聚丙烯酸酯类可再分散乳胶的制备与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可再分散乳胶与传统乳液相比具有突出的优点,如无残留单体等VOC组分、贮存稳定、没有受冻或微生物污染的风险、包装简单、运输方便等,因而得到了较为广泛的应用,特别是在零VOC的干涂料相关领域,具有广阔的发展应用前景。但是,目前的可再分散乳胶仍然存在耐水性和成膜性能较差的问题,对干涂料成膜过程、聚乙烯醇接枝丙烯酸酯类乳液聚合的稳定性等关键问题也缺乏深入的研究,这些都限制了可再分散乳胶的产品创新、性能提升和应用领域的拓展。本文通过粒子设计等手段合成了具有软核硬壳结构的丙烯酸聚合物乳液,制得了性能较好的可再分散聚合物乳胶及其零VOC干涂料,并在此基础上对制约可再分散乳胶性能提升的关键性技术进行了深入研究,同时尝试将新兴技术在可再分散乳胶制备中进行应用,因而具有重要的理论和现实意义。本文主要研究内容如下:
     本文首先对核壳乳液聚合配方和喷雾干燥参数等可再分散乳胶制备的基本要素进行了考查,并对不同条件下乳胶的出率、含水率、表观形态和再分散性等性能进行了评估,得出了可再分散乳胶制备的基本配方和喷雾干燥过程的工艺参数设置,即核层Tg=-10℃,壳层Tg=70℃,核壳质量比3:1,MAA用量为壳层单体质量的16wt%,喷雾干燥进口温度为120℃,雾化盘转速为24,000rpm,进料速率为20~40ml/min。然后将可再分散乳胶应用于干涂料中,改变乳胶的加入量并对涂料样品的成膜性能进行了考查,确定乳胶用量10.0g、PVC=36.58vol%为配方中可再分散乳胶的最优添加量。通过上述研究,不仅制得了性能较佳的丙烯酸聚合物乳胶及其干涂料产品,也为后续新技术和相关理论的研究奠定了基础。
     为了进一步提高可再分散聚合物乳胶的性能,本文将聚合物乳液合成中的交联改性技术应用于可再分散乳胶的制备中,将交联单体N-羟甲基丙烯酰胺(NMA)加入到原始乳液合成中,考查了NMA用量对乳液聚合、喷雾干燥工序和所得可再分散乳胶在干涂料中粘结性能的影响。在乳液聚合方面,由于NMA单体本身的高反应活性和水溶性,发现随着NMA用量的增加,乳液的粒径、单分散指数和乳液黏度随之增大,反应体系稳定性下降,因此确定NMA的最高使用量为3.0wt%。在喷雾干燥和产品性能方面,NMA用量的增加对于干燥所得乳胶流动性、堆积密度都起到了明显的改善作用,原始乳液的成膜性能和乳胶在干涂料中的成膜粘结性能也相应增强。
     本文对干涂料和乳液涂料的成膜进行了比较,对最终漆膜的结构和性能进行了分析。结果发现由于聚合物粒子沉降行为的不同,两种涂料成膜的均匀程度存在差异。在涂料成膜过程中颜填料粒子都会出现一定程度的沉降,但是对于普通乳液涂料,聚合物粒子可以维持稳定的分散状态,所以液态漆膜的上表面处会出现单纯的聚合物乳液层,并演变为纯聚合物表层;而对于干涂料,再分散的聚合物粒子与颜填料粒子一样倾向于沉降,最终形成均匀结构的漆膜。由于喷雾干燥过程中乳液粒子发生不可逆融合,使得再分散乳液的粒径增大,粒子间毛细管直径增大,成膜推动力减小,从而导致干涂料成膜的致密程度较低。由此可知,制约可再分散乳胶在干涂料中应用和性能提升的关键是喷雾干燥过程中乳液粒子的不可逆融合,而该过程又进而影响了再分散乳液的沉降稳定性和粒径恢复。
     本文采用PVA作为聚合保护胶体,对PVA-MMA体系和PVA-VAc体系的乳液聚合实验进行了横向对照研究。通过基元反应速率分析、PVA接枝比例测定、乳液聚合物中接枝产物的分离以及分析,发现PVA-MMA乳液聚合体系中PVA接枝的程度要大于PVA-VAc体系。结合乳液聚合体系的动力学行为(转化率-时间、粒径-时间),发现在PVA-MMA体系中,水相中的单体分子和活性分子链有足够的时间进入乳液粒子并使其尺寸不断长大;在这个过程中,已经接枝固定在粒子原表面的PVA分子会被包埋在乳液粒子内部,使得粒子表面的PVA分子数量减少,乳液胶体稳定性降低。由此得出结论,正是由于PVA分子在聚丙烯酸酯粒子内“层层接枝”的发生,导致了PVA-MMA乳液聚合反应的不稳定。
     最后,本文研究了聚合物-SiO2核壳复合粒子乳液的合成及其可再分散乳胶制备技术。首先考查了在含有小分子乳化剂胶束的模板乳液中制备聚合物-SiO2核壳复合粒子的可行性。结果发现,利用阳离子乳液体系中负电性的硅烷低聚物与模板粒子间的静电吸引力,可以获得具有规整核壳结构的聚合物-SiO2核壳粒子。接着使用阳离子核壳复合乳液进行可再分散乳胶的制备,对核层聚合物玻璃化温度、SiO2壳层厚度对于乳胶形态和再分散性的影响进行了考查。发现由于SiO2壳层的存在,聚合物耐受喷雾干燥的最低玻璃化温度由>40℃降低到了10℃;随着SiO2壳层厚度的增加,所得乳胶的流动性和再分散性能有所改善,但是当正硅酸乙酯(TEOS)用量增加到55wt%及以上时,乳液粒子的融合增大,乳胶再分散性出现降低的趋势。
Compared with the polymeric products of emulsion state, redispersible polymer powderdoes not contain water as dispersion medium and makes it possible to save the packing,storage and transportation cost of products during the distribution process. Also because of itspowder state, redispersible polymer powder could be blended with cement, filler and pigmentpowders to prepare one-pack dry-mixed concrete or architectural coatings, which areconvenient and healthy for use. However there generally exist two disadvantages for currentpolyacrylate redispersible powder products: comparatively poor water resistance and binderperformance. Meantime the preparation technologies have made little progress from thetraditional―soft-core/hard-shell‖and macromolecular protective colloids technologies since1990s. On the theoretical side, the film formation process of dry-mixed coatings and thereason for unstability of PVA-MMA polymerization system are still indistinct, which limit thetechnical innovation and application performance of polyacrylate redispersible powder.
     In this thesis we attempted to apply some new technologies in the manufacture ofpolyacrylate redispersible powder and did research on several key theoretical questions, inorder to get a deeper understanding of the preparation process and find out some innovativemethods to improve product performance, which are of great significance in both academicand industrial aspects. The main research topics and relevant conclusions are as follows:
     The preparation process of redispersible powder was studied step by step at first, in orderto find out a basic recipe and relevant spray drying parameters to get redispersible powderwith qualified properties. The research results were shown as below: Tgof "soft core"-10oC,Tgof "hard shell"70oC, mass ratio of core/shell components3:1, MAA amount16wt%, inlettemperature120oC, rotating speed24,000rpm and feed rate20~40ml/min. Then theresultant redispersible powder from above formula was applied in dry-mixed coatings and thecoatings properties were tested, from which the optimal amount of redispersible powder wasdetermined as10.0g with PVC of36.58vol%. Through these studies the whole process ofredispersible powder preparation and application was made clear and the recipe andparameters would act as the groundwork for the following studies on innovative technologiesand fundamental theories.
     The corsslinking modification technique was applied in the preparation of polyacrylateredispersible powder by adding crosslinking monomer N-hydroxymethyl acrylamide (NMA)into the polymerization of original emulsions, and the influences of NMA amount onemulsion polymerization, spray drying and properties of resultant powders were studied. Inpolymerization aspect it was found that the particle size, particle distribution index andviscosity of original emulsions increased with the increasing of NMA amount, while thecolloidal stability was lowered. This was determined by the high reactivity and watersolubility of NMA, which easily led to homopolymerization of NMA rather copolymerizationwith other monomers. So the NMA amount was selected as3.0wt%to guarantee the stabilityof original emulsion synthesis. In spray drying and property aspect, the increasing of NMAamount was proved to be beneficial for the improvement of flowing, stacking and bondproperties of the redispersible powders. These results confirmed that the crosslinkingmodification worked in the performance enhancement of redispersible polymer powder.
     The film-formation mechanisms of dry-mixed coatings (based on the redispersiblepolymer powder) and latex coatings (based on the original polymer emulsion) were studiedand compared according to the structure and properties of the coatings films. It was found thatthere were two structural differences in the films of both products, which directly influencedtheir mechanical properties. One was homogeneous degree: There existed stratificationphenomenon in the film of latex coatings, which contained an upper polymer layer near thefilm/air interface and a bottom polymer-filler composite layer near the film/substrate interface,while the film of dry-mixed coatings only had uniform polymer-filler composite structure.This was mainly due to their different settlement conditions. In both coatings products fillerparticles tended to subside, but the settlement behaviors of polymer particles were different.In latex coatings the polymer particles were more stable in the coatings dispersions, so theycould remain in the upper part of the dispersion while filler particles subsided towards bottom,and finally dried to form the upper polymer layer of film. In dry-mixed coatings, unstablepolymer particles tended to subside together with filler particles and finally formed film ofuniform structure. The other difference was the compact degree: It was found that the innerstructure of latex coatings film was much more compact than the dry-mixed coatings film,and this was because that the particle size of re-dispersed polymer particles were much larger than the original ones due to the insufficient re-dispersion of redispersible powder, whichweakened the capillary forces of film formation. With the reasons of structural differencesabove, we found that both the instability and insufficient re-dispersion of dry-mixed coatingswere attributed to the irreversible coalescence of polymer particle in spray drying, and thiswas just the key point to improve dry-mixed coatings performance.
     Lateral comparison was conducted between PVA-MMA emulsion polymerization andstable PVA-VAc emulsion polymerization, to find out the reason for the instability ofemulsion polymerization of acrylate monomers with PVA as protective colloid. Through theanalysis of the rate of elementary reactions, the proportion of grafted PVA molecules and thegrafting extent of the final copolymers, we could get the conclusion that the grafted amount ofPVA was even larger in the PVA-MMA copolymers than PVA/VAc ones, so the grafted modeof PVA was considered. Based on the reaction kinetics, it was found that the slower initiationand propagation rates of sulfate radical towards MMA was responsible, for they allowed theparticles to grow up all through the reaction process and resulted in―layer-by-layer‖graftingstructure of PVA. As the surface-grafting density of PVA was lowered, the colloidal stabilityof PVA-MMA emulsion was reduced consequently.
     As inorganic components have higher melting point and better thermo-tolerance thanpolymer components, polymer-SiO2core/shell composite particles were utilized to prepareredispersible powder instead of―soft-core/hard-shell‖polymer particles. First a one-pot routetowards polymer-SiO2core/shell composite particles was developed through the templatesol–gel processing of alkoxysilane in emulsifier-involved aqueous emulsions, and it wasfound that the core/shell structure could be obtained on the basis of cationic templateemulsions for the electrostatic attraction between template particles and siloxane oligomers.Afterwards the composite emulsions were used to prepare redispersible powder and thefactors such as the Tgof core polymer component, the thickness of SiO2shell were studiedbased in the morphology and re-dispersion ability of redispersible powder. It was found thatwith the help of SiO2shell the Tgof inner polymer core could be reduced to10oC, and thiswas of great significance to further lower the MFFT of redispersible powder. The flowingre-dispersion properties of powder were improved with the increasing of TEOS amount, i.e.the thickness of SiO2shell, then declined when the TEOS amount exceeded55wt%. This was because that more free siloxane oligomers were generated with TEOS amount increasing andaggravated the coalescence of particles in spray drying process.
引文
[1] Hoffman F., Delbruch K. Manufacture and production of a caoutchouc substance[P]. DE250690,1909.
    [2] Okaya T., Suzuki A., Kikuchi K. Importance of grafting in the emulsion polymerization ofMMA using PVA as a protective colloid. Effect of initiators[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1999,153(1):123-125.
    [3] Egret H., Dimonie V. L., Sudol E. D., et al. Characterization of grafting in the emulsionpolymerization of vinyl acetate using poly (vinyl alcohol) as stabilizer[J]. Journal of appliedpolymer science,2001,82(7):1739-1747.
    [4] Suzuki A., Yano M., Kikuchi K., et al. Influence of additives on model emulsionpolymerization of vinyl acetate (VAc) using poly(vinyl alcohol)(PVA) as a protectivecolloid[J]. Colloid&Polymer Science,2006,285(2):185-192.
    [5]范圣强,范一波,曹瑞军, et al.保护胶体在高固含量弹性丙烯酸酯乳液聚合中的应用[J].现代涂料与涂装,2005,(1):1-3.
    [6]唐善法,罗平亚.疏水缔合水溶性聚合物的研究进展[J].现代化工,2002,22(3):10-13.
    [7]张怀平,许凯,曹现福, et al.疏水缔合水溶性聚合物聚合方法的研究进展[J].石油化工,2006,35(7):695-700.
    [8] Yahya, G., Ali, S. A., Al-Naafa, M., et al. Preparation and viscosity behavior ofhydrophobically modified poly (vinyl alcohol)(PVA)[J]. Journal of applied polymer science,1995,57(3):343-352.
    [9]杜涛,裴梅山.不同保护胶体下制备可再分散聚合物末的研究[J].化学建材,2006,22(5):24-26.
    [10]林劲冬,陈焕钦. PVA-SH保护胶体MMA/BA聚合物乳液及乳胶性能的影响[J].华南理工大学学报(自然科学版),2006,34(8):41-45.
    [11] Schulze J., Haerzschel R., Figge R. Redispersible dispersion powder composition[P]. US5567750,1996.
    [12] Penzel D., Franzmann D., Angel D., et al. Use of polymeric spray agents in thespray-drying of aqueous polymer dispersions[P]. EP0629650,1997.
    [13] Pakusch D., Dieing D., Tropsch D. Process for preparing polymer powders which areredispersible in aqueous media[P]. EP0770640,2003.
    [14] Pshezhetskii V., Rakhnyanskaya A., Gaponenko I., et al. A differential scanningcalorimetry study of polyvinyl alcohol[J]. Polymer Science USSR,1990,32(4):722-726.
    [15] Du Chesne A., Bojkova A., Gapinski J., et al. Film formation and redispersion ofwaterborne latex coatings[J]. Journal of Colloid and Interface Science,2000,224(1):91-98.
    [16]潘祖仁,孙经武.高分子化学[M].化学工业出版社,2007.
    [17] Saija L. M., Uminski M. Water-redispersible low-Tg acrylic powders for themodification of hydraulic binder compositions[J]. Journal of applied polymer science,1999,71(11):1781-1787.
    [18] Thaker S., Mahanwar P., Patil V., et al. Synthesis and spray drying of water-redispersiblepolymer[J]. Drying Technology,2010,28(5):669-676.
    [19] Uminski M., Saija L. Preparation and characterisation of re-dispersible acrylicpowders[J]. Pigment&resin technology,2003,32(6):364-370.
    [20] Uminski M., Saija L. Spray drying of low-Tg acrylic dispersions[J]. Surface CoatingsInternational Part B: Coatings Transactions,1998,81(11):557-560.
    [21] Verbrugge C. Mechanism of alkali thickening of acid-containing emulsion polymers. I.Examination of latexes by means of viscosity[J]. Journal of applied polymer science,2003,14(4):897-909.
    [22] Verbrugge C. Mechanism of alkali thickening of acid-containing emulsion polymers. II.Examination of latexes with the light microscope[J]. Journal of applied polymer science,2003,14(4):911-928.
    [23] Kan C. Y., Kong X. Z., Yuan Q., et al. Morphological prediction and its application to thesynthesis of polyacrylate/polysiloxane core/shell latex particles[J]. Journal of applied polymerscience,2001,80(12):2251-2258.
    [24] Ball P., Eck H. Crosslinkable powder composition which is redispersible in water[P]. US6063865,2000.
    [25] Eck H., Figge R., Barthel H. Crosslinkable powder composition which is redispersible inwater. US6197863,2001.
    [26] Walton D., Mumford C. The morphology of spray-dried particles: the effect of processvariables upon the morphology of spray-dried particles[J]. Chemical Engineering Researchand Design,1999,77(5):442-460.
    [27] Sloth J., J rgensen K., Bach P., et al. Spray drying of suspensions for pharma and bioproducts: Drying kinetics and morphology[J]. Industrial&Engineering Chemistry Research,2009,48(7):3657-3664.
    [28] Walton D., Mumford C. Spray dried products—characterization of particlemorphology[J]. Chemical Engineering Research and Design,1999,77(1):21-38.
    [29]权刘权,李东旭.聚合物砂浆的研究进展[J].材料导报,2006,20(6):67-70.
    [30]黄从运,付冰,陈超.聚合物砂浆的现状与发展趋势[J].混凝土与水泥制品,2008,(4):61-64.
    [31]王培铭.桥面用丁苯乳液改性水泥砂浆的力学性能[J].建筑材料学报,2001,4(1):1-6.
    [32]詹镇峰,刘志勇.聚合物水泥砂浆性能试验研究[J].化学建材,2004,19(6):55-58.
    [33] Colville J., Made A. M., Miltenberger M. Tensile bond strength of polymer modifiedmortar[J]. Journal of materials in civil engineering,1999,11(1):1-5.
    [34] Barluenga G., Hernández-Olivares F. SBR latex modified mortar rheology andmechanical behaviour[J]. Cement and Concrete Research,2004,34(3):527-535.
    [35] Afridi M., Ohama Y., Demura K., et al. Development of polymer films by thecoalescence of polymer particles in powdered and aqueous polymer-modified mortars[J].Cement and Concrete Research,2003,33(11):1715-1721.
    [36]张杰.可再分散乳胶对外墙外保温及饰面系统性能的影响[J].新型建筑材料,2001,8(4):6.
    [37]周竹发,王淑梅,寇秀蓉, et al.可再分散乳胶在EPS保温砂浆中的作用机理及性能[J].新型建筑材料,2007,(10):54-57.
    [38]张明良.采用干混砂浆的外墙外保温饰面系统[J].新型建筑材料,2002,(11)39-41.
    [39]徐龙贵,史淑兰,殷庆立, et al.基于苯丙乳胶的单组分水泥基防水材料的研发[J].中国建筑防水,2011,(22):008.
    [40]徐龙贵,王春久.单组分乳胶改性水泥基防水浆料系统[J].中国建筑防水,2010,(1):004.
    [41]科博尔. Vinnapas可再分散乳胶优化的自流平水泥地坪材料[J].化学建材,1999,15(5):32-34.
    [42]高强,沈慧芳,熊巧稚.用于可再分散乳胶的阳离子苯丙乳液的合成[J].精细化工,2012,29(2):182-186.
    [43] SCHORM A., WEITZEL H.-P., KILLAT S., et al. PROCESS FOR PRODUCINGCATIONICALLY STABILIZED AND WATER-REDISPERSIBLE POLYMER POWDERCOMPOSITIONS[P]. WO2007093551,2007.
    [44] KLEIN H.-P., GAO B., XU P., et al. POLYMERIZATE COMPRISING AMACROMONOMER[P]. WO2012175460,2012.
    [45]程小伟,姚亚东,尹光福, et al.可再分散乳胶在隧道防火涂料中的应用[J].新型建筑材料,2006,(2):45-46.
    [46]徐龙贵,王春久,王德义.单组分末聚合物改性的非膨胀型防火涂料及其应用现状[J].中国涂料,2008,23(12):66-69.
    [47]林书乐,夏正斌,曾朝霞, et al.可薄涂建筑干涂料的制备[J].新型建筑材料,2009,36(5):63-66.
    [48] Tsai M.-c., Papsin Jr G. A., Chiou S.-j. Process for the preparation of a redispersiblecore-shell polymer[P]. EP0522791,1996.
    [49] Bright R. P., Vassallo J. C. Redispersible polymer powders using polyvinyl pyrrolidoneas a dispersing aid[P]. US5252704,1993.
    [50] Routh A. F., Zimmerman W. B. Distribution of particles during solvent evaporation fromfilms[J]. Chemical engineering science,2004,59(14):2961-2968.
    [51] Routh A. F., Russel W. B., Tang J., et al. Process model for latex film formation: Opticalclarity fronts[J]. Journal of Coatings Technology,2001,73(916):41-48.
    [52] Ma Y., Davis H., Scriven L. Microstructure development in drying latex coatings[J].Progress in organic coatings,2005,52(1):46-62.
    [53] Grancio M. R., Williams D. J. The morphology of the monomer–polymer particle instyrene emulsion polymerization[J]. Journal of Polymer Science Part A-1: Polymer Chemistry,1970,8(9):2617-2629.
    [54] Grancio M. R., Williams D. J. Molecular weight development in constant-rate styreneemulsion polymerization[J]. Journal of Polymer Science Part A-1: Polymer Chemistry,1970,8(10):2733-2745.
    [55] Okubo M., Yamada A., Matsumoto T. Estimation of morphology of composite polymeremulsion particles by the soap titration method[J]. Journal of Polymer Science: PolymerChemistry Edition,1980,18(11):3219-3228.
    [56] Okubo M., Ando M., Yamada A., et al. Studies on suspension and emulsion. XLVII.Anomalous composite polymer emulsion particles with voids produced by seeded emulsionpolymerization[J]. Journal of Polymer Science: Polymer Letters Edition,1981,19(3):143-147.
    [57] Okubo M., Katsuta Y., Matsumoto T. Studies on suspension and emulsion. li. peculiarmorphology of composite polymer particles produced by seeded emulsion polymerization[J].Journal of Polymer Science: Polymer Letters Edition,1982,20(1):45-51.
    [58] Chen Y. C., Dimonie V., El-Aasser M. S. Effect of interfacial phenomena on thedevelopment of particle morphology in a polymer latex system[J]. Macromolecules,1991,24(13):3779-3787.
    [59] Chen Y.-C., Dimonie V., El-Aasser M. S. Interfacial phenomena controlling particlemorphology of composite latexes[J]. Journal of applied polymer science,1991,42(4):1049-1063.
    [60] Sundberg D. C., Casassa A. P., Pantazopoulos J., et al. Morphology development ofpolymeric microparticles in aqueous dispersions. I. Thermodynamic considerations[J]. Journalof applied polymer science,1990,41(7-8):1425-1442.
    [61] Berg J., Sundberg D., Kronberg B. Microencapsulation of emulsified oil droplets byin-situ vinyl polymerization[J]. Journal of microencapsulation,1989,6(3):327-337.
    [62]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用[M].化学工业出版社,2007.
    [63] Gonzalez-Ortiz L. J., Asua J. M. Development of particle morphology in emulsionpolymerization.1. Cluster dynamics[J]. Macromolecules,1995,28(9):3135-3145.
    [64] González-Ortiz L. J., Asua J. M. Development of Particle Morphology in EmulsionPolymerization.2. Cluster Dynamics in Reacting Systems[J]. Macromolecules,1996,29(1):383-389.
    [65] González-Ortiz L. J., Asua J. M. Development of Particle Morphology in EmulsionPolymerization.3. Cluster Nucleation and Dynamics in Polymerizing Systems[J].Macromolecules,1996,29(13):4520-4527.
    [66] Daniel J. C. Latex de particules structurees[J]. Die Makromolekulare Chemie,1985,10(S19851):359-390.
    [67] Cho I., Lee K.-W. Morphology of latex particles formed by poly(methylmethacrylate)-seeded emulsion polymerization of styrene[J]. Journal of applied polymerscience,1985,30(5):1903-1926.
    [68] Dimonie V. L., El-Aasser M. S., Vanderhoff W. Particle morphology of composite latexesprepared by seeded emulsion polymerization. Polymeric Materials Science and Engineering,1988,(58):821.
    [69] Laferty S., Piirma I. Two-Stage Emulsion Polymerization of Acrylonitrile andButadiene[J]. ACS Symposium Series,1992,(492):255-271.
    [70] Chen Y. C., Dimonie V., El-Aasser M. S. Role of surfactant in composite latex particlemorphology[J]. Journal of applied polymer science,1992,45(3):487-499.
    [71]王凤芳,王国建. SAV种子乳液聚合[J].涂料工业,1992,(6):1-6.
    [72]许涌深,曹同玉,龙复, et al.核壳型复合聚合物乳液合成工艺研究[J].化工学报,1991,(6):683-683.
    [73] Stutman D. R., Klein A., El-Aasser M. S., et al. Mechanism of core/shell emulsionpolymerization[J]. Industrial&engineering chemistry product research and development,1985,24(3):404-412.
    [74] Dimonie V., El-Aasser M. S., Klein A., et al. Core-shell emulsion copolymerization ofstyrene and acrylonitrile on polystyrene seed particles[J]. Journal of Polymer Science:Polymer Chemistry Edition,1984,22(9):2197-2215.
    [75] LEE C.-F., CHEN Y.-H., CHIU W.-Y. Synthesis and Physical Properties of theCrosslinking Poly (butyl acrylate)/Polystyrene Core-Shell Composite Latex[J]. Polymerjournal,2000,32(8):629-636.
    [76] Teng G., Soucek M. Synthesis and characterization of cycloaliphatic diepoxidecrosslinkable core-shell latexes[J]. Polymer,2001,42(7):2849-2862.
    [77]林润雄,王基伟.功能性核/壳结构ACR的分子设计[J].化工科技,2000,8(6):1-4.
    [78] Min T. I., Klein A., El-Aasser M. S., et al. Morphology and grafting inpolybutylacrylate-polystyrene core-shell emulsion polymerization[J]. Journal of PolymerScience: Polymer Chemistry Edition,1983,21(10):2845-2861.
    [79] Chen Y., Iroh J. O. Synthesis and characterization of polyimide/silica hybridcomposites[J]. Chemistry of materials,1999,11(5):1218-1222.
    [80] Mammeri F., Le Bourhis E., Rozes L., et al. Mechanical properties of hybridorganic-inorganic materials[J]. J. Mater. Chem.,2005,15(35-36):3787-3811.
    [81] Fan X., Qin Q., Wen X., et al. Progress in preparation and application of raspberry-likepolymer/silica composite particles[J]. Gaofenzi Cailiao Kexue Yu Gongcheng/PolymericMaterials Science and Engineering,2013,29(1):153-157.
    [82]黄剑锋.溶胶-凝胶原理与技术[M].化学工业出版社,2005.
    [83] Lu Y., McLellan J., Xia Y. Synthesis and crystallization of hybrid spherical colloidscomposed of polystyrene cores and silica shells[J]. Langmuir,2004,20(8):3464-3470.
    [84] Tissot I., Novat C., Lefebvre F., et al. Hybrid latex particles coated with silica[J].Macromolecules,2001,34(17):5737-5739.
    [85] Watanabe M., Tamai T. Sol-gel reaction in acrylic polymer emulsions: The effect ofparticle surface charge[J]. Langmuir,2007,23(6):3062-3066.
    [86] Watanabe M., Tamai T. Acrylic polymer/silica organic-inorganic hybrid emulsions forcoating materials: Role of the silane coupling agent[J]. Journal of Polymer Science Part A:Polymer Chemistry,2006,44(16):4736-4742.
    [87] Tissot I., Reymond J., Lefebvre F., et al. SiOH-functionalized polystyrene latexes. A steptoward the synthesis of hollow silica nanoparticles[J]. Chemistry of materials,2002,14(3):1325-1331.
    [88] Ni K. F., Shan G., Weng Z., et al. Synthesis of hybrid core-shell nanoparticles byemulsion (co)polymerization of styrene and γ-methacryloxypropyltrimethoxysilane[J].Macromolecules,2005,38(17):7321-7329.
    [89] Graf C., Vossen D. L., Imhof A., et al. A general method to coat colloidal particles withsilica[J]. Langmuir,2003,19(17):6693-6700.
    [90] Hong J., Han H., Hong C. K., et al. A direct preparation of silica shell on polystyrenemicrospheres prepared by dispersion polymerization with polyvinylpyrrolidone[J]. Journal ofPolymer Science Part A: Polymer Chemistry,2008,46(8):2884-2890.
    [91] Chen, Y.,Kang, E.-T.,Neoh, K.-G., et al. Preparation of Hollow Silica Nanospheres bySurface‐Initiated Atom Transfer Radical Polymerization on Polymer Latex Templates[J].Advanced Functional Materials,2005,15(1):113-117.
    [92] Pickering S. U. CXCVI.—Emulsions[J]. Journal of the Chemical Society, Transactions,1907,(91):2001-2021.
    [93] Torres L., Iturbe R., Snowden M. J., et al. Preparation of o/w emulsions stabilized bysolid particles and their characterization by oscillatory rheology[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007,302(1):439-448.
    [94] Binks B. P. Particles as surfactants—similarities and differences[J]. Current Opinion inColloid&Interface Science,2002,7(1):21-41.
    [95] Deng X., Mammen L., Zhao Y., et al. Transparent, thermally stable and mechanicallyrobust superhydrophobic surfaces made from porous silica capsules[J]. Advanced Materials,2011,23(26):2962-2965.
    [96] Feng L., Li S., Li Y., et al. Super-Hydrophobic Surfaces: From Natural to Artificial[J].Advanced Materials,2002,14(24):1857-1860.
    [97] Zhu Y., Liu M., Wan M., et al.3D-Micro/Nano Structures of Conducting PolymersAssembled from1D-Nanostructures and Their Controlling Wettability[J]. ChemInform,2012,43(5):820-828.
    [98] Qian Z., Zhang Z., Song L., et al. A novel approach to raspberry-like particles forsuperhydrophobic materials[J]. Journal of Materials Chemistry,2009,19(9):1297-1304.
    [99] Fan X., Zheng L., Cheng J., et al. Template synthesis of raspberry-like polystyrene/SiO2composite microspheres and their application in wettability gradient surfaces[J]. Surface andCoatings Technology,2012,213(0):90-97.
    [100] Liu S., Wei M., Rao J., et al. A controlled formation of cage-like nanoporous hollowsilica microspheres[J]. Materials Letters,2011,65(13):2083-2085.
    [101] Su Y., Yan R., Dan M., et al. Synthesis of Hierarchical Hollow Silica MicrospheresContaining Surface Nanoparticles Employing the Quasi-Hard Template of Poly(4-vinylpyridine) Microspheres[J]. Langmuir,2011,27(14):8983-8989.
    [102] Suzuki D., Tsuji S., Kawaguchi H. Janus microgels prepared by surfactant-freepickering emulsion-based modification and their self-assembly[J]. Journal of the AmericanChemical Society,2007,129(26):8088-8089.
    [103] Liu B., Wei W., Qu X., et al. Janus colloids formed by biphasic grafting at a Pickeringemulsion interface[J]. Angewandte Chemie,2008,120(21):4037-4039.
    [104] Percy M., Barthet C., Lobb J., et al. Synthesis and characterization of vinylpolymer-silica colloidal nanocomposites[J]. Langmuir,2000,16(17):6913-6920.
    [105] Chen M., Wu L., Zhou S., et al. Synthesis of raspberry-like PMMA/SiO2nanocomposite particles via a surfactant-free method[J]. Macromolecules,2004,37(25):9613-9619.
    [106] Chen M., Zhou S., You B., et al. A novel preparation method of raspberry-likePMMA/SiO2hybrid microspheres[J]. Macromolecules,2005,38(15):6411-6417.
    [107]谢德龙,张心亚,杨波, et al.干燥进出口温度对EVA可再分散乳胶的影响[J].华南理工大学学报:自然科学版,2007,35(7):88-92.
    [108]裴勇兵,张心亚,谢德龙, et al.丙烯酸酯可再分散乳胶的性能与表征[J].高校化学工程学报,2009,23(006):1038-1043.
    [109]司徒粤,周利庄,夏正斌, et al.疏水作用对可再分散聚合物乳胶水分散性的影响机理研究[J].高校化学工程学报,2011,25(4):676-681.
    [110] Pei Y., Zhang X., Jiang Y., et al. Redispersibility of Acrylate Polymer Powder andStability of Its Reconstituted Latex[J]. Journal of Dispersion Science and Technology,2011,32(9):1279-1284.
    [111] Wang R., Wang P.-M. Action of redispersible vinyl acetate and versatate copolymerpowder in cement mortar[J]. Construction and Building Materials,2011,25(11):4210-4214.
    [112] Afridi M. U. K., Ohama Y., Demura K., et al. Development of polymer films by thecoalescence of polymer particles in powdered and aqueous polymer-modified mortars[J].Cement and Concrete Research,2003,33(11):1715-1721.
    [113] Wang R., Wang P.-M., Yao L.-J. Effect of redispersible vinyl acetate and versatatecopolymer powder on flexibility of cement mortar[J]. Construction and Building Materials,2012,27(1):259-262.
    [114] Jenni A., Holzer L., Zurbriggen R., et al. Influence of polymers on microstructure andadhesive strength of cementitious tile adhesive mortars[J]. Cement and Concrete Research,2005,35(1):35-50.
    [115] Schulze J., Killermann O. Long-term performance of redispersible powders in
    mortars[J]. Cement and Concrete Research,2001,31(3):357-362.
    [1] Tsai M.-C., Papsin Jr G. A., Chiou S.-J. A redispersible core-shell polymer powder[P]. US5403894,1995.
    [2] Tsai M.-c., Papsin Jr G. A., Chiou S.-j. Process for the preparation of a redispersiblecore-shell polymer[P]. EP0522791,1996.
    [3] Saija L. M., Uminski M. Water‐redispersible low‐Tg acrylic powders for themodification of hydraulic binder compositions[J]. Journal of applied polymer science,1999,71(11):1781-1787.
    [4] Penzel D., Franzmann D., Angel D., et al. Use of polymeric spray agents in thespray-drying of aqueous polymer dispersions[P]. EP0629650,1997.
    [5] KLEIN H.-P., GAO B., XU P., et al. POLYMERIZATE COMPRISING AMACROMONOMER[P]. WO2012175460,2012.
    [6] Zhang X., Fu H., Huang H., et al. Influence of carboxyl groups on the particle size andrheological properties of polyacrylate latices[J]. Journal Wuhan University of Technology,Materials Science Edition,2010,25(3):492-498.
    [7] Shay G. D., Kravitz F. K., Brizgys P. V. Alkali-swellable and alkali-soluble associativethickeners. Effect of process variables on emulsion and solution properties[A]. In Proceedingsof the ACS Division of Polymeric Materials: Science and Engineering[C]. Miami Beach, FL,USA,1989:408.
    [8] Lu D., Xie J., Shen L., et al. Role of three different carboxylic monomers in acrylateemulsion copolymerization in the presence of reactive emulsifier[J]. Journal of appliedpolymer science,2012,125(4):2807-2813.
    [9] Hwu H.-D., Lee Y.-D. Studies of alkali soluble resin as a surfactant in emulsionpolymerization[J]. Polymer,2000,41(15):5695-5705.
    [10] Bright R. P., Vassallo J. C. Redispersible polymer powders using polyvinyl pyrrolidoneas a dispersing aid[P]. US5252704,1993.
    [11] Weidner R., Frey V., Koenig-Lumer I., et al. Coating composition based on waterredispersible powders comprising water-soluble polymer and organosilicon compound[P]. US5681892,1997.
    [12] Weitzel H.-P., Stark K. Protective-colloid-stabilized polymers in the form of theiraqueous dispersions or of their water-redispersible powders[P]. US8217109,2012.
    [13] Haerzschel R., Bastelberger T., Dietrich U., et al. Polyvinyl-Alcohol-StabilizedRedispersible Powders With Plasticized Properties[P]. US7250468.2007.
    [14] Thaker S., Mahanwar P., Patil V., et al. Synthesis and spray drying of water-redispersiblepolymer[J]. Drying Technology,2010,28(5):669-676.
    [15]林书乐,夏正斌,曾朝霞, et al.可薄涂建筑干涂料的制备[J].新型建筑材料,2009,36(5):79-82.
    [16]张心亚,谢德龙,黄洪, et al.一种环保型干涂料及其制备方法[P]. CN200610036625.9,2006.
    [17]夏正斌,张心亚,司徒粤, et al.一种内墙干乳胶涂料及其制备方法[P]. CN200910036940.5,2009.
    [18]李飞,董金桥,沈青.高分子共混物中氢键的作用Ⅰ.氢键的特征描述以及影响因素[J].高分子通报,2009,(7):45-52.
    [19] Maurin J. K. Oxime-Carboxyl Hydrogen Bonds: the Preferred Interaction DeterminingCrystal Packing of Carboxyoximes[J]. Acta Crystallographica Section B: Structural Science,1998,54(6):866-871.
    [20]王喜忠,于才渊,周才君.喷雾干燥[M].化学工业出版社,2003.
    [21]钟余发,程小苏,曾令可, et al.利用离心喷雾干燥制备球形体的工艺因素研究[J].材料导报:纳米与新材料专辑,2009,(2):147-150.
    [1] Eck H., Figge R., Barthel H. Crosslinkable powder composition which is redispersible inwater[P]. US6197863,2001.
    [2] Ball P., Eck H. Crosslinkable powder composition which is redispersible in water[P]. US6063865,2000.
    [3] Eck H., Mayer T., Weitzel H.-P. Crosslinkable powder composition which is redispersiblein water[P]. US6228937,2001.
    [4] Niu L., Lei L., Xia Z. Redispersible polymer powder functionalized with NMA and itsadhesive properties in dry-mixed coatings[J]. Journal of Adhesion Science and Technology,2012. DOI:10.1080/01694243.2012.742401.
    [5] Lu J., Easteal A. J., Edmond N. Synthesis of crosslinkable latices with poly(vinylacetate-co-VeoVa10) cores and poly(glycidyl methacrylate) shells and online-FTIR analysisof the amine induced curing process[J]. Journal of applied polymer science,2012,126(SUPPL.2): E172-E181.
    [6] Wang Y., Chen W., Ma J., et al. Preparation and properties of aqueous ambientself-crosslinkable polyacrylate emulsion[J]. Gaofenzi Cailiao Kexue YuGongcheng/Polymeric Materials Science and Engineering,2012,28(8):9-13.
    [7] Zhang X., Liu Y., Huang H., et al. The diacetone acrylamide crosslinking reaction and itscontrol of core-shell polyacrylate latices at ambient temperature[J]. Journal of appliedpolymer science,2012,123(3):1822-1832.
    [8] Tale N. V., Jagtap R. N. Synthesis of diacetone acrylamide monomer and the filmproperties of its copolymers[J]. Iranian Polymer Journal (English Edition),2010,19(10):801-810.
    [9] Tang J., Chen H., Nie L., et al. Synthesis of self-crosslinking water soluble acrylic resinand development of tetracolor superimpose printing inks[J]. Dongnan Daxue Xuebao (ZiranKexue Ban)/Journal of Southeast University (Natural Science Edition),2003,33(1):68-71.
    [10] Li G. H., Shen Y. D., Fei, G. Q., et al. Effect of cationic crosslinkingpolyamide/polyacrylate sequential interpenetrating polymer network on the paper strength[J].Chung-kuo Tsao Chih/China Pulp and Paper,2005,24(4):13-16.
    [11] Cui H. W., Du G. B. Development of a novel polyvinyl acetate type emulsion curingagent for urea formaldehyde resin[J]. Wood Science and Technology,2013,47(1):105-119.
    [12] Chen L. J., Wu F. Q., Li D. S., et al. Preparation of self-crosslinked acrylate emulsionwith high elasticity and its rheological properties[J]. Journal of Central South University ofTechnology (English Edition),2008,15(3):324-328.
    [13]张洪涛.自交联型丙烯酸酯共聚乳胶稳定性研究[J].涂料工业,1991,(1):10-13.
    [14] Zhang X., Fu H., Huang H., et al. Influence of carboxyl groups on the particle size andrheological properties of polyacrylate latices[J]. Journal Wuhan University of Technology,Materials Science Edition,2010,25(3):492-498.
    [15] Shay G. D., Kravitz F. K., Brizgys P. V. Alkali-swellable and alkali-soluble associativethickeners. Effect of process variables on emulsion and solution properties[A]. In Proceedingsof the ACS Division of Polymeric Materials: Science and Engineering[C]. Miami Beach, FL,USA,1989:408.
    [16] Lu D., Xie J., Shen L., et al. Role of three different carboxylic monomers in acrylateemulsion copolymerization in the presence of reactive emulsifier[J]. Journal of appliedpolymer science,2012,125(4):2807-2813.
    [17] Hwu H.-D., Lee Y.-D. Studies of alkali soluble resin as a surfactant in emulsionpolymerization[J]. Polymer,2000,41(15):5695-5705.
    [18] Bright R. P., Vassallo J. C. Redispersible polymer powders using polyvinyl pyrrolidoneas a dispersing aid[P]. US5252704,1993.
    [19] Bright R. P., Vassallo J. C. Redispersible polymer powders using polyvinyl pyrrolidoneas a dispersing aid[P]. EP0576844,1994.
    [20] Weidner R., Frey V., Koenig-Lumer I., et al. Coating composition based on waterredispersible powders comprising water-soluble polymer and organosilicon compound[P]. US5681892,1997.
    [21] Weitzel H.-P., Stark K. Protective-colloid-stabilized polymers in the form of theiraqueous dispersions or of their water-redispersible powders[P]. US8217109,2012.
    [22] Haerzschel R., Bastelberger T., Dietrich U., et al. Polyvinyl-Alcohol-StabilizedRedispersible Powders With Plasticized Properties[P]. US7250468.2007.
    [23] Thaker S., Mahanwar P., Patil V., et al. Synthesis and spray drying of water-redispersiblepolymer[J]. Drying Technology,2010,28(5):669-676.
    [24]林书乐,夏正斌,曾朝霞, et al.可薄涂建筑干涂料的制备[J].新型建筑材料,2009,36(5):79-82.
    [25]张心亚,谢德龙,黄洪, et al.一种环保型干涂料及其制备方法[P]. CN200610036625.9,2006.
    [26]夏正斌,张心亚,司徒粤, et al.一种内墙干乳胶涂料及其制备方法[P]. CN200910036940.5,2009.
    [27] Verbrugge C. Mechanism of alkali thickening of acid-containing emulsion polymers. I.Examination of latexes by means of viscosity[J]. Journal of applied polymer science,2003,14(4):897-909.
    [28] Verbrugge C. Mechanism of alkali‐thickening of acid-containing emulsion polymers. II.Examination of latexes with the light microscope[J]. Journal of applied polymer science,2003,14(4):911-928.
    [29] Brown N. R., Loferski J. R., Frazier C. E. Cross-linking poly(vinylacetate-co-N-methylolacrylamide) latex adhesive performance Part II: Fracture mechanicsand microscopic durability studies[J]. International journal of adhesion and adhesives,2007,27(7):554-561.
    [30] Sen, D., Mazumder S., Melo J., et al. Evaporation driven self-assembly of a colloidaldispersion during spray drying: volume fraction dependent morphological transition[J].Langmuir,2009,25(12):6690-6695.
    [31] Pérez E., Lang J. Flattening of latex film surface and polymer chain diffusion[J].Langmuir,2000,16(4):1874-1881.
    [32] Pérez E., Lang J. Flattening of latex film surface: theory and experiments by atomic forcemicroscopy[J]. Macromolecules,1999,32(5):1626-1636.
    [1] Port A., Cameron C., Warnon J., et al. The chemistry and physics of coatings[M]. Royalsociety of chemistry,2004.
    [2] Charmeau J., Berthet R., Gringreau C., et al. Effects of film structure on mechanical andadhesion properties of latex films[J]. International journal of adhesion and adhesives,1997,17(2):169-176.
    [3] Nicholson J., Wasson E. Film Spreading and Film Formation by Waterborne Coatings[J].Surface Coatings,1990,391-123.
    [4] Charmeau J. Y., Berthet R., Gringreau C., et al. Effects of film structure on mechanicaland adhesion properties of latex films[J]. International journal of adhesion and adhesives,1997,17(2):169-176.
    [5] Steward P., Hearn J., Wilkinson M. An overview of polymer latex film formation andproperties[J]. Advances in colloid and interface science,2000,86(3):195-267.
    [6]沈浩,马慧,肖广平.水性涂料成膜机理问题探讨[J].中国涂料,2010,(006):24-27.
    [7] Vanderhoff J. Mechanism of film formation of latices[J]. British Polymer Journal,1970,2(3):161-173.
    [8] Zhao C. L., Wang Y., Hruska Z., et al. Molecular aspects of latex film formation: anenergy-transfer study[J]. Macromolecules,1990,23(18):4082-4087.
    [9] Vanderhoff J., Tarkowski H., Jenkins M., et al. Theoretical Consideration of InterfacialForces Involved in Coalescence of Latex Particles[J]. Rubber Chemistry and Technology,1967,40(4):1246-1269.
    [10] Ding T., Daniels E. S., El-Aasser M. S., et al. Film formation from pigmented latexsystems: Mechanical and surface properties of ground calcium carbonate/functionalized poly(n-butyl methacrylate-co-n-butyl acrylate) latex blend films[J]. Journal of applied polymerscience,2006,100(6):4550-4560.
    [11] Tang J., Daniels E. S., Dimonie V. L., et al. Influence of particle surface properties onfilm formation from precipitated calcium carbonate/latex blends[J]. Journal of appliedpolymer science,2002,86(4):891-900.
    [12] Pérez E., Lang J. Flattening of latex film surface and polymer chain diffusion[J].Langmuir,2000,16(4):1874-1881.
    [13] Routh A. F., Zimmerman W. B. Distribution of particles during solvent evaporation fromfilms[J]. Chemical engineering science,2004,59(14):2961-2968.
    [14] Routh A. F., Russel W. B., Tang J., et al. Process model for latex film formation: Opticalclarity fronts[J]. Journal of Coatings Technology,2001,73(916):41-48.
    [15] Provder T., Urban M. W. Film formation in coatings: mechanisms, properties, andmorphology[M]. American Chemical Society,2001.
    [16] Lin F., Meier D. A study of latex film formation by atomic force microscopy.1. Acomparison of wet and dry conditions[J]. Langmuir,1995,11(7):2726-2733.
    [1] CarràS., Sliepcevich A., Canevarolo A., et al. Grafting and adsorption of poly (vinyl)alcohol in vinyl acetate emulsion polymerization[J]. Polymer,2005,46(4):1379-1384.
    [2] Gilmore C., Poehlein G., Schork F. Modeling poly (vinyl alcohol)‐stabilized vinylacetate emulsion polymerization. I. Theory[J]. Journal of applied polymer science,1993,48(8):1449-1460.
    [3] Gilmore C., Poehlein G., Schork F. Modeling poly (vinyl alcohol)‐stabilized vinylacetate emulsion polymerization. II. Comparison with experiment[J]. Journal of appliedpolymer science,1993,48(8):1461-1473.
    [4] Budhlall B., Sudol E., Dimonie V., et al. Role of grafting in the emulsion polymerizationof vinyl acetate with poly (vinyl alcohol) as an emulsifier. I. Effect of the degree of blockinesson the kinetics and mechanism of grafting[J]. Journal of Polymer Science Part A: PolymerChemistry,2001,39(20):3633-3654.
    [5] Suzuki A., Yano M., Saiga T., et al. Study on the initial stage of emulsion polymerizationof vinyl monomers using poly (vinyl alcohol) as a protective colloid–comparison betweenvinyl acetate (VAc) and methyl methacrylate (MMA)[A]. Aqueous Polymer Dispersions[C].Springer,2004:27-30.
    [6] Suzuki A., Yano M., Saiga T., et al. Study on the initial stage of emulsion polymerizationof vinyl acetate using poly (vinyl alcohol) as a protective colloid[J]. Colloid Polym Sci,2003,281(4):337-342.
    [7] Miyazaki H., Terada K., Sato T., et al. Effect of poly (vinyl acetate/vinyl alcohol)copolymer with a thiol end group as a steric stabilizer on dispersion polymerization ofstyrene[J]. Journal of applied polymer science,1996,60(12):2149-2157.
    [8] Craig D. The effect of hydroxyethyl content on grafting reactions of hydroxyethylcellulose during emulsion polymerization of vinyl monomers[J]. Polym Mater Sci Eng,1985,53529.
    [9] Craig D. Monomer grafting reactions of hydroxyethyl cellulose in the presence ofnonoxidizing radical initiators[J]. Polym Mater Sci Eng,1985,54370.
    [10] Kim N., Sudol E. D., Dimonie V. L., et al. Comparison of conventional andminiemulsion copolymerizations of acrylic monomers using poly (vinyl alcohol) as the solestabilizer[J]. Macromolecules,2004,37(7):2427-2433.
    [11] Okaya T., Suzuki A., Kikuchi K. Effect of additives on the initial stage of emulsionpolymerization of methyl methacrylate using polyvinyl alcohol as a protective colloid[A]. InMacromolecular Symposia[C].2000:143-148.
    [12] Shaffie K., Moustafa A., Saleh N., et al. Effect of polyvinyl alcohol of differentmolecular weights as protective colloids on the kinetics of the emulsion polymerization ofvinyl acetate[J]. J Am Sci,2010,61202.
    [13] Suzuki A., Matsuda Y., Masuda T., et al. Effect of additives on the initial stage ofemulsion polymerization of styrene (St) using poly (vinyl alcohol) as a protective colloid[J].Colloid Polym Sci,2006,285(2):193-201.
    [14] Boho rquez S. J., Asua J. M. Poly (vinyl alcohol) grafting in miniemulsionpolymerization[J]. Macromolecules,2008,41(22):8597-8602.
    [15] Kim N., Sudol E. D., Dimonie V. L., et al. Poly (vinyl alcohol) stabilization of acrylicemulsion polymers using the miniemulsion approach[J]. Macromolecules,2003,36(15):5573-5579.
    [16]林劲冬,陈焕钦. PVA-SH保护胶体对MMA/BA聚合物乳液及乳胶性能的影响[J].华南理工大学学报:自然科学版,2006,34(8):41-45.
    [17] Vasudevan T., Kothandaraman H., Santappa M. Grafting on to poly (vinyl alcohol): anew spectral method to estimate the extent of grafting[J]. Polymer,1976,17(12):1108-1110.
    [18] Vasudevan T., Balakrishnan T., Kothandarman H., et al. Interaction of poly (vinylalcohol), boric acid, and iodine[J]. Journal of Polymer Science: Polymer Chemistry Edition,1976,14(9):2319-2320.
    [19] Joshi D., Lan-Chun-Fung Y., Pritchard J. Determination of poly (vinyl alcohol) via itscomplex with boric acid and iodine[J]. Analytica Chimica Acta,1979,104(1):153-160.
    [20] Finley J. H. Spectrophotometric determination of polyvinyl alcohol in paper coatings[J].Analytical Chemistry,1961,33(13):1925-1927.
    [21]徐竞成,郑涛.分光光度法测定印染废水中聚乙烯醇含量[J].化工环保,2004,24(S1):387-388.
    [22] González G., Dimonie V., Sudol E., et al. Characterization of poly (vinyl alcohol) duringthe emulsion polymerization of vinyl acetate using poly (vinyl alcohol) as emulsifier[J].Journal of Polymer Science Part A: Polymer Chemistry,1996,34(5):849-862.
    [23] Egret H., Dimonie V. L., Sudol E. D., et al. Characterization of grafting in the emulsionpolymerization of vinyl acetate using poly (vinyl alcohol) as stabilizer[J]. Journal of appliedpolymer science,2001,82(7):1739-1747.
    [24] Harkins W. D. A General Theory of the Mechanism of Emulsion Polymerization[J].Journal of the American Chemical Society,1947,69(6):1428-1444.
    [25] Harkins W. D. A general theory of the reaction loci in emulsion polymerization[J]. TheJournal of Chemical Physics,1945,13(9):381-382.
    [26] Harkins W. D. General theory of mechanism of emulsion polymerization. II[J]. Journalof polymer science,1950,5(2):217-251.
    [27] Harkins W. D. A general theory of the reaction loci in emulsion polymerization. II[J]. TheJournal of Chemical Physics,1946,14(1):47-48.
    [28] Roe C. P. Surface chemistry aspects of emulsion polymerization[J]. Industrial&Engineering Chemistry,1968,60(9):20-33.
    [29] Goodall A., Wilkinson M., Hearn J. Mechanism of emulsion polymerization of styrene insoap-free systems[J]. Journal of Polymer Science: Polymer Chemistry Edition,1977,15(9):2193-2218.
    [30] Kobayashi H., Chaiyasat A., Oshima Y., et al. Incorporation of Nonionic EmulsifierInside Carboxylated Polymer Particles during Emulsion Copolymerization: Influence ofMethacrylic Acid Content[J]. Langmuir,2008,25(1):101-106.
    [31] Okubo M., Kobayashi H., Matoba T., et al. Incorporation of nonionic emulsifiers insideparticles in emulsion polymerization: mechanism and methods of suppression[J]. Langmuir,2006,22(21):8727-8731.
    [32] Yuki K., Nakamae M., Sato T., et al. Physical properties of acrylic copolymer emulsionsusing poly (vinyl alcohol) as a protective colloid in comparison with those usingsurfactants[J]. Polymer international,2000,49(12):1629-1635.
    [33] Yuki K., Sato T., Maruyama H., et al. The role of polyvinyl alcohol in emulsionpolymerization[J]. Polymer international,1993,30(4):513-517.
    [34] Lewis J. A. Colloidal processing of ceramics[J]. Journal of the American CeramicSociety,2000,83(10):2341-2359.
    [35] Lozsán A., García-Sucre M., Urbina-Villalba G. Steric interaction between sphericalcolloidal particles[J]. Physical Review E,2005,72(6):061405.
    [36] Amsden B. An obstruction-scaling model for diffusion in homogeneous hydrogels[J].Macromolecules,1999,32(3):874-879.
    [37] Bagchi P. Theory of stabilization of spherical colloidal particles by nonionic polymers[J].Journal of Colloid and Interface Science,1974,47(1):86-99.
    [1] Tissot I., Novat C., Lefebvre F., et al. Hybrid Latex Particles Coated with Silica[J].Macromolecules,2001,34(17):5737-5739.
    [2] Yang J., Hu D., Fang Y., et al. Novel Method for Preparation of Structural MicrospheresPoly (N-isopropylacrylamide-co-acrylic acid)/SiO2[J]. Chemistry of materials,2006,18(20):4902-4907.
    [3] Schmid A., Fujii S., Armes S. P., et al. Polystyrene Silica Colloidal NanocompositeParticles Prepared by Alcoholic Dispersion Polymerization[J]. Chemistry of materials,2007,19(10):2435-2445.
    [4] Ji H., Wang S., Yang X. Preparation of polymer/silica/polymer tri-layer hybrid materialsand the corresponding hollow polymer microspheres with movable cores[J]. Polymer,2009,50(1):133-140.
    [5] Ding X., Jiang Y., Yu K., et al. Silicon dioxide as coating on polystyrene nanoparticles insitu emulsion polymerization[J]. Materials Letters,2004,58(11):1722-1725.
    [6] Hong J., Han H., Hong C. K., et al. A direct preparation of silica shell on polystyrenemicrospheres prepared by dispersion polymerization with polyvinylpyrrolidone[J]. Journal ofPolymer Science Part A: Polymer Chemistry,2008,46(8):2884-2890.
    [7] Schottner G. Hybrid Sol-Gel-Derived Polymers: Applications of MultifunctionalMaterials[J]. Chemistry of materials,2001,13(10):3422-3435.
    [8] Watanabe M., Tamai T. Acrylic polymer/silica organic–inorganic hybrid emulsions forcoating materials: Role of the silane coupling agent[J]. Journal of Polymer Science Part A:Polymer Chemistry,2006,44(16):4736-4742.
    [9] Yang Z., Niu Z., Lu Y., et al. Templated Synthesis of Inorganic Hollow Spheres with aTunable Cavity Size onto Core–Shell Gel Particles[J]. Angewandte Chemie InternationalEdition,2003,42(17):1943-1945.
    [10]范欣,覃秋菊,文秀芳, et al.聚合物/SiO2草莓型复合粒子的制备及应用研究进展[J].高分子材料科学与工程,2013,29(1):153-157.
    [11] Fan X., Zheng L., Cheng J., et al. Template synthesis of raspberry-like polystyrene/SiO2composite microspheres and their application in wettability gradient surfaces[J]. Surface andCoatings Technology,2012,(213):90-97.
    [12] Liu J., Zhang G., Ao W., et al. Hollow mesoporous titania microsphere with low shellthickness/diameter ratio and high photocatalysis[J]. Applied Surface Science,2012,258(20):8083-8089.
    [13] Fan H., Lei Z., Pan J. H., et al. Sol–gel synthesis, microstructure and adsorptionproperties of hollow silica spheres[J]. Materials Letters,2011,65(12):1811-1814.
    [14] Taniguchi T., Kashiwakura T., Inada T., et al. Preparation of organic/inorganiccomposites by deposition of silica onto shell layers of polystyrene(core)/poly[2-(N,N-dimethylamino)ethyl methacrylate](shell) particles[J]. Journal of Colloidand Interface Science,2010,347(1):62-68.
    [15] Du X., He J. Facile preparation of titania hollow spheres by combination of the mixedsolvent method and the sol–gel process and post-calcination[J]. Materials Research Bulletin,2009,44(6):1238-1243.
    [16] Pi M., Yang T., Yuan J., et al. Biomimetic synthesis of raspberry-like hybridpolymer–silica core–shell nanoparticles by templating colloidal particles with hairypolyamine shell[J]. Colloids and Surfaces B: Biointerfaces,2010,78(2):193-199.
    [17] Guo X., Liu X., Xu B., et al. Synthesis and characterization of carbon sphere-silicacore–shell structure and hollow silica spheres[J]. Colloids and Surfaces A: Physicochemicaland Engineering Aspects,2009,345(1–3):141-146.
    [18] Liu H., Wang D., Yang X. Preparation of polymer@titania raspberry-like core–coronacomposite via heterocoagulated self-assembly based on hydrogen-bonding interaction[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2012,397(0):48-58.
    [19] Chen Y., Kang E. T., Neoh K. G., et al. Preparation of Hollow Silica Nanospheres bySurface-Initiated Atom Transfer Radical Polymerization on Polymer Latex Templates[J].Advanced Functional Materials,2005,15(1):113-117.
    [20] Lu Y., McLellan J., Xia Y. Synthesis and Crystallization of Hybrid Spherical ColloidsComposed of Polystyrene Cores and Silica Shells[J]. Langmuir,2004,20(8):3464-3470.
    [21] Tissot I., Reymond J. P., Lefebvre F., et al. SiOH-Functionalized Polystyrene Latexes. AStep toward the Synthesis of Hollow Silica Nanoparticles[J]. Chemistry of materials,2002,14(3):1325-1331.
    [22] Liu B., Yan E., Zhang X., et al. A general method for the synthesis of monodispersehollow inorganic–organic hybrid microspheres with interior functionalized poly(methacrylicacid) shells[J]. Journal of Colloid and Interface Science,2012,369(1):144-153.
    [23] Ni K. F., Shan G. R., Weng Z. X., et al. Synthesis of Hybrid Core Shell Nanoparticles byEmulsion (co)polymerization of Styrene and γ-Methacryloxypropyltrimethoxysilane[J].Macromolecules,2005,38(17):7321-7329.
    [24] Ge C., Zhang D., Wang A., et al. Synthesis of porous hollow silica spheres usingpolystyrene–methyl acrylic acid latex template at different temperatures[J]. Journal of Physicsand Chemistry of Solids,2009,70(11):1432-1437.
    [25] Syoufian A., Inoue Y., Yada M., et al. Preparation of submicrometer-sized titania hollowspheres by templating sulfonated polystyrene latex particles[J]. Materials Letters,2007,61(7):1572-1575.
    [26] Tamai T., Watanabe M. Acrylic polymer/silica hybrids prepared by emulsifier-freeemulsion polymerization and the sol–gel process[J]. Journal of Polymer Science Part A:Polymer Chemistry,2006,44(1):273-280.
    [27] Graf C., Vossen D. L. J., Imhof A., et al. A General Method To Coat Colloidal Particleswith Silica[J]. Langmuir,2003/08/01,2003,19(17):6693-6700.
    [28] Bourgeat-Lami E., Tissot I., Lefebvre F. Synthesis and Characterization ofSiOH-Functionalized Polymer Latexes Using Methacryloxy Propyl Trimethoxysilane inEmulsion Polymerization[J]. Macromolecules,2002,35(16):6185-6191.
    [29] Qian Z., Zhang Z., Song L., et al. A novel approach to raspberry-like particles forsuperhydrophobic materials[J]. Journal of Materials Chemistry,2009,19(9):1297-1304.
    [30] Wang L., Asher S. A. Fabrication of Silica Shell Photonic Crystals through Flexible CoreTemplates[J]. Chemistry of materials,2009,21(19):4608-4613.
    [31] Wang S., Zhang M., Wang D., et al. Synthesis of hollow mesoporous silica microspheresthrough surface sol–gel process on polystyrene-co-poly(4-vinylpyridine) core–shellmicrospheres[J]. Microporous and Mesoporous Materials,2011,139(1–3):1-7.
    [32] Rupprecht H., Gu T. Structure of adsorption layers of ionic surfactants at the solid/liquidinterface[J]. Colloid Polym Sci,1991,269(5):506-522.
    [33]沈钟,赵振国,王果庭.胶体与表面化学[M].化学工业出版社,2004.
    [34]黄剑锋.溶胶-凝胶原理与技术[M].化学工业出版社,2005.
    [35] Ye F., Wang S., Zhao S. Preparation and characterization of mixed-mode monolithicsilica column for capillary electrochromatography[J]. Journal of Chromatography A,2009,1216(51):8845-8850.
    [36] Yusuf M. M., Imai H., Hirashima H. Preparation of mesoporous TiO2thin films bysurfactant templating[J]. Journal of Non-Crystalline Solids,2001,285(1-3):90-95.
    [37] Tan B., Rankin S. E. Effects of progressive changes in organoalkoxysilane structure onthe gelation and pore structure of templated and non-templated sol-gel materials[J]. Journal ofNon-Crystalline Solids,2006,352(52-54):5453-5462.
    [38] Kobayashi Y., Collinson M. M. Structural transformation of template-synthesizedmesoporous silica with addition of chloroform[J]. Nippon Seramikkusu Kyokai GakujutsuRonbunshi/Journal of the Ceramic Society of Japan,2004,112(1306):347-349.
    [39] Domingues Dos Santos F., Fabre P., Drujon X., et al. Films from soft-core/hard-shellhydrophobic latexes: Structure and thermomechanical properties[J]. Journal of PolymerScience Part B: Polymer Physics,2000,38(23):2989-3000.
    [40] Devon M. J., Gardon J. L., Roberts G., et al. Effects of core-shell latex morphology onfilm forming behavior[J]. Journal of applied polymer science,1990,39(10):2119-2128.
    [41] Saija L. M., Uminski M. Water-redispersible low-Tg acrylic powders for themodification of hydraulic binder compositions[J]. Journal of applied polymer science,1999,71(11):1781-1787.
    [42] Tsai M.-c., Papsin Jr G. A., Chiou S.-j. Process for the preparation of a redispersiblecore-shell polymer[P]. EP0522791:1996.
    [43] Norell M. A., Makovicky P., Clark J. M. Porous silica via colloidal crystallization[J].Nature,1997,389447.
    [44] Huo Q., Feng J., Schüth F., et al. Preparation of hard mesoporous silica spheres[J].Chemistry of materials,1997,9(1):14-17.
    [45] Ozin G. A. Nanochemistry: Synthesis in diminishing dimensions[J]. Advanced Materials,1992,4(10):612-649.
    [46] Iskandar F., Mikrajuddin A., Okuyama K. In situ production of spherical silica particlescontaining self-organized mesopores[J]. Nano Letters,2001,1(5):231-234.