基于白光干涉的表面形貌接触和非接触两用测量系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面形貌的测量方法通常可分接触式和非接触式两种,这两种方法在许多方面具有互补性且各自有自己的应用领域,因此有必要将两种测量技术集合组成一种混合型的测量仪器。本文以白光干涉测量技术为基础,以Linnik干涉显微镜为主体构成了一种新型的接触和非接触两用表面形貌测量系统。下面对论文的主要创新与研究内容进行概述和总结。
     提出了一种基于白光干涉测量技术的接触式表面形貌测量系统。利用波动理论点扩散函数的方法建立了接触式测量的数学模型,并讨论了接触式测量系统的灵敏度、非线性误差等特性。
     提出了一种接触和非接触两用表面形貌测量系统,两种测量方法均以白光干涉测量技术为基础,结构上均以Linnik干涉显微镜为主体。与其它同类测量系统相比,本系统具有资源共用程度高、测量精度高、成本低、应用广泛的特点。由于采用了白光干涉测量技术,没有单色光干涉测量系统所具有的相位模糊问题,与垂直位移扫描工作台和x-y扫描工作台相结合,接触式和非接触式测量系统均可进行大量程的测量。对非接触式测量的条纹识别方法进行了分析和总结,提出了非接触式测量的零级条纹判别采用两种求解方法,分别用于满足实际测量中对测量速度和测量精度要求不同的多种场合。
     对测量系统的主要部件进行了设计。讨论了白光光源的特性,提出了一种白光干涉仪中组合光源的设计判断标准,推导出了双组合光源和三组合光源的简洁设计公式,计算机模拟结果表明,本设计方法可以有效地提高白光干涉图形中零级条纹的识别精度。对接触式测量中杠杆机构的十字弹性支承进行了设计,并对杠杆机构的动态特性进行了分析。推导出了表面粗糙度与测量速度和测量力之间的关系,对接触式测量设置了三挡扫描速度,能够满足对不同粗糙度表面进行快速、有效的测量要求。对Linnik干涉显微镜中分光棱镜产生的误差进行了讨论,设计了工作台计量光栅的处理电路及其光栅信号的软件处理方法。
     讨论了整个测量系统的动态特性、滤波特性、测量的稳定性和重复性等特性。分析了接触式测量系统和非接触式测量系统的测量误差,分别设计了杠杆机构动态特性的标定方法以及接触式测量和非接触式测量的标定方法,给出了相应的标定结果。
In surface morphology there are two main families of technology, the first of which requires contact between a stylus tip and the surface, whereas the second is non-contact technique without any contact between the sensor and the object. It is known that these two types of instrument are complementary to each other in many aspects and each of them has their own application areas. So it is needful to integrate the two techniques into one surface measuring instrument. A novel hybrid instrument capable of contact and non-contact measurements with large range is developed, and both measurement systems are based on a Linnik interference microscope and on white-light interference measuring techniques. The creative points and main research contants are as follows.
     A contact surface profile measurement system which is based on white-light interference measuring technique is proposed. The mathematic model for the contact measuring method is established by wave theory, the sensitivity and the non-linear measuring error are discussed accordingly.
     A hybrid surface profile measurement system capable of contact and non-contact measurements with large range is proposed. Both measuring methods are based on white- light interference measuring technique, and both systems are built on Linnik microscope configuration. Compared with other counterparts, the system has a simpler structure and a lower cost, and is of high accuracy and suitable for a wide range of applications. As adopting white-light interference measuring technique, the ambiguity presented in conventional monochromatic interferometers is not present for both contact and non-contact measurements, and it can be used for large range measurements in combination with the vertical scanning stage and x-y stage. On the basis of analysis and summary for fringe identifying techniques of non-congtact measurement, it is proposed that two methods of determination of zero-order fringe are used in the system to respectively meet the demands for different measuring speeds and accuracy ranges.
     The main parts and assemblies of the system are designed and analysed. After discussing the characteristics of white-light sources, the simple design formula for two-synthesized source and three -synthesized source are obtained in accordance with the proposed judgment criterion, and the design effects are simulated with computer. The results of computer simulation demonstrate that the use of the synthesized sources with the optimized parameters results in the more accurate determination of zero-order fringe. The cross-spring pivot of the lever mechanism in the contact measuring system is designed, and the dynamic characteristics of the lever mechanism are studied. On the basis of the relationship deduced between the traverse speed and the roughness of test surface and between the measuring force and the roughness, three grades of the traverse speeds are setted for the system, which can be used for the rapid and effective measurement of the surfaces of different roughness. The processing circuit and a software method of fine dividing of grating sensor in the stages are designed, and the error analysis for the beamsplitter in Linnik interference microscope is discussed.
     The dynamic characteristic, the filter characteristic, the stability and the repeatability of the system are also discussed. The errors of the contact and noncontact measuring systems are analysed, respectively. The calibration methods for the dynamic characteristics of the lever mechanism and for the contact and noncontact measurements are designed seperately, and the calibration results for them are also shown.
引文
[1] Blunt L, Stout KJ. E.C. contact no: SMT4-CT98-2256.
    [2]毛起广.表面粗糙度的评定和测量[M].北京:机械工业出版社,1991
    [3]托马斯TR..粗糙表面测量、表征及其应用[M].杭州:浙江大学出版社,1987
    [4] Chetwynd DG., Liu X, Smith ST. A controlled-force stylus displacement probe. Precision Engineering[J]. 1996,19(2):105-111
    [5]蒋向前.曲面表面形貌检测理论与方法的研究[D].武汉:华中科技大学图书馆,1995
    [6] Garrat JD, Bottomley SC. Technology transfer in the development of a nano- topographic instrument[J]. Nano-technology, 1990,1(1): 38-43
    [7] Mathia T, Zahouan Hl. Functional significance of different techniques for surface morphology measurements[J]. Int. J. Mach. Manufact. 1995, 35(2): 195-202
    [8] Garratt JD. Survey of displacement tansducers below 50mm[J]. J.Phas.E, 1979, 12(4): 563-576
    [9] Garrant JD. A new stylus instrument with a wide dynamic range for use in surface metrology[J]. Precison Engineering, 1982, 4(6): 262-269
    [10] Mistsui K, Sakai M. Development of a high resolution sensor for surface roughness[J]. Opt. Eng.1988,27(6): 632-640
    [11] Bennett JM, Tehrani MM. Topographic measurements of supersmooth dielectric films made with a mechanical profiler and a scanning force microscope[J]. Appl. Opt., 1995, 34(2): 209-212.
    [12] Song JF, Vorburger TV. Stylus profiling at high resolution and low force[J]. Appl. Opt., 1991,30(1): 42-50.
    [13] Teague EC, Scire FE. Three-dimensional sdylus profilometry[J]. Wear, 1982,83: 1-12.
    [14] Snaith B, Edmonds JM. Use of a profilometer for surface mapping[J]. Precison Engineering, 1981,2(1): 87-90.
    [15] Badaml VG, Smith ST. A portable three-dimensional stylus profile measuring instrument[J]. Precison Engineering,1996,18(2): 147-156.
    [16] Morrison E. A prototype scanning stylus profilometer for rapid measurement of smallsurface areas[J]. Int. J Mach Tools Manufact, 1995,35(3): 325-331
    [17] Wang WL, Whitehouse DJ. Method for setting fidelity criteria for surface measuring instrument[J]. Precison Engineering,1995,17(2): 274-28
    [18] Liu X, Smith ST. Frictional forces between a diamond stylus and speciments at low load[J]. Wear, 1992, 157: 279-294
    [19] Clark SR, Greivenkamp JE. Ball tip-stylus tilt correction for a stylus profilometer[J]. Precison Engineering, 2002, 26(4): 405-411
    [20] Ishigaki H, Kawaguchi I. Effect of a skid on the accuracy off measuring surface roughness[J]. Wear, 1981,68: 1337-1340
    [21] Whitehouse VJ. Effect of stylus radius on the roughness values measured with tracing stylus instruments[J]. Wear. 1970,76: 325-335
    [22] Goodhew PJ. Electron microscopy and analysis[M]. London: Wykeham, 1975
    [23] Rasigni M, Rasigni G.. Validity of surface roughness study using microdensitometer analysis of electron micrographs of surface replicas[J]. J. Opt. Soc. Am., 1981, 71(12): 1549 -1550
    [24]白春礼.扫瞄隧道显微术及其应用[M].上海:上海科学技术出版社,1992
    [25] Fujii T, et al. Scanning Tunneling Microscope with Three Dimensional interferometer for Surface Roughness Measurement [J]. Rev Sci Instrum, 1995, 66: 2504-2507
    [26]张冬仙,董申.新型原子力显微镜的研制及其应用[J].光子学报,2002,31(1):51-54
    [27] Dongmo S, Vautrot P, Bonnet N, et al. Correction of surface roughness measurements in SPM imaging[J]. Appl. Phys. A , 1998,66: 819-823
    [28]陈英飞,章海军.原子力显微镜在纳米粗糙度测量中的应用[J].光学仪器,2003,25(4):25-29
    [29] Fujii H, Asakura T. Roughness measurement of metal surfacea using laser speckle[J]. J. Opt. Soc. Am., 1977,67: 1171-1176
    [30] Flemming T, Hertwig M, Usinger. R Speckle interferometry for detection of subsurface damage in fibrereinforced composites[J]. Meas. Sci. Technol. 1995,5(1): 100-104
    [31] Creath C. Phase shifting speckle interferometry[J]. Appl. Opt., 1985,24(17): 3053-3058.
    [32] Vorburger TV, Lusema KC. Ellipsometry of rough surfaces[J]. Appl. Opt., 1980,19(4): 561-573.
    [33] Bennett HE. Scattering characteristicas of optical materials[J]. Opt. Eng., 1978,17(5):480-488
    [34] Clarke GN, Thomas TR. Roughness measurement with a laser scanning analyser[J]. Wear, 1979,57(2): 107-116.
    [35] church EL. The measurement of surface texture and topography by differential light scattering[J]. Wear, 1979,57(1): 93-105.
    [36] Whhitehouse DJ. Modern trends in the measurement of surfaces[J]. Rev. M. Mec. 1975, 21(1): 19-28
    [37] Thwate EG. The roughness of surfaces[J]. Aust. Phys., 1977, 11(2): 170-174
    [38] Mignot J, Gorecki C. Measurement of surface roughness comparison between a defect of focus optical technique and the classical stylus technique[J]. Wear, 1983,87(1): 39-49.
    [39] Chida SN., Sato H. Two dimensional measurement of surface roughness by the light sectioning methos[J]. Ann. CIRP, 1981,30(1): 481-486
    [40] Arecchi FT, Bertani D, Clliberto S. A fast versatile optical profilometer[J]. Opt. Comm., 1979,31(3): 263-266.
    [41] Fairman Y, Lenz E, Shamir J. Optical profilometer: a new method for high sensitivity and wide dynamic range[J]. Appl. Opt., 1982,21(17): 3200-3208.
    [42] Hocken RJ, Chakraborty N, Brown C. Optical metrology of surfaces[J]. Ann. CIRP, 2005,54(2): 705-719
    [43] Sommargen GE. Optical heterodyne profilometry[J]. Appl. Opt., 1981,20(4): 610-618.
    [44]梁嵘,李达成,曹芒.在线测量表面粗糙度的共路激光外差干涉仪[J].光学学报,1999,19(7):958-961
    [45] Lech M, Mruk I, Strupnicki J. Holographic contouring of the surface topography and stusy of the contact rigidity of rough surfaces[J]. Wear, 1979,57(2): 236-168.
    [46] Groves D, Lalor. MJ. A holographic technique with computer aided analysis for the measurement of wear[J]. J. Phys. E, 1980,13(7): 741-746.
    [47] Atkinson JT, Groves D. The measurement of wear in dental restorations using laser dual source contouring[J]. Wear, 1982,76(1): 91-104.
    [48]王毅,陈荣.反射式表面粗糙度光纤传感器及其模糊算法[J].光子学报,2000, 29(3): 669-672
    [49]鲍振武,刘剑飞.单模光纤探针粗糙度测量技术的研究[J].电子测量与仪器学报,1999, 13(1): 24-29
    [50] Andrzej WD, Tomasz RW. Surface roughness measurement with optical fibers[J]. IEEETrans. Instrum. Meas. 1992,41(6):1057-1061
    [51] Brunning JH. Herriott DR. Digital wavefront measring inteferometer for testing optical surfaces and lenes[J]. Appl. Opt., 1974,13(11): 2663-2673.
    [52] Bhushan B, Wyant JC, Koliopoulis CL. Measurement of surface topography of magnetic tapes by Mirau interferometry[J]. Appl. Opt., 1985,24(7): 1489-1497.
    [53] Greivenkamp JE, Bruning JH. Optical shop testing[M]. New York: Wiley, 1992.
    [54] Shottos DM. Confocal scanning optical microscope and its applications for biological specimens. J. Cell. Sci., 1989,94(2): 175-206
    [55] Balsubramanian N. Optical system for surface topography measurement. U. S. Patent No. 4340306, 1980
    [56] L. Deck, P. de Groot. High-speed noncontact profiler based on scanning white-light interferometry[J]. Appl. Opt, 1994, 33(31): 7734- 7338
    [57] Groot P, Deck L. Surface profiling by analysis of white-light interferogram in the spatial frequency[J]. J. Mod. Opt., 1995, 42(2):389-401
    [58] Schmit J, Olszak A. High-precision shape measurement by white-light interferometry with real-time scanner crrection[J]. Appl.Opt, 2002, 41(26): 5943- 5950.
    [59] Helen HS, Kothiyal MP, Sirohi RS. Phase shifting by rotating polarizer in white-light interferometry for surface profling[J]. J. Mod. Opt. 2000,47(3): 1137-1145
    [60] Dresel T, Hausler G., Venzke H. Three-dimensional sensing of rough surfaces by coherence radar[J]. Appl.Opt, 1992, 31(7): 919-925
    [61] Pavlicek P, Soubusta J. Theoretical measurement uncertainty of white-light interferometry on rough surfaces[J]. Appl.Opt, 2003, 42(10): 1809-1813.
    [62] P. Pavlicek, J. Soubusta. Measurement of the influence of dispersion on white-light interferometry[J]. Appl.Opt, 2004, 43(4): 766- 770.
    [63] Groot, P, Lega XC. Signal modeling for low-coherece height-scanning interference microscopy[J]. Appl.Opt, 2004, 43(25): 4821- 4830.
    [64] Kino GS, Chim SC. The Mirau correlation microscope[J]. Appl. Opt, 1990,29(26): 3775-3783
    [65] Chim SC, Kino GS. Three-dimensional image realization in interference micro- scopy[J]. Appl. Opt, 1992, 31(14): 2975~2979.
    [66] Caber PJ. Interferometric profiler for rough surfaces[J]. Appl.Opt, 1993, 32(19): 3438- 3440.
    [67] Larkin KG.. Efficient nonlinear algorithm for envelope detection in white light interferometry[J]. J. Opt. Soc. Am.A, 1996, 13(4): 832-843
    [68].Ai C, Novak EL. Centroid approach for estimating modulation peak in broadband- width interferometry. U.S. Patent 5633715, 1996
    [69] Harasaki A, Wyant JG.. Fringe modulation skewing effect in white-light vertical scanning interferomtry[J]. Appl. Opt, 2000, 30(13): 2101- 2106
    [70] Harasaki A, Schmit J, Wyant JG. Improved vertical-scanning interferometry[J]. Appl. Opt, 2000, 30(13): 2107- 2115
    [71]刘泊,郑伟.白光相移干涉法测量三维表面轮廓的算法即实现[J].哈尔滨工业大学学报,1999,4(3): 95-99
    [72]孙杰,刘铁根.采用宽带光源的双光束干涉中零光程差位置测量研究[J].仪器仪表学报,2005,26(1): 8-12
    [73]孙杰,刘铁根.白光干涉零光程差位置的五步测量法[J].光电子激光,2003,14(12):1320-1323
    [74] Park MC, Kim SW. Direct quadratic polynomial fitting for fringe peak detection of white light scanning intefeograms[J]. Opt. Eng., 2000, 39(4):952-959
    [75] Sandoz P, Devillers R, A. Plata. Unambiguous profilometry by fringe-order identification in white-light phase-shifting interferometry[J]. J. Mod. Opt. 1997, 44(3): 519-634
    [76] Hariharan P, Roy M. White-light phase-stepping interferometry: measurement of the fractional interference order[J]. J. Mod. Opt. 1995, 42: 2357-2360
    [77] Cohen DK, Caber PJ, Brophy CP. Rough surface profiler and method. U.S. Patent 5133601, 1992
    [78] Groot P, Deck L. Three-dimensional imaging by sub-Nyquist samping of white-light interferograms[J]. Opt. Lett. 1993,18(7): 1462-1464.
    [79] Deck L, Groot P. High-speed noncontact profiler based on scanning white-light interferometry[J]. Appl. Opt, 1994, 33(31): 7734- 7338
    [80] Groot P, Deck L. Surface profiling by analysis of white-light interferogram in the spatial frequency[J]. J. Mod. Opt., 1995, 42(2):389-401
    [81] Groot L, Lega XC, Kramer J, et al. Determination of fringe oder in white-light interference microscopy[J]. Appl. Opt, 2002, 41(22): 4571- 4578
    [82] Pfortner A, Schwide J. Dispersion error in white-light Linnik interferometers and itsimplications for evaluation procedures[J]. Appl. Opt, 2001, 40(34): 6223- 6228
    [83] Sandoz P. Wavelet transform as a processing tool in white-light interferometry[J]. Opt. Lett. 1997,22(14): 1065-1067
    [84] Lu SF, Gao Y.S, Xie T.B., et al. A novel contact/non-contact hybrid measurement system for surface topography characterization[J]. Int. J. Machine Tools Manufact. 2001,41, 2001-2009
    [85]谢峰.表面形貌及弹头发射痕迹的接触与非接触两用测量系统[D].武汉:华中科技大学图书馆,1999
    [86]金国藩,李景镇.激光测量学[M].北京:科学出版社,1998.
    [87] Chen Y, Wyant JC. Two-wavelength phase-shifting interferometry[J]. Appl. Opt, 1984,23(24): 4539-4543
    [88] Wyant JC. Testing aspherics using two-wavelenhth holography[J]. Appl. Opt, 1971, 10(9):2113-2118
    [89] Chen Y, Wyant JC. Multiple-wavelength phase-shifting interferometry[J]. Appl. Opt, 1985, 24(6): 804-807
    [90] Biegen JF. Step height measurement range extended for an interference microscope utilizing the obliquity effect[J]. Proc. SPIE, Surface characterization and Testing II.1989, 1164(1):79-84
    [91] Born M, Wolf E. Principles of Optics[M]. UK: Camridge University press, 2002
    [92]吕乃光.傅里叶光学[M].北京:机械工业出版社,2006
    [93] Park MC, Kim SW. Compensation of phase change on reflection in white-light interferometry for step height measurement[J]. Opt. Lett, 2001, 26(7): 420-422
    [94] Doi T, Toyoda K, Tanimura Y. Effects of phase changes on reflection and their wacelenth dependence in optical profilometry[J]. Appl. Opt, 1997,36(28): 7157-7161
    [95]编写组.光切显微镜和干涉显微镜[M].北京:机械工业出版社,1978
    [96] Alexander BF, KC Ng. Elimination of systematic error in subpixel accuracy centroid estimation[J]. Opt Eng 1991,30(6): 1320-1330
    [97] Biegen JF. Calibrition requirements for Mirau and Linnilk microscope interfero- meters[J]. Appl. Opt, 1989, 28(11):1972-1974
    [98] Wang DN, Ning YN, Grattan KYV. Optimized multi-wavelength combination sources for interferometric use[J]. Applied Optics,1994,33(31): 7326-7328
    [99] Rao Y J, Ning Y N, Jackson D A. Synthesized source for white-light sensing system[J].Opt. Lett., 1993, 18(6): 462-464
    [100] He Z, Hotate K. Distributed photonic sensing with synthesized optical coherence function[J]. Proc. SPIE, 2005, 5952, 59520J
    [101]谢建平,张晓世,吴为民.白光干涉仪中多波长值的优化选择[J].量子电子学报,2001,18(4):293-296
    [102]宋桂菊,方祖捷,王向朝.多光源白光干涉的最佳波长组合[J].光学学报,2001,21(4):463-467
    [103] Farr KB, Georg Ne. Beamsplitter cube for white light interferometry[J]. Opt Eng 1992, 31(10): 2191-2196
    [104]薛实福,李庆祥.精密仪器设计[M].北京:清华大学出版社,1991
    [105]倪樵,李国清,钱勤.材料力学[M].武汉:华中科技大学出版社,2006
    [106]白立芬,李庆祥.十字片簧弹性支承机构的设计[J].机械设计,2001,18(3):18-19
    [107]刘希玲.十字弹性机构精度性能的研究[J].机械设计,2004,21(4):16-17
    [108]王庆云,李庆祥,薛实福.十字片簧弹性支承测量机构的特性分析与设计[J].机械设计,1997,14(11):11-13
    [109]谢铁邦,李柱,席宏卓.互换性与技术测量[M].武汉:华中科技大学出版社,1998
    [110]方昆凡.公差与配合技术手册[M],北京:北京出版社,2000
    [111]王选择.正交衍射光栅计量原理及在超精密工作台上的应用[D].武汉:华中科技大学图书馆,2004
    [112]费业泰.误差理论与数据处理[M].北京:机械工业出版社,2000
    [113]熊诗波,黄长艺.机械工程测试技术基础[M].北京:机械工业出版社,2007