面内加载及低速冲击下复合材料层合板抗分层失效研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维增强复合材料(FRP)由于其优越的材料性能,在航空航天、汽车、土木工程等领域得到越来越广泛的应用。同时纤维复合材料在实际使用过程中也遇到了各种各样的问题,其中复合材料层合板的连接失效与低速冲击作用下复合材料层合板分层就是其中的两个重要方面。
     本文采用粒子群算法对复合材料层合板销钉连接处分层挤压强度进行优化。首先采用三维有限元对连接模型进行应力分析,为尽可能模拟真实情况,考虑销钉与板之间的三维接触,然后采用修改的Ye分层准则对分层挤压强度进行预测,接着将预测的结果与文献中的实验值比较,以验证分层挤压强度计算的有效性。为了避免ANSYS中自带优化算法对初值敏感且易陷入局部最优的缺陷,借助粒子群算法与ANSYS之间的接口程序,采用全局智能优化算法(粒子群算法)对初始分层强度进行优化,在给定的约束条件下,寻找在相应的设计空间中最佳的设计变量值,以得到最优的分层挤压强度。该方法及结果可为实际工程中复合材料接头的设计提供有益的参考。
     本文采用粘聚区域模型,对金属/纤维层合板在低速冲击载荷作用下的分层情况进行了研究。粘聚力模型对裂纹的模拟具有它独特的优势:一是该模型不需要预先假设初始缺陷;二是在计算过程中随着裂纹的扩展,该方法不需要重新对结构进行网格划分。首先为了考察粘聚区域模型对分层开裂模拟的有效性,本文对纤维层合板在低速冲击载荷作用下,层合板的分层进行了模拟。结果显示该模型可以对分层的扩展方式、分层形状进行有效地预测。在此基础上,本文研究了低速冲击载荷作用下,纤维/金属层合板的分层情况,并将其与纤维层合板进行了比较。同时本文还调查了等密度条件下,不同铺层结构和金属含量对纤维/金属分层的影响。
Fiber Reinforced Plastics (FRP) is widely used in aerospace industry, automobile area and civil engineering, owing to its excellent properties, such as high specific strength and modulus and its designability. But meanwhile, various problems come out during the application of FRP in the real engineering structure. Two important issuess are the failure of composites joints under bearing load and the delamination of composite laminates under low-velocity impact.
     One aim of this paper is to develop a method that combines Finite Element Analysis (FEA) and evolutionary algorithms in predicting and maximizing the delamination bearing strength of composite pin joints. First, based on three-dimensional contact analysis around the vicinity of pin joints, the delamination bearing strength of joints is predicted using the modified Ye-delamination criterion. Then, the maximization of the strength is studied. To overcome the disadvantage that the optimization algorithm incorporated in ANSYS is both sensitive to the initial value and liable to get involved in the local optimum, a global intelligent optimization algorithm-Particle Swarm Optimization(PSO) is used to optimize the delamination bearing strength. The optimum design variables and delamination bearing strength are achieved under the given constraint condition and the influence of pin diameter on the optimum delamination bearing strength is investigated. The method and results in this paper can offer beneficial reference to the design of composite pin joints in the practical engineering.
     In this paper, cohesive zone model is used to study the delamination of FMLs under low-velocity impact. The model owns two main advantages: one is that no initial crack is needed to be assumed; another is that there is no need to remesh the model during the crack propagation. First, to validate the cohesive zone model in dealing with delamination of composite laminates, the delamination simulation is carried out under the low-velocity impact and a relative good agreement is achieved with the experimental data. Next, the delamination of FMLs is investigated under low-velocity impact and the results are compared with that of composite laminates. What's more, the effects of stacking structures and metal ratios towards the delamination of fiber/metal laminates are studied.
引文
[1]王兴业.?复合材料力学分析与设计.?北京:国防科技大学出版社,1999?
    [2]理查德逊,聚合物工程复合材料.?山东化工研究所译.?北京:?国防工业出版社,1988?
    [3] de Jong T. Stresses around pin-loaded holes in elastically orthotropic or isotropic plates. Journal of Composite Materials 1977, 11: 313~331
    [4] Zhang K. and Ueng C. Stresses around a pin-loaded hole in orthotropic plates with arbitrary loading direction. Composite Structure 1985, 3: 119~143
    [5] Dano M.L., Gendron G. and Picard A. Stress and failure analysis of mechanically fastened joints in composite laminates. Composite Structure 2000, 50: 287~296
    [6] Hyer M.W., Klang E.C. and Cooper D.E. The effect of pin elasticity, clearance, and friction on the stresses in a pin-loaded orthotropic plate. Journal of Composite Material 1987, 21: 190~206
    [7] Wong C.M. and Matthews F.L. A finite element analysis of single and two hole bolted joints in fibre reinforced plastic. Journal of Composite Material 1981, 15: 481~491
    [8] Collings T.A. and Beauchamp M.J. Bearing deflection behavior of a loaded hole in CFRP. Composites 1984, 15: 33~38
    [9] Quinn W.J. and Matthews F.L. The effect of stacking sequence on the pin bearing strength in glass fibre reinforced plastic. Journal of Composite Material 1977, 11(2): 139~145
    [10] Wang H.S., Hung C.L. and Chang F.K. Bearing failure of bolted composite joints, Part I: experimental characterization. Journal of Composite Material 1996, 30: 1284~1313
    [11] Fox D.E. and Swaim K.W. Static Strength Characteristics of Mechanically Fastened Composite Joints. NASA/TM-1999-209735
    [12] McCarthy C.T. and McCarthy M.A. Three-dimensional finite element analysis of single-bolt, single-lap composite bolted joints: Part 1I-effects of bolt-hole clearance. Composite Structures 2005, 71: 159~175
    [13] McCarthy M.A., McCarthy C.T. and Padhi G.S. A simple method for determining the effects of bolt-hole clearance on load distribution in single-column mufti-bolt composite joints. Composite Structures 2006, 73(1): 78~87
    [14] McCarthy M.A., McCarthy C.T., Lawlor V.P. and Stanley W.F. Three-dimensional finite element analysis of single-bolt, single-lap composite bolted joints: part I-model development and validation. Composite Structures 2005,71(2): 140~158
    [15] Lawlor V.P., McCarthy M.A. and Stanley W.F. An experimental study of bolt-hole clearance effects in double-lap, mufti-bolt composite joints. Composite Structures 2005,71(2): 176~190
    [16] Aktas A. Bearing strength of carbon epoxy laminates under static and dynamic loading. Composite Structures 2005, 67(4): 485~489
    [17] Aktas A. and Husnu Dirikolu M. The effect of stacking sequence of carbon epoxy composite laminates on pinned-point strength. Composite Structures 2003, 62(1): 107~111
    [18] Park H.J. Effects of stacking sequence and clamping force on the bearing strengths of mechanically fastened joints in composite laminates. Composite Structures 2001, 53(2): 213~221
    [19] Sun H.T., Chang F.K. and Qing X. The response of composite joints with bolt-clamping loads, Part I: Model development. Composite Materials 2002, 36(1): 47~67
    [20] Sun H.T., Chang F.K. and Qing X. The response of composite joints with bolt-clamping loads, Part II: Model verification. Composite Materials 2002, 36(1): 69~91
    [21] Xiao Y. and Ishikawa T. Bearing strength and failure behavior of bolted compositejoints part I: Experimental investigation. Composites Science and Technology 2005, 65: 1022~1031
    [22] Xiao Y. and Ishikawa T. Bearing strength and failure behavior of bolted composite joints part II: modeling and simulation. Composites Science and Technology 2005, 65: 1032~1043
    [23] Davila C.G. and Camanho P.P. Failure Criteria for FRP Laminates in Plane Stress. NASA/TM-2003-212663
    [24] Camanho P.P. and Matthews F. A progressive damage model for mechanically fastened joint in composites. Journal of Composite Materials 1999, 33: 2248~2280
    [25] O'Brien T. K. Characterization of delamination onset and growth in a composite laminate. in: K.L. Reifsnider. Damage in Composite Materials. U.S.: American Society for Testing and Materials, 1982. 140~167
    [26] Camanho P. P., Bowron S. and Matthews F. L. Failure Mechanisms in Bolted CFRP. Journal of Reinforced Plastics and Composites 1998, 17(3): 205~233
    [27] Camanho P.P. and Matthews F.L. Delamination Onset Prediction in Mechanically Fastened Joints in Composite Laminates. Journal of Composite Materials 1999 , 33(10): 906~927
    [28] Persson E., Madenci E., Eriksson I. Delamination initiation of laminates with pin-loaded holes. Theoretical and Applied Fracture Mechanics 1998, 30: 87~101
    [29] Park H.J. Bearing Failure Analysis of Mechanically Fastened Joints in Composite Laminates. Composite Structures 2001, 53(2): 199~211
    [30]孙国正.优化设计及应用.北京:人民交通出版社,1992
    [31] Fox R.L.,张建中,诸梅芳.工程设计的优化方法.北京:科学出版社,1981
    [32]万仲平,费浦生.优化理论与方法.武汉:武汉大学出版社,2004
    [33] Alibeigloo A., Shakeri M. and Morowat A. Optimal stacking sequence of laminated anisotropic cylindrical panel using genetic algorithm. Structural Engineering and Mechanics 2007 , 25(6): 637~652
    [34] Paluch B., Grediac M. and Faye A. Combining a finite element program and a genetic algorithm to optimize composite structures with variable thickness. Composite Structures 2008, ,83(3): 284~294
    [35] Murugan M.S., Suresh S., Ganguli R. et al. Target vector optimization of composite box beam using real-coded genetic algorithm: a decomposition approach. Structural and multidisciplinary optimization 2007, 33(2): 131~146
    [36] Naik G.N., Gopalakrishnan S. and Ganguli R. Design optimization of composites using genetic algorithms and failure mechanism based failure criterion. Composite Structures 2008, 83: 354~367
    [37] Rahul, Chakraborty D. and Dutta A. Optimization of FRP composites against impact induced failure using island model parallel genetic algorithm. Composites Science and Technology, 2005, 65: 2003~2013
    [38]任庆生,叶中行.进化计算的收敛速度.上海交通大学学报,1999, 33(6): 671~673
    [39] Elbeltagi E., Hegazy T. and Grierson D. Comparison among five evolutionary-based optimization algorithms. Advanced Engineering Informatics 2005, 9: 43~53
    [40] Kennedy J. and Eberhart R. Particle Swarm Optimization. IEEE service center 1995, 1: 1942~1948
    [41]葛锐,陈建桥,魏俊红.基于改进粒子群算法的复合材料可靠性优化设计.机械科学与技术,2007,26: 257~260
    [42]葛锐,陈建桥,魏俊红.基于改进粒子群算法的机械结构优化设计.机械科学与技术,2007,26: 1063~1066
    [43] Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 2002, 6(1): 58~73
    [44] Clerc M. The swarm and the queen: towards the deterministic and adaptive particle swarm optimization, in: Proceedings of the Congresson Evolutionary Computation.Washington DC, USA: IEEE Service Center Piscataway, 1999: 1951~1957
    [45] Angeline P.J. Using selection to improve particle swarm optimization. In: IEEE World Congress on computational intelligence. Alaska: ICEC-98, 1998: 84~89
    [46]刘金洋.粒子群优化算法的研究与改进.哈尔滨工业大学硕士学位论文, 2006?
    [47]汪定伟.一种带有梯度加速的粒子群算法.控制与决策,2004,11(19): 1298~1304
    [48]薛婷.?粒子群优化算法的研究与改进.大连海事大学硕士学位论文,?2008?
    [49] Krueger R. Virtual crack closure technique: history, approach, and applications. Applied Mechanics Review 2004, 57(2): 109~143
    [50] Tay TE. Characterization and analysis of delamination fracture in composites: an overview of developments from 1990 to 2001. Applied Mechanics Review 2003, 56(1): 1~32
    [51] Mi Y., Crisfield M.A., Davies GAO et al. Progressive delamination using interface elements. Journal of Composite Material 1998, 32(14):1246~1273
    [52] Borg R., Nilsson L. and Simonsson K. Modeling of delamination using a discretized cohesive zone and damage formulation. Composite Science and Technology 2002, 62: 1299~1314
    [53] Zou Z., Reid S.R. and Li S. A continuum damage model for delaminations in laminated composites. Journal of Mechanics and Physical Solids 2003, 51: 333~356
    [54] Camanho P.P., Davila C.G. and De Moura M.F. Numerical simulation of mixed-mode progressive delamination in composite materials. Composite Materials 2003, 37(16):1415~1438
    [55] Alfano G. and Crisfield M.A. Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issues. International Journal for Numerical Methods in Engineering 2001, 50(7): 1701~1736
    [56] Corigliano A. and Mariani S. Simulation of damage in composites by means of interface models: parameter identification. Composite Science and Technology 2001,61: 2299~2315
    [57] Vlot A. Impact loading on fibre metal laminates. International Journal of Impact Engineering 1996;18(3): 291~307
    [58] Caprinoa G., Spatarob G. and Del Luongoa S. Low-velocity impact behaviour of fibreglass–aluminium laminates. Composites: Part A 2004, 35: 605~616
    [59] Chang F. K. and Chang K .Y. A progressive damage model for laminated composites containing stress concentrations. Journal of Composite Materials 1987, 21: 834~855
    [60] Camanho P.P. and Matthews F.L. Stress-Analysis and Strength Prediction in FRP Joints: A Review, Composites Part A, 1997, 28: 529~547
    [61] Chen W.H. and Lee S.S. Numerical and experimental failure analysis of composite laminates with bolted joints under bending. Journal of Composite Materials 1995, 29: 1596~1612
    [62] OH J.H., Kim Y.G. and Lee D.G. Optimum bolted joints for hybrid composite materials. Composite Structure 1997, 38(1~4): 329-347
    [63] Chen W.H., Lee S.S. and Yeh J.T. Three-dimensional contact stress analysis of a composite laminate with bolted joint. Computers & Structures 1995, 30: 287~297
    [64] Singh S. B. and Kumar A. Postbulking response and strength of laminates under combined in-plane loads. Compos Science and Technology 1999, 59: 727~736
    [65] Kathiravan R. and Ganguli R. Strength Design of Composite Beam Using Gradient and Particle Swarm Optimization. Composite Structures 2007, 81(4): 471~479
    [66] Suresh S., Sujit P.B. and Rao A.K. Particle swarm optimization approach for multi-objective composite box-beam design. Composite Structures 2007, 81(4): 598~605
    [67] Chen J.Q., Peng W.J., Ge R., and Wei, J.H. Optimal design of composite laminates for minimizing delamination stresses by particle swarm optimization combined with FEM. Structural Engineering and Mechanics 2009, 31(4): 407~421
    [68] Chen J.Q., Ge R., and Wei J.H. Probabilistic optimal design of laminates usingimproved particle swarm optimization. Engineering Optimization 2008, 40(8): 695~708
    [69] Fourie P.C. and Groenwold A.A. The particle swarm algorithmin topology optimization. In: Proceedings of the Fourth World Congress of Structural and Multidisciplinary Optimization, Dalian, China. 2001. 52~53
    [70] Venter G. and Sobieszczanski-Sobieski J. multidisciplinary optimization of a transport aircraft wing using particle swarm optimization. Structural and Multidisciplinary Optimization, 2004. 26(1-2): 121 ~131
    [71] Clerc M. The swarm and the queen: towards the deterministic and adaptive particle swarm optimization, in: Proceedings of the Congresson Evolutionary Computation, Washington DC, USA: IEEE Service Center Piscataway, NJ. 1999. 1951~1957
    [72] Omkar S.N., Mudigere D., Naik G.N. et al. Vector evaluated particle swarm optimization (VEPSO) for multi-objective design optimization of composite structure. Computers and Structures 2008 , 86: 1~14
    [73] Krishnakumar S. Fiber metal laminates-the synthesis of metals and composites, materials and manufacturing processes 1994, 9(2): 295~354
    [74] Vlot A., Vogelesang L. B. and Vries T. J. Fibre metal laminates for high capacity aircraft, In: 30th International SAMPE Technical Conference, San Antonio: 1998. 456~470
    [75] Young J. B., Landry J. G. N. and Cavoulacos V. N. Crack growth and residual strength characteristics of two grades of glass-reinforced aluminium GLARE, Composite Structures 1994, 27(4): 457~469
    [76] Papakyriacou M., Schijve J. and Stanzl-Tschegg S. E. Fatigue crack growth behaviour of fibre–metal laminate GLARE-1 and metal laminate 7475 with different blunt notches, Fatigue & Fracture of Engineering Materials & Structures 1997, 20(11): 1573~1584
    [77] Alderliesten R. C. and Homan, J. J. Fatigue and damage tolerance issues of glare inaircraft structures, International Journal of Fatigue 2006, 28(10): 1116~1123
    [78] Nishikawa M., Okabe T. and Takeda N. Numerical simulation of interlaminar damage propagation in CFRP cross-ply laminates under transverse loading. International Journal of Solids and Structures 2007, 44: 3101~3113
    [79] Barenblatt G. I. Mathematical Theory of Equilibrium Cracks in Brittle Failure. Advances in Applied Mechanics 7, 1962
    [80] Ungsuwarungsru T. and Knauss W. G. The Role of Damage-Softened Material Behaviour in the Fracture of Composites and Adhesives. International Journal of Fracture 1987, 35:221~241
    [81] Needleman A. A Continuum Model for Void Nucleation by Inclusion Debonding. Journal of Applied Mechanics 1987, 54: 525~531
    [82] Rice J. R. A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks. Journal of Applied Mechanics 1968,31: 379~386
    [83] Chen J., Crisfield M. A., Kinloch A. J., Busso E. P. el al. Predicting progressive delamination of composite material specimens via interface elements. Mechanics of Composite Materials and Structures1999, 6: 301~317
    [84] Camanho P.P. and DAvila C.G. Mixed-Mode decohesion finite elements for the simulation of delamination in composite materials. NASA/TM-2002-211737
    [85] Cui W., Wisnom M. R., and Jones M. A Comparison of failure criteria to predict delamination of unidirectional Glass/Epoxy specimens waisted through the thickness. Composites 1992, 23(3):158~166
    [86] Davila C.G. and E. R. Johnson. Analysis of delamination initiation in postbuckled dropped-ply laminates. AIAA Journal 1993, 31(4):721~727
    [87] Lee S. M. An edge crack torsion method for mode III delamination fracture testing. Journal of Composites Technology & Research 1993, 15(3):193~201
    [88] Camanho P. P., C. G. Davila and D. R. Ambur. Numerical simulation ofdelamination growth in composite materials. 2001, NASA-TP-211041
    [89] Li, J. Three-Dimensional Effects in the Prediction of Flange Delamination in Composite Skin Stringer Pull-Off Specimens. in 15th Conference of the American Society for Composites (Texas, U.S.A.): 2000. 983~990
    [90] Reeder, J. R. 1992. An evaluation of mixed-mode delamination failure criteria. NASA TM 104210
    [91] Benzeggagh M. L. and M. Kenane. Measurement of mixed-mode delamination fracture toughness of unidirectional Glass/Epoxy composites with mixed-mode bending apparatus. Composites Science and Technology1996, 56:439~449
    [92] Wu E. M. and R. C. Reuter Jr. Crack Extension in Fiberglass Reinforced Plastics. 1965, T. & AM Report No. 275, University of Illinois