve was exposed and ligatedwith 4-0 silk thread. In sham operation group the right spinal nerve was exposed butnot ligated. Pain threshold was estimated by measuring paw withdrawal pressurethreshold and latency with Von Fery filament stimulation at 1 d before operation(baseline) and 1, 3, 5, 7, 10, 14, 21, 28 day after SNL. The animals were terminatedon the 7th day after SNL and the lumbar segment of the spinal cord was removed and the expression of TLR3 and GFAP positive cells in the spinal dorsal horn weredetermined by immunofluorescence double-staining.The rats were terminated at 3, 7,14, 21, 28d after operation in each group and the L_(4~5) segment of the spinal cord wasremoved for determination of expression of TLR3 mRNA by RT-PCR.
     Result In SNL group PWPT and PWL was significantly decreased compared withthose in SHAM group (P<0.05). Immunofluoresence double-staining indicated thatTLR3 and GFAP were colocalizated in the spinal astrocytes in SNL group. Theexpression of TLR3 mRNA in the ipsilateral spinal dorsal horn was significantlyincreased in SNL group compared with SHAM group (P<0.05).
     Conclusion Up-regulation of TLR3 gene expression in the spinal dorsal horn maybe involved in the mechanism of SNL-induced neuropathic pain.
     Part 2 The role of TLR3 of spinal astrocytes in neuropathic pain
     Study 1 Neuropathic pain induced by intrathecal injection of poly(I:C)
     Objective To investigate the role of TLR3 of spinal astrocytes in neuropathic paininduced by intrathecal(i.t.) poly(I:C).
     Methods: 126 male SD rats weighing 180~250 g were randomly divided into 3groups: group C (n=42),control group; group NS(n=42), NS (0.5ml/kg,i.t.), once aday for 7 consecutive days; group NP(n=42), minocycline(40mg/kg,i.p.)+ Poly(I:C)(0.5mg/kg, i.t.), once a day for 7 consecutive days. Pain threshold was estimated bymeasuring paw withdrawal pressure threshold and latency with Von Fery filamentstimulation at -1 (1 d before operation), 1, 3, 5, 7, 10, 14, 21, 28 day after injection.The animals were killed on the 7th day after injection and the lumbar segment of thespinal cord was removed and the expression of GFAP positive cells in the spinaldorsal horn were determined by immunohistochemistry ABC method. The rats were killed at -1, 1, 7, 14, 21, 28d after injection and the L_(4-5) segment of the spinal cordwas removed for determination of expression of IL-6, TNF-a, IFN-β, IP-10 and TLR3mRNA by RT-PCR. To test whether the upregulation of the IL-6 and IP-10 in protein,we measured IL-6 and IP-10 protein levels in the media by ELISA.
     Result In group NP, PWPT was significantly decreased compared with group C andNS (P<0.05). Immunohistochemistry indicated that staining of GFAP immunoreactivecells in group NP much more than group C and NS(P<0.05).The expressionof TLR3 mRNA in the spinal dorsal hom was significantly increased in group NPcompared with group C and NS (P<0.05). Significantly higher spinal expression ofmRNA for IL-6, TNF-a, IFN-βand IP-10 was observed at day 7 after injection ofpoly(I:C) compared with saline (P<0.05). IL-6 (9.5ng/g) and IP-10 (12.3ng/g) proteinlevels in poly(I:C)-stimulated rats were significantly elevated at day 7 (P<0.05) afterintrathecal injection compared with saline control animals(P<0.05).
     Conclusion TLR3 of spinal astrocytes may be involved in the mechanism ofpoly(I:C)-induced neuropathic pain.
     Study 2 Analgesic effect of intrathecal antisence oligodeoxynucleotide of TLR3on rats following spinal nerve ligation
     Objective To investigate the analgesic effect of TLR3 expression of spinalastrocytes on neuropathic pain induced by spinal nerve ligation(SNL).
     Methods Male SD rats weighing 180~250 g were included in this experiment.Catheter was placed intrathecally with a tip located at lumbo-sacral segment of spinalcord for intrathecal(i.t.) drug administration in all animals. Neuropathic pain wasinduced by ligation of right L_5 spinal nerve with 4-0 silk thread. In PartⅠ, 108 animalswere randomly and equally divided into 3 groups: group A (n=36), normal saline(NS)(20μl,i.t.)+SNL; group B (n=36), mismatch oligodeoxynucleotide (MM-ODN) (20μg/d,i.t.) +SNL; group C (n=36), antisense oligodeoxy- nucleotide (AS-ODN)(20μg/d,i.t.)+SNL, once a day for 7 consecutive days. In PartⅡ,on the 7~(th) day afterSNL another 108 rats were randomly and equally divided into 3 groups: group D(n=36), SNL + NS(20μl,i.t.); group E (n=36), SNL + MM-ODN(20μg/d,i.t.); group F(n=36), SNL +AS-ODN (20μg/d,i.t.), once a day for 7 consecutive days. Painthreshold was estimated by measuring paw withdrawal pressure threshold(PWPT) andlatency(PWL) with Von Fery filament stimulation at -1 (1 d before operation), 1, 3, 5,7, 10, 14 day in PartⅠand -1, 7, 10, 12, 14 day in PartⅡafter SNL, respectively. Theanimals were killed on the 7~(th)(PartⅠ) or 14~(th)(PartⅡ) day after SNL and lumbarsegments of spinal cord were removed and immunohisto-chemistry ABC method wasused to determine the expression of GFAP positive cells in the spinal dorsal horn. Therats were killed at -1, 3, 7, 14 day in PartⅠand -1,7, 10, 14 day in PartⅡafteroperation in each group and the L_(4-5) segment of the spinal cord was removed fordetermination of expression of TLR3 and IL-6 mRNA by RT-PCR. To test thevariance of the IL-6 and IP-10 in protein, we measured IL-6 and IP-10 protein levelsin the media by ELISA.
     Results PartⅠ: In group C, PWPT was significantly increased compared with group A(P<0.05), PWL has no significant difference at different time (P>0.05). Immunohisto-chemistryindicated that the relative area of staining of GFAP immuno-reactive cellsin group C decreased 46.4% and 45.7% (P<0.05) respectively, when compared withthat in group A and B. The expression of TLR3 and IL-6 mRNA, IL-6 and IP-10protein was significantly inhibited in group C (P<0.05). PartⅡ: There was nosignificant difference in the above-mentioned markers among group D, group E andgroup F (P>0.05).
     Conclusion TLR3 of spinal astrocytes in the spinal dorsal horn may be involved inthe development of SNL-induced neuropathic pain.
     Part 3 Activation of JNK in spinal cord dorsal horn following neuropathic painmediated by TLR3
     Objective To investigate whether the intracellular signal transduction pathway isinvolved in the mechanisms of neuropathic pain, we examine the activation of c-JunN-terminal kinase (JNK) in the dorsal horn of the spinal cord in a rat model afterintrathecal(i.t.) poly(I:C) or antisense oligodeoxynucleotide of TLR3.
     Methods Male SD rats weighing 180~250 g were used in this experiment. In allanimals catheter was placed intrathecally with the tip located at lumbo-sacral segmentof the spinal cord for intrathecal drug administration. Neuropathic pain was inducedby right L_5 spinal nerve ligation with 4-0 silk thread. 24 animals were randomlydivided into 4 groups (n=6 each): group A, Poly(I:C) (0.5ml/kg,i.t.); group B,SP600125 50nmol + Poly(I:C) (0.5ml/kg,i.t.); group C, mismatch oligodeoxynucleotide(MM-ODN) (20μg/d,i.t.) +SNL; group D, antisense oligodeoxynucleotide (ASODN)(20μg/d,i.t.) +SNL, once a day for 7 consecutive days. Pain threshold wasestimated by measuring paw withdrawal pressure threshold(PWPT) and latency(PWL)with Von Fery filament stimulation at -1(1 d before operation), 1, 3, 5, 7 day in groupA and B after i.t. or in group C and D after SNL. The animals were killed on the7~(th)day in group A and B after i.t. or in group C and D after SNL and the lumbarsegment of the spinal cord was removed and the expression of pJNK positive cells inthe spinal dorsal horn were determined by immuno fluorescence histochemistry.
     Results Poly(I:C) induced dramatic mechanical allodynia from day 1 to day 7 afteri.t., An increase in the phosphorylation of JNK in the dorsal horn of the spinal cordwas also observed after i.t.; Intrathecal infusion of a JNK peptide inhibitor, SP600125,did not affect normal pain responses but potently prevented poly(I:C)-inducedmechanical allodynia and the activation of JNK. Intrathecal infusion of antisense oligodeoxynucl-eotide of TLR3 also potently prevented SNL-induced mechanicalallodynia and the activation of JNK.
     Conclusion Activation of JNK in spinal cord dorsal horn may be involved in themechanism of TLR3-mediated neuropathic pain in rats.
引文
1. Scholz J, Woolf CJ.Can we conquer pain? Nat Neurosci. 2002;5:1062-1067.
    2. Woolf CJ, Mannion RJ. Neuropathic pain: aetiology, symptoms, mechanisms, and management.Lancet. 1999; 353:1959-1964.
    3. Merskey H. Clarifying definition of neuropathic pain. Pain, 2002;96:408-409.
    4. Sun Q, Tu HY, Wan Y. Characteristics of ectopic discharges and their relationship with neuropathic pain. Sheng Li Ke Xue Jin Zhan.2004;35:325-328.
    5. Dickenson AH. Gate control theory of pain stands the test of time. Br J Anaesth, 2002;88:755-757.
    6. Zhang JM, Li H, Munir MA. Decreasing sympathetic sprouting in pathologic sensory ganglia:a new mechanism for treating neuropathic pain using lidocaine. Pain, 2004;109:143-149.
    7. Doro C, Hayden RJ, Louis DS. Complex regional pain syndrome type I in the upper extremity. Clin Occup Environ Med.2006;5:45-54.
    8.Chung JM, Chung K. Sodium channels and neuropathic pain. Novartis Found Symp,2004;261:19-27.
    9.Hokfelt T, Broberger C, Xu ZQ, et al. Neuropeptidea-an overview. Neuropharm-acology, 2000; 39:1337-1356.
    10.Hughes DI, Scott DT, Todd AJ, et al. Lack of evidence for sprouting of Abetaafferents into the superficial laminas of the spinal cord dorsal horn after nevre section.J Neurosci,2003; 23:9491-9499.
    11.Wang S, Lim G, Zeng Q, et al. Central glucocorticoid receptors modulate the expression and function of spinal NMDA receptors after peripheral nerve injury.J Neurosci,2005:25:488-495.
    12.Mackie M. Anomalous frequency shift in the photoassociation spectrum of a Bose-Einstein condensate. Phys Rev Lett,2003; 91:173004.
    13.Ventimiglia R, Mather PE, Jones BE, et al. The neurotrophins BDNF, NT-3 and NT 4/5 promote survival and morphological and biochemical differentiation of striatal neurons in vitro. Eur J Neurosci, 1995;7:213-222.
    14.Collins SL, Moore A, McQuay HJ, et al. Antidepressants and anticonvulsants for diabetic neuropathy and post herpetic neuralgia :a quantitative systematic review.J Pain Symptom Manage, 2000;20:449-458.
    15.Thuluvath PJ, Connolly GM, Forbes A, et al. Abdominal pain in HIV infection.Quart J Med, 1991;78:275-285.
    16.Koltzenberg M, Wall PD, McMahon SB. Does the right side know what the left is doing? Trends Neurosci, 1999;22:122-127.
    17.DeLeo JA, Yezierski RP. The role of neuroinflammation and neuroimmune activation in persistent pain.Pain.2001,90:1-6.
    18.Watkins LR, Milligan ED, Maier SF. Spinal cord glia: new players in pain. Pain.2001,93:201-205.
    19.Raghavendra V, Tanga FY, DeLeo JA. Attenuation of morphine tolerance,withdrawal-induced hyperalgesia, and associated spinal inflammatory immune responses by propentofylline in rats. Neuropsychopharmacology. 2004,29:327-334.
    20.Fu KY, Light AR, Maixner W. Relationship between nociceptor activity,peripheral edema, spinal microglial activation and long-term hyperalgesia induced by formalin. Neuroscience. 2000;101:1127-1135.
    21.Watkins LR, Maier SF. The pain of being sick: implications of immune-to-brain communication for understanding pain.Annu Rev Psychol. 2000;51:29-57.
    22.Schwei MJ, Honore P, Rogers SD, et al. Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J Neurosci, 1999; 19: 10886-10897.
    23.Colburn RW, DeLeo JA. The effect of perineural colchicine on nerve injury-induced spinal glial activation and neuropathic pain behavior. Brain Res Bull,1999; 49:419-427.
    24.Hashizume H, DeLeo JA, Colburn RW, et al. Spinal glial activation and cytokine expression after lumbar root injury in the rat. Spine, 2000;25:1206-1217.
    25.Colburn RW, Rickman AJ, DeLeo JA. The effect of site and type of nerve injury on spinal glial activation and neuropathic pain behavior. Exp Neurol, 1999; 157:289-304.
    26.Popovich PG, Wei P, Stokes BT. Cellular inflammatory response after spinal cord injury in Sprague-Dawley and Lewis rats.J Comp Neurol, 1997;377:443-464.
    27.Sweitzer SM, Schubert P, Deleo JA,et al. Propentofylline, a glial modulating agent, exhibits anti-allodynic properties in a rat model of neuropathic pain. J Pharmacol Exper Ther, 2001;297:1210-1217.
    28.Milligan ED, Mehmert KK, Hinde JL,et al. Thermal hyperalgesia and mechanical allodynia produced by intrathecal administration of the human immunodeficiency Virus-1 (HIV-1) envelope glycoprotein, gpl20. Brain Res, 2000;861:105-116.
    29.Ransom B, Behar T, Nedergaard M. New roles for astrocytes (stars at last).Trends Neurosci.2003, 26:520-522.
    30.6 Haydon PG.GLIA: listening and talking to the synapse. Nat Rev Neurosci.2001,2:185-193.
    31.John GR, Lee SC, Song X, et al.. IL-1-regulated responses in astrocytes:Relevance to injury and recovery. Glia.2005,49:161-176.
    32.Ji RR, Kawasaki Y, Zhuang ZY,et al.Possible role of spinal astrocytes in maintaining chronic pain sensitization: review of current evidence with focus on bFGF/JNK pathway. Neuron Glia Biol. 2006 ,2:259-269.
    33.Tanga FY, Raghavendra V, DeLeo JA.Quantitative real-time RT-PCR assessment of spinal microglial and astrocytic activation markers in a rat model of neuropathic pain. Neurochem Int.2004,45:397- 407.
    34.Kettenmann H, Ransom BR. Neuroglia. New York: Oxford University Press,1995.
    35.Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci, 1996;19:312-318.
    36.Vitkovic L, Bockaert J, Jacque C.'Inflammatory'cytokine: neuromodulators in normal brain? J Neurochem, 2000;74:457-471.
    37.Owens T, Babcock AA, Millward JM., et al. Cytokine and chemokine inter-regulation in the inflamed or injured CNS. Brain Res Brain Res Rev, 2005;48:178-184.
    38.Obata K, Katsura H, Miyoshi K, et al. Toll-like receptor 3 contributes to spinal glial activation and tactile allodynia after nerve injury. J Neurochem, 2008;[Epub ahead of print].
    39.Jiang Z, Zamanian-Daryoush M, Nie H,ey al.Poly(I:C)-induced Toll-like receptor 3 (TLR3)-mediated activation of NFkappa B and MAP kinase is through an interleukin-1 receptor-associated kinase (IRAK)-independent pathway employing the signaling components TLR3-TRAF6-TAK1-TAB2-PKR .J Biol Chem. 2003, 278:16713-16719.
    40. Sato S, Sugiyama M, Yamamoto M, et al.Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling.J Immunol. 2003,171:4304-4310
    41. Yamamoto M,Sato S,Hemmi H,et al.Role of Adaptor TRIF in the MyD88-Independent Toll-Like Receptor Signaling Pathway.Science,2003,301: 640-643.
    42. Han J, Richter B, Li Z, et al. Molecular cloning of human p38 MAP kinase. Biochim Biophys Acta. 1995; 1265:224-227.
    43.庹勤慧,廖端芳.p38MAPK与内皮细胞损伤的关系.国外医学·生理、病理科学与临床分册.2004;12:31-33.
    44. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002; 298: 1911-1912.
    45. Davis R J. Signal transduction by the JNK group of MAP kinases. Cell, 2000, 103: 239-252.
    46. Zhuang ZY, Wen YR, Zhang DR, et al. A peptide c-Jun N-terminal kinase (JNK) inhibitor blocks mechanical allodynia after spinal nerve ligation: respective roles of JNK activation in primary sensory neurons and spinal astrocytes for neuropathic pain development and maintenance. Journal of Neuroscience,2006,26: 3551-3560.
    47. Ma W, Quirion R. Partial sciatic nerve ligation induces increase in the phosphoryl- at ion of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) in astrocytes in the lumbar spinal dorsal horn and the gracile nucleus. Pain,2002,99:175-184.
    48. Migheli A, Piva R, Atzori C,et al. c-Jun, JNK/SAPK kinases and transcription factor NF-kappa B are selectively activated in astrocytes, but not motor neurons,in amyotrophic lateral sclerosis. Journal of Neuropathology and Experimental Neurolo- gy,1997,56:1314-1322.
    1. Milligan ED, Twining C, Chacur M, et al. Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. J Neurosci,2003, 23: 1026-1040.
    2. Watkins LR, Hutchinson MR, Ledeboer A, et al.Glia as the "bad guys": implications for improving clinical pain control and the clinical utility of opioids. Brain Behav Immun, 2006,21:131-146.
    3. Park C, Lee S, Cho IH,at al.TLR3-mediated signal induces proinflammatory cytokine and chemokine gene expression in astrocytes: differential signaling mechanisms of TLR3-induced IP-10 and IL-8 gene expression. Glia, 2006, 53: 248-256.
    4. Zhang Z, Trautmann K, Schluesener HJ. Spinal cord glia activation following peripheral polyinosine-polycytidylic acid administration. Neuroreport,2005, 16: 1495-1499.
    5. Jack CS, Arbour N, Manusow J, et al. TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol, 2005,175:4320-4330.
    6. Kim SH, Chung JM. An experimental model for periphera neuropathy by segmental spinal nerve ligation in the rat. Pain,1992,50:355-363.
    7.谢益宽.慢性痛的发生机理.科学通报,1999,44:2353-2362.
    8. Kettenmann H, Ransom BR. Neuroglia. New York: Oxford University Press, 1995.
    9. Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci, 1996;19:312-318.
    10. Vitkovic L, Bockaert J, Jacque C.'Inflammatory'cytokine: neuromodulators in normal brain? J Neurochem, 2000;74:457-471.
    11. Watkins LR, Mai(?)r SF. The pain of being sick: implications of immune-to-brain communication for understanding pain.Annu Rev Psychol. 2000;51:29-57.
    12. Jiang Z, Zamanian-Daryoush M, Nie H,ey al.Poly(I:C)-induced Toll-like receptor 3 (TLR3)-mediated activation of NFkappa B and MAP kinase is through an interleukin-1 receptor-associated kinase (IRAK)-independent pathway employing the signaling components TLR3-TRAF6-TAK1-TAB2-PKR .J Biol Chem. 2003, 278:16713-16719.
    13. Sato S, Sugiyama M, Yamamoto M, et al.Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling.J Immunol. 2003,171:4304-4310
    14.Yamamoto M,Sato S,Hemmi H,et al.Role of Adaptor TRIF in the MyD88-Independent Toll-Like Receptor Signaling Pathway.Science,2003,301: 640- 643.
    15.Bsibsi M, Persoon-Deen C, Verwer RW, et al. Toll-like receptor 3 on adult human astrocytes triggers production of neuroprotective mediators. Glia, 2006, 53: 688-695.
    1. Milligan ED,Twining C, Chacur M, et al. Spinal glia and proinflammatory-cytokines mediate mirror-image neuropathic pain in rats. J Neurosci, 2003, 23: 1026-1040.
    2. Karik(?) K, Ni H, Capodici J,et al.mRNA is an endogenous ligand for Toll-like receptor 3.J Biol Chem. 2004;279:12542-12550.
    3. Zhang Z, Trautmann K, Schluesener HJ.Microglia activation in rat spinal cord by systemic injection of TLR3 and TLR7/8 agonists.J Neuroimmunol. 2005;164: 154-160.
    4. Jack CS, Arbour N, Manusow J,er al.TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol. 2005; 175:4320-4330.
    5. Jasmin L, Ohara PT.Long-term intrathecal catheterization in the rat. J Neurosci Methods. 2001 ;110:81-89.
    6. Zhang Z, Trautmann K, Schluesener HJ.Spinal cord glia activation following peripheral polyinosine-polycytidylic acid administration. Neuroreport. 2005; 16: 1495-1499.
    7. Tikka T, Fiebich BL, Goldsteins G, et al. Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation, proliferation of microglia. J Neurosci. 2001;21:2580-2588.
    8. Raghavendra V, Tanga F, DeLeo JA.Inhibition of microglial activation attenuates the development but not existing hypersensitivity in a rat model of neuropathy.J Pharmacol Exp Ther. 2003;306:624-630.
    9. Watkins LR, Hutchinson MR, Ledeboer A, et al.Glia as the "bad guys": implications for improving clinical pain control and the clinical utility of opioids.Brain Behav Immun, 2006,21:131-146.
    10.Kettenmann H, Ransom BR. Neuroglia. New York: Oxford University Press,1995.
    11.Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci, 1996;19:312-318.
    12.Vitkovic L, Bockaert J, Jacque C.'Inflammatory'cytokine: neuromodulators in normal brain? J Neurochem, 2000;74:457-471.
    13.Watkins LR, Maier SF. The pain of being sick: implications of immune-to-brain communication for understanding pain.Annu Rev Psychol. 2000;51:29-57.
    14.Obata K, Katsura H, Miyoshi K,et al.Toll-like receptor 3 contributes to spinal glial activation and tactile allodynia after nerve injury. J Neurochem. 2008; Epub ahead of print.
    15.Jiang Z, Zamanian-Daryoush M, Nie H,ey al.Poly(I-C)-induced Toll-like receptor 3 (TLR3)-mediated activation of NFkappa B and MAP kinase is through an interleukin-1 receptor-associated kinase (IRAK)-independent pathway employing the signaling components TLR3-TRAF6-TAK1-TAB2-PKR J Biol Chem. 2003;278:16713-16719.
    16.Sato S, Sugiyama M, Yamamoto M, et al.Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF) associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors,NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling.J Immunol. 2003; 171:4304-4310.
    17.Yamamoto M,Sato S,Hemmi H,et al.Role of Adaptor TRIF in the MyD88-Independent Toll-Like Receptor Signaling Pathway.Science,2003;301: 640- 643.
    1. Milligan ED, Twining C, Chacur M, et al. Spinal gila and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. J Neurosci, 2003, 23: 1026- 1040.
    2. Watkins LR, Hutchinson MR, Ledeboer A,et al.Glia as the "bad guys": implications for improving clinical pain control and the clinical utility of opioids. Brain Behav Immun, 2006,21:131-146.
    3. Karik(?) K, Ni H, Capodici J,et al.mRNA is an endogenous ligand for Toll-like receptor 3.J Biol Chem. 2004;279:12542-12550.
    4. Park C, Lee S, Cho IH,at al.TLR3-mediated signal induces proinflammatory cytokine and chemokine gene expression in astrocytes: differential signaling
    ??mechanisms of TLR3-induced IP-10 and IL-8 gene expression. Glia, 2006, 53:248- 256.
    5.Zhang Z, Trautmann K, Schluesener HJ. Spinal cord glia activation following peripheral polyinosine-polycytidylic acid administration. Neuroreport,2005, 16:1495- 1499.
    6.Jack CS, Arbour N, Manusow J, et al. TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol, 2005 ,175:4320-4330.
    7.Zhang Z, Trautmann K, Schluesener HJ.Microglia activation in rat spinal cord by systemic injection of TLR3 and TLR7/8 agonists.J Neuroimmunol. 2005;164:154-160.
    8.Obata K, Katsura H, Miyoshi K,et al. Toll-like receptor 3 contributes to spinal glial activation and tactile allodynia after nerve injury. J Neurochem,2008, [Epub ahead of print]
    9.Poon YY, Chang AY, Ko SF, et al.An improved procedure for catheterization of the thoracic spinal subarachnoid space in the rat. Anesth Analg.2005;101(1):155-160.
    10.Jasmin L, Ohara PT.Long-term intrathecal catheterization in the rat. J Neurosci Methods. 2001;110(1-2):81-89.
    11.谢益宽.慢性痛的发生机理.科学通报, 1999,44:2353-2362.
    12.Kim SH, Chung JM. An experimental model for periphera neuropathy by segmental spinal nerve ligation in the rat. Pain, 1992,50:355-363.
    13.Kettenmann H, Ransom BR. Neuroglia. New York: Oxford University Press,1995.
    14.Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci, 1996; 19:312-318.
    15.Vitkovic L, Bockaert J, Jacque C.'Inflammatory'cytokine: neuromodulators in normal brain? J Neurochem, 2000;74:457-471.
    16.Watkins LR, Maier SF. The pain of being sick: implications of immune-to-brain communication for understanding pain.Annu Rev Psychol. 2000;51:29-57.
    17.Woodroofe MN, Sarna GS, Wadhwa M, et al. Detection of interleukin-1 and interleukin-6 in adult rat brain, following mechanical injury, by in vivo microdialysis: evidence of a role for microglia in cytokine production. J Nenroimmunol, 1991, 33: 227-236.
    18.Vissers KC, De Jongh RF, Hoflmann VL,et al.Exogenous interleukin-6 increases cold allodynia in rats with a mononeuropathy. Cytokine,2005.30:154-159.
    19.De Jongh RF, Vissers KC, Meert TF, et al.The role of interleukin-6 in nociception and pain. Anesth Analg, 2003;96:1096-1103.
    20.Bertolino P, Bowen DG, McCaughan GW, et al. Antigen-specific primary activation of CD8 T cells within the liver. J Immunol, 2001;166:5430-5438.
    1. Zhuang ZY, Wen YR, Zhang DR, et al. A peptide c-Jun N-terminal kinase (JNK) inhibitor blocks mechanical allodynia after spinal nerve ligation: respective roles of JNK activation in primary sensory neurons and spinal astrocytes for neuropathic pain development and maintenance. Journal of Neuroscience,2006,26: 3551-3560.
    2. Zhang Z, Trautmann K, Schluesener HJ. Spinal cord glia activation following peripheral polyinosine-polycytidylic acid administration. Neuroreport, 2005, 16: 1495-1499.
    3. Obata K, Katsura H, Miyoshi K, et al. Toll-like receptor 3 contributes to spinal glial activation and tactile allodynia after nerve injury. J Neurochem,2008,[Epub ahead of print]
    4. Park C, Lee S, Cho IH,at al.TLR3-mediated signal induces proinflammatory cytokine and chemokine gene expression in astrocytes: differential signaling mechanisms of TLR3-induced IP-10 and IL-8 gene expression. Glia, 2006, 53: 248-256.
    5. Jack CS, Arbour N, Manusow J, et al. TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol, 2005,175:4320-4330.
    6. Zhang Z, Trautmann K, Schluesener HJ.Microglia activation in rat spinal cord by systemic injection of TLR3 and TLR7/8 agonists.J Neuroimmunol,2005,164: 154-160.
    7. Kim SH, Chung JM. An experimental model for periphera neuropathy by segmental spinal nerve ligation in the rat. Pain,1992,50:355-363.
    8. Poon YY, Chang AY, Ko SF, et al.An improved procedure for catheterization of the thoracic spinal subarachnoid space in the rat. Anesth Analg. 2005;101: 155-160.
    9. Jasmin L, Ohara PT.Long-term intrathecal catheterization in the rat. J Neurosci Methods. 2001; 110:81-89.
    10. Milligan ED, Twining C, Chacur M, et al. Spinal glia and proinflammatory cytokines mediate mirror-image neuropathic pain in rats. J Neurosci, 2003, 23: 1026-1040.
    11. Watkins LR, Hutchinson MR, Ledeboer A, et al.Glia as the "bad guys": implications for improving clinical pain control and the clinical utility of opioids. Brain Behav Immun, 2006,21:131-146.
    12. Karik(?) K, Ni H, Capodici J,et al.mRNA is an endogenous ligand for Toll-like receptor 3.J Biol Chem, 2004,279:12542-12550.
    13. Han J, Richter B, Li Z, et al. Molecular cloning of human p38 MAP kinase. Biochim Biophys Acta. 1995; 1265:224-227.
    14.庹勤慧,廖端芳.p38MAPK与内皮细胞损伤的关系.国外医学·生理、病理科学与临床分册.2004;12:31-33.
    15. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002; 298: 1911-1912.
    16. Davis R J. Signal transduction by the JNK group of MAP kinases. Cell, 2000, 103: 239-252.
    17. Ma W, Quirion R. Partial sciatic nerve ligation induces increase in the phosphoryl- at ion of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) in astrocytes in the lumbar spinal dorsal horn and the gracile nucleus. Pain,2002,99:175-184.
    18. Migheli A, Piva R, Atzori C,et al. c-Jun, JNK/SAPK kinases and transcription factor NF-kappa B are selectively activated in astrocytes, but not motor neurons, in amyotrophic lateral sclerosis. Journal of Neuropathology and Experimental Neurolo- gy, 1997,56:1314-1322.
    1. Bell JK, Mullen GED, Leifer CA, et al. Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol, 2003; 24:528-533.
    2. Bell JK, Botos I, Hall PR, et al. The molecular structure of the Toll-like receptor 3 ligand-binding domain. Proc Natl Acad Sci USA, 2005; 102:10976-10980.
    3. Takada E, Okahira S, Sasai M, et al. C terminal LRRs of human Toll-like receptor 3 control receptor dimerization and signal transmission, Molec Immunol, 2007;44: 3633-3640.
    4. Sarkar SN, Smith HL, Rowe T M,et al. Double-stranded RNA signaling by Toll-like receptor 3 requires specific tyrosine residues in its cytoplasmic domain.J Biol Chem, 2003;278:4398-4396.
    5. Rock FL, Hardiman G, Timans JC, et al. A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci USA, 1998;95:588-593.
    6. Pisegna S, Pirozzi G, Piccoli M,et al. p38 MAPK activation controls the TIR3-mediated up-regulation of cytotoxicity and cytokine production in human NK cells. Blood,2004;104:4157-4164.
    7. Visintin A, Mazzoni A, Spitzer JH, et al. Regulation of Toll-like receptors in human monocytes and dendritic cells, J Immunol, 2001;166:249-254.
    8. Matsumoto M, Kikkawa S, Kohase M,et al. Establishment of a monoclonal antibody against human Toll-like receptor 3 that blocks double-stranded RNA-mediated signaling. Biochem Biophys Res Comm, 2002;239:1364-1369.
    9.Matsumoto M, Funami K, Tanabe M, et al. Subcellular localization of Toll-like receptor 3 in human dendritic cells. J Immunol, 2003;171:3154-3162
    10.Funami K, Matsumoto M, Oshiumi H, et al. The cytoplasmic 'linker region' in Toll-like receptor 3 controls receptor localization and signaling. Int Immunol,2004;16: 1143-1154.
    11.Heinz S, Haehnel V, Karaghiosoff M, et al. Species-specific regulation of Toll-like receptor 3 genes in men and mice. J Biol Chem, 2003;24:21502-21509.
    12.Bsibusi M, Persoon-Deen C, Verwer RWH, et al. Toll-like receptor 3 on adult human astrocytes triggers production of neuroprotective mediators. Glia, 2006;53:688-695.
    13.Rehli M. Of mice and men: species variations of Toll-like receptor expression,.Trends Immunol, 2002;23:375-378.
    14.Medzhitov R, Janeway CJ. Innate immune recognition:mechanisms and pathways.Immunological Reviews, 2000;173:89-97.
    15.Okahira S, Nishikawa F, Nishikawa S, et al. Interferon-6 induction through Toll-like receptor 3 depends on double-stranded RNA structure. DNA cell Biol,2005;24:614-623.
    16.Kariko K, Buckstein M, Ni H, et al. Suppression of RNA recognition by Toll-like receptors: the impact of nucleotide modification and evolutionary origin of RNA.Immunity, 2005;23:165-175.
    17.Kariko K, Ni H, Capodici J,et al. mRNA is an endogenous ligand for Toll like receptor 3. J Biol Chem,2004;279:12542-12550.
    18.Lee HKS, Dunzendorfer K, Soldau K, et al. Double-stranded RNA-mediated TLR3 activation is enhanced by CD14. Immunity,2006;24:153-163.
    19.Kim JI, Lee CJ, Jin MS,C-H. et al. Crystal structure of CD14 and its implications for lipopolysaccharide signaling. J Biol Chem, 2005;280:11347-11351.
    20.Gitlin L, Barchet W, Gilfillan S,et al. Essential role of mda-5 in typeⅠIFN responsestopolyriboinosinic:polyribocytidylic acid and encephalomyocarditis picor- navirus. Proc Natl Acad Sci, 2006;103:8459-8464.
    21.Weber F, Wagner V, Rasmussen SB, et al. Double-stranded RNA is produced by positive-stranded RNA viruses and DNA viruses but not in detectable amounts by negative-stranded RNA viruses. J Virol, 2006;80:5059-5064.
    22.Ebihara T, Shingai M, Matsumoto M,et al.Hepatitis C virus-infected hepatocytes extrinsically modulate dendritic cell maturation to activate T cells and natural killer cells. Hepatology, 2008;48:48-58.
    23.Alexopoulou L, Holt A C, Medzhitov R, et al. Recognition of double-stranded RNA and activation of NF kappa B by Toll-like receptor 3. Nature, 2001: 413:732-738.
    24.Cao Z, Henzel WJ, Gao X. Irak: a kinase associated with the interleukin-1 receptor. Science, 1996;271:1128-1131.
    25.Janssens S, Beyaert R. Functional diversity and regulation of different interleukin-1 receptor-associated kinase (IRAK) family members. Mol Cell, 2003;11: 293-302.
    26.Suzuki N, Suzuki S, Duncan GS, et al. Severe impairment of interleukin-1 and Toll-like receptor signaling in mice lacking IRAK-4. Nature, 2002;416:750-756.
    27.Li S, Strelow A, Fontana EJ, et al. IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc Natl Acad Sci USA, 2002; 99: 5567-5572.
    28.Arch RH, Gedrich RW, Thompson CB. Tumor necrosis factor receptor-associated factors (TRAFs)-a family of adapter proteins that regulates life and death. Genes Dev, 1998; 12:2821-2830.
    29.Lomaga MA, YehWC, Sarosi I, et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev, 1999; 13:1015-1024.
    30.Deng L, Wang C, Spencer E, et al. Activation of the I(?)>>B kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell, 2000;103:351-361.
    31.Jiang Z, Zamanian-Daryoush M, Nie H, et al Poly(I-C)-induced Toll-like receptor 3(TLR3)-mediated activation of NFkappa B and MAP kinase is through an interleukin-1 receptor-associated kinase (IRAK)-independent pathway employing the signaling components TLR3-TRAF6-TAK1-TAB2-PKR. J Biol Chem, 2003;278:16713-16719.
    32.Burns K, Clatworthy J, Martin L, et al. Tollip, a new component of the IL-1RI pathway, links IRAK to the IL-1 receptor. Nat Cell Biol, 2000;2:346-351.
    33.Doyle SE, Vaidya SA, O Connell R, et al. IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity, 2002:17:251-263.
    34.Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response. Nature,2000:406:782-787.
    35.Oshiumi H, Matsumoto M, Funami K, et al. TICAM-1, an adaptor molecule that participates in Toll like receptor 3-mediated interferon-beta induction. Nat Immunol, 2003;4:161-167.
    36.Xu Y, Tao X, Shen B, et al. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature, 2000;408:111-114.
    37.Sarker SN, Peters K, Elco CP, et al. Novel roles of TLR3 tyrosine phosphorylation and PI3 kinase in double-stranded RNA signaling. Nat Struct Mol Biol, 2004;11: 1060-1067.
    38.Johnsen IB, Nguyen TT, Ringdal M, et al. Toll-like receptor 3 associates with c-Src tyrosine kinase on endosomes to initiate antiviral signaling. EMBO J, 2006;25:3335-3346.
    39.Fitzgerald KA, McWhirter SM,. Faia KL, et al. IKKe and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol, 2003;4:491-496.
    40.Sato M, Suemori H, Hata N, et al. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-α/β gene induction.Immunity, 2000; 13:539-548.
    41.Sasai M, Oshiumi H, Matsumoto M, et al. Cutting edge: NF-kappaB-activating kinase-associated protein 1 participates in TLR3/Toll-IL-1 homology domain-containing adapter molecule-1-mediated IFN regulatory factor 3 activation.J Immunol, 2005; 174:27-30.
    42.Oganesyan G, saha SK, Guo B, et al. Critical role of TRAF3 in the Toll-like receptor-dependent and independent antiviral response. Nature,2006;439:208-211.
    43.Han KJ, Su X, Xu LG, et al. Mechanisms of the TRIF-induced interferon-stimulated response element and NF-kappaB activation and apoptosis pathways.J Biol Chem, 2004;279:15652-15661.
    44.Sato S, Sugiyama M, Yamamoto M, et al. Toll/IL-1 receptor domain-containing adaptor-inducing IFN-β (TRIF) associates with TNFR-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-κB and IFN-regulatory factor 3, in the Toll-like receptor signaling. J Immunol, 2003;171:4304-4310.
    45.Cusson-Hermance N, Khurana S, Lee TH, et al. Ripl mediates the Trif-dependent toll-like receptor 3- and 4-induced NF-{kappa}B activation but does not contribute to interferon regulatory factor 3 activation. J Biol Chem, 2005; 280:36560-36566.
    46.Shim JH, Xiao C, Paschal AE, et al. TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev, 2005; 19: 2668-2681.
    47.Funami K, Sasai M, Ohba Y, et al.Spatiotemporal mobilization of Toll-IL-1 receptor domain-containing adaptor molecule 1 in response to dsRNA. J Immunol, 2007; 179:6867-6872.
    48. Carty M, Goodbody R, Schroder M, et al. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling.Nat Immunol, 2006;7:1074-1081.
    49. Heath WR, Belz GT, Behrens GM, et al. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens.Immunol Rev, 2004;199:9-26.
    50. Datta SK, Redecke V, Priliman KR, et al. A subset of Toll-like receptor ligands induces cross-presentation by bone marrow-derived dendritic cells. J Immunol, 2003; 170:4102-4110.
    51. Schultz O, Diebold SS, Chen M, et al. Toll like receptor 3 promotes crosspriming to virus-infected cells.Nature, 2005;433:887-892.
    52. Bon AL, Etchart N, Rossmann C, et al. Cross-priming of CD8+ T cells stimulated by virusinduced type I interferon. Nat Immunol, 2003;4:1009-1015.
    53. Tabeta K, Georgel P, Janssen E, et al. Toll-like receptor 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection.Proc Natl Acad Sci USA, 2004;101:3516-3521.
    54. Lucas M, Schachterle W, Oberle K, et al. Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity, 2007;26:503-517.
    55. Akazawa T, Ebihara T, Okuno M, et al. Antitumor NK activation induced by the TLR3-TICAM-1 (TRIF) pathway in myeloid dendritic cells. Proc Natl Acad Sci USA, 2007; 104:252-257.
    56. Kato H, Takeuchi O, Sato S, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature, 2006;441:101-105.
    57.吴瑾,吴厚生.自身免疫病中表位扩展的研究进展.上海免疫学杂志,2001;21:62-64.
    58. Mao TK, Lian ZX, Selmi C, et al. Altered monocyte responses to defined TLR ligands in patients with prim ary biliary cirrhosis. Hepatology, 2005;42:802-808.
    59. Takii Y, Nakamura M, Ito M, et al. Enhanced expression of type Ⅰ interferon and toll-like receptor 3 in primary biliary cirrhosis. Lab Invest,2005;85:908-920.
    60. Ospelt C, Brentano F, Rengel Y, et al. Overexpression of toll-like receptors 3 and 4 in synovial tissue from patients with early rheumatoid arthritis: toll-like receptor expression in early and longstanding arthritis. Arthritis Rheum, 2008; 58:3684-3692.
    61. Wen I, Peng Ji,Li ZJ, et al. The effect of innate immunity on autoimmune diabetes and the expression of toll-like receptors on pancreatic islets. J Immunol, 2004;172: 3173-3180.
    62. Obata K, Katsura H, Miyoshi K, et al. Toll-like receptor 3 contributes to spinal glial activation and tactile allodynia after nerve injury. J Neurochem, 2008;[Epub ahead of print].
    63. Gowen BB, Wong MH, Jung KH, et al. TLR3 is essential for induction of protective immunity against Punta Toro virus infection by the double-stranded RNA (dsRNA), poly(I:C12U), but not poly(I:C): differential recognition of synthetic dsRNA molecules. J Immunol, 2007;178:5200-5208.