模拟失重对大鼠肠黏膜机械屏障与免疫屏障的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类对外层空间的探索以及太空资源的开发和利用带来航天活动的蓬勃发展。近年来,我国的航天事业取得了长足的进步。但航天事业的发展离不开航天医学的支持。
     航天器围绕地球旋转时,处于失重状态。但由于受到残余大气阻力、航天器自旋等因素影响,其内部表现为微重力环境。微重力环境对已适应地球重力影响的哺乳动物生物机能的影响,会阻碍人类的空间探索,因此已成为空间生命科学与空间细胞生物科学的研究热点。失重对生物机体的研究,最好将生物体置于宇宙空间飞行真实失重环境中进行。但由于航天飞行的载荷量低,空间狭小,成本高,大量的相关研究工作基本为地面模拟失重状态下进行。模拟失重的大鼠动物模型一般采用尾悬吊法。实验大鼠尾部悬于笼顶30°,前肢踏于笼底,可自由活动。此模型可以较理想地模拟失重条件下体液移动和制动的效果,是一种较好的失重模拟方法,
     几十年的航天实践及模拟失重研究证实,空间飞行会导致心血管功能障碍、骨质丢失、肌肉萎缩、免疫能下降、内分泌功能紊乱及空间运动病等多种生理和病理变化,研究也取得了很大的成果。但是对消化系统失重生理病理学的研究却十分局限,迄今国内外尚未见有关失重和模拟失重环境下肠道黏膜屏障的研究报道。
     胃肠道除作为消化吸收的器官,完成食物的消化、营养物质的吸收及废物的排泄外,由于肠道内存在众多的化学物质和大量的微生物,为避免这些外来物质对机体的损害,胃肠道还有一套完整的防御体系,即胃肠道的粘膜屏障功能。该屏障由粘膜机械屏障、免疫屏障、生物屏障和化学屏障四个层次构成。肠黏膜上皮细胞及其紧密连接是粘膜机械屏障的重要组成部分,它的完整性是黏膜屏障的基础。在肠道免疫中sIgA扮演着重要角色,它主要由肠粘膜固有层中的IgA浆细胞产生,当发生肠粘膜上皮受损时,势必影响到sIgA的分泌,削弱机体的免疫屏障功能。肠道淋巴样系统由具有分化功能并能产生局部免疫的淋巴细胞亚群所组成,参与免疫调节。任何原因造成免疫功能受损,均可引起肠粘膜免疫屏障功能减弱。
     本研究依据目前航天医学的现状而设立课题,进行模拟失重动物实验,观察微重力环境对肠黏膜机械及免疫屏障的的影响。
     研究方法:(1)选用清洁级成年健康雄性Wistar大鼠,适应饲养1周后进行实验。依照陈杰等设计的尾悬吊法(tail-suspension)建立模拟失重大鼠模型。各时相点实验结束时,腹腔注射戊巴比妥钠(45 mg/kg)将实验及对照动物麻醉,无菌操作,剖腹取材。(2)实验一:Wistar大鼠,随机分为5组:模拟失重1w组、模拟失重2w组、模拟失重3w组、模拟失重4w组以及地面对照组。酶法检测血中D-乳酸的变化水平,鲎试剂法测定门静脉内毒素水平,透射电镜观察回肠黏膜的超微结构变化。(3)实验二:Wistar大鼠,随机分为模拟失重组和对照组,分别设1 d、2 d、4 d、及7 d共4个时相点,用双抗体夹心ABC-ELISA法测定TNF-α的水平,免疫组织化学法检测肠道黏膜NF-κB表达,TUNEL法检测肠黏膜上皮细胞凋亡。(4)实验三:Wistar大鼠,随机分为模拟失重组和对照组,1 d、2 d、4 d、及7 d不同的时相点,免疫组织化学法检测肠黏膜sIgA的表达,TUNEL法原位检测肠黏膜下淋巴细胞的凋亡,免疫组织化学法检测肠黏膜CD4细胞数量的变化。(5)实验四:在模拟失重下,分6h,12h,24h,48h,96h不同时相点,应用免疫组化检测大鼠黏膜上皮Hsp70的表达。
     结果:(1)模拟失重对大鼠的肠壁超微结构破坏明显,表现为微绒毛排列紊乱脱落,外观极不平整,细胞间隙明显增宽,细胞桥粒连接模糊。线粒体内质网肿胀、空泡变性。以1W组明显。模拟失重1w组大鼠的血乳酸水平明显增高,然后逐渐下降。模拟失重4w组的血乳酸水平接近对照组水平。模拟失重1w组大鼠的门静脉血内毒素的水平明显增高,然后略有下降。3w、4w组的内毒素水平仍处高水平。(2)模拟失重状态下,血浆TNF-α的水平从第2d开始升高,4d最高,7d恢复到正常水平。1d组肠道黏膜NF-κB表达阳性率较对照组开始升高,2d、4d、7d阳性率明显高于对照组,7d模拟失重组的阳性表达仍在高水平。黏膜上皮细胞的凋亡1d明显增加,以后开始减慢,但7d后仍高于对照组。(3)模拟失重1d、2d组大鼠肠道黏膜sIgA分泌明显下降,4d开始明显上调、7d组sIgA的分泌量增多,但仍未恢复正常水平。模拟失重1d、2d组肠道黏膜的淋巴细胞凋亡明显,模拟失重4d、7d组凋亡率明显下降,逐渐恢复正常水平。模拟失重1d组肠道黏膜CD4细胞的数量明显下降,模拟失重2d、4d开始逐渐上升、7d组CD4细胞的数量接近正常水平。(4)模拟失重大鼠从6h开始肠黏膜高度表达Hsp70,24h达到高峰,48h略有下降,96h仍处在高表达的水平。
     结论:(1)血D-乳酸和门静脉内毒素浓度的增高,提示模拟失重造成了大鼠肠道黏膜通透性的增加。(2)模拟失重造成了肠黏膜超微结构的改变和黏膜上皮细胞的凋亡增加,这可能是黏膜通透性改变的基础。(3)模拟失重引起大鼠肠道黏膜NF-κB应激活化和血浆TNF-α的增高,提示炎性反应在失重状态下的肠道黏膜损害中起到一定作用。(4)模拟失重造成了大鼠肠道黏膜sIgA的分泌减少,淋巴细胞的凋亡增加,CD4细胞数量的减少,显示肠道黏膜的免疫屏障功能降低。(5)模拟失重是一种能诱导大鼠肠道黏膜Hsp70快速表达的典型应激原。
The spaceflight has gotten a great achievement along with man’s exploring to outspace. Our country has also made a greate progress in space program. The ambitious exploration rises challenges to space medical researchers.
     Gravity has been a constant physical factor during the evolution and development of life on Earth. But the spaceflight activity is under the weightleness or macrogravity. The physiological changes caused by weightlessness will harm the astronauts. More medical researches should be done to meet the need.
     Ground-based models play a significant role in space exploration because the real spaceflight researchs have too many limits.Although the absence of gravity can not accurately be simulated on ground, several kinds of models could mimic some responses observed after exposure to microgravity. Tail-suspension or hindlimb unloading in rodents is one of the most commonly used models which can mimics many of the physiological alterations in various organ systems caused by actual spaceflight. The hindlimb unloading technique has been approved by the NASA Ames Research Center Animal Care and Use Committee as a rat model for simulating spaceflight.
     Many serious adverse physiological changes occur during spaceflight. Some of these include fluid redistribution, increased kidney filtration, sensory input changes, cardiovascular deconditioning, bone deterioration, muscle loss, and impaired immune system function. However, there are scanty research reports on the pathophysiological alterations of digestive system under microgravity. To our knowledge ,the effects of the simulated weightlessness on intestinal barrier have not been elucidated. Accordingly, the present study was designed to document the intestinal epithelial barrier and immune changes in rat under simulated weightlessness and to determine whether there is associated stress response with alteration that microgravity imposed upon intestine.
     Methods:(1) The experiments were performed after approval by the local Ethics Committee and conducted on Male Wistar rats (Laboratory Animals Center, China Agriculture University). The procedure of tail-suspension described by Chen et al was adopted in the present study. At the end of the experiment, animals were anesthetized with pentobarbital (45 mg/kg) and laparotomy via middle line was made. Heparinized blood sample were drawn from the portal vein or vena cava. A small section of terminal ileum samples obtained from control and suspended animals were processed for transmission electron microscopy evaluation.The other terminal ileums were preserved in zinc-buffered formalin.Subsequently,tissue were processed for routine hematoxylin and eosin staining to assess general architecture and injury. (2) Part one:Male Wistar rats weighted 300±20 g were randomly assigned to 5 experimental groups: suspended for 1w, 2w, 3w, 4w and 0w (control). The ultrastructural alterations of intestinal epithelial cells were assessd under transmission electron microscopy; Endotoxin values were measured by use of kinetic test with ET ELISA Kit; D-lactic acid was measured by using D-lactic acid UV-method.(3) Part two:64 male Wistar rats weighted 280-310 g were randomly divided into simulated weightlessness group and control group, each with 4 subgroups :1-day group;2-day group ;4-day group and 7-day group.The expressions of NF-κB p65 were detected by using immunohistochemistry PV-6001. The apoptosis of intestinal epithelial cells was detected by terminal deoxy-nucleotidyltransferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) assay. Measurement of tumor necrosis factor-α(TNF-α) was performed in blood samples using the immunoassay kit. (4) Part three:The animals and experimental groups were same as in part two.Lymphocytes apoptosis beneath the intestinal epithelium was measured using TUNEL method. The sIgA expression in intestinal mucosa was detected using immunohistochemistry PV-6001 and the number of CD4 in intestinal mucosa was calculated using immunohistochemistry stain.(5) Part four: 48 male Wistar rats weighted 300±20 g were randomly assigned to 6 experimental groups: suspended for 6 h, 12 h, 24 h, 48 h, 96 h and 0 h (control). Hsp70 expression in intestinal mucosa was detected in the first 96h also using immunohistochemistry method.
     Results:(1) Ultrastructural alterations in the intestine epthilial cells were observed under transmission electron microscopy. They consisted of dilatation of the endoplasmic reticulum, mitochondrial swelling and dilatations within the tight junctions.Endotoxin values in 1w-group were singnificantly higher than control group. Though it slightly declined then, the values in 2w-, 3w-,4w- groups were still in high level. The density of D-lactic in 1w-group was higher then control group, then declined gradually, the level in 4w-group approach the control group’s. (2)Under the simulated macrogravity ,the plasma TNF-αlevel rised in 2-day subgroup, reached its peak in 4-day subgroup then declined to level of control groups in 7-day. The tail-suspension significantly increased intestine NF-κB expression in the rats, compared with the control(P<0.01), with peak expression in 2-day subgroups, followed by the slight declining, but the expression in 7-day subgroup was still higher. By TUNEL method, an increase in the percentages of apoptosis index was noticed in the intestine epithelial cells of all experimental rats under simulated microgravity compared with controls. The maximum percentage increase of apoptotic index was observed in 1-day group of suspension.(3) The sIgA expressions were reduced in experimental groups especially in 1-day, 2-day groups compared with control groups. It gradually elevated in 4-day,7-day groups. The percentage of apoptosis index of lymphocyte increased in all experimental groups, the maximum was in 1-day group. The number of CD4 in intestinal mucusa decreased markedly in 1-day group, then gradully increase in 2-day,4-day group.It near normal in 7-day goup.(4) The tail-suspension significantly increased Hsp70 expression levels in intestine, moreover it mainteined at high level in 96h-group.
     Conclusions: These findings suggest that: (1) Simulated microgravity by tail-suspension increased the intestine permeability which can be inferred from increased endotoxin value and D-lactic level; (2) The ultrastructural alteration and apoptosis of intestinal epithelial cells promoted by simulated microgravity may be the fundamental reason for increased intestinal permeability. (3) The tail-suspension has the effects of inducing activation of NF-κB and elevation of TNF-αin intestine especially in the early stage which suggests that NF-κB plays important roles in the inflammatory reactions of intestine to the weightlessness stress. (4) The simulated weightlessness promotes lymphocyte apoptosis and reduces sIgA secretion and CD4 cells which lead to lower the intestinal immune function.(5) The simulated weightlessness acts as a typical cellular stressor to induce high Hsp70 expression in intestine.
引文
1.袁明,姜世忠.中国航天医学进展.空间科学学报2005,25(4):273-279.
    2. Baisden DL, Beven GE, Campbell MR, et al. Human health and performance forlong-duration spaceflight. Aviat Space Environ Med 2008,79(6):629-635.
    3.陈杰,马进,丁兆平,等.一种模拟长期失重影响的大鼠尾部悬吊模型.空间科学学报1993, 2(2):159-162.
    4. [4] Baumgart DC, Dignass AU. Intestinal barrier function. Curr Opin Clin Nutr Metab Care,2002,5(6):685-694.
    5. Travis S, Menzies I. Intestinal permeability functional assessment and significance.Clin Sci 1992,82(8):71-76.
    6.李秋伟,贾建伟.肠黏膜通透性的研究进展.医学综述2007,13(9):1384-1385
    7.刘春峰,袁壮.内脏缺血缺氧代谢障碍在SIRS和MODS中的作用.小儿急救医学2000,7(4):180-182.
    8. Secchi A,Ortanderl JM,Schmidt W,et al.Effect of endotoxemia on hepatic portal and sinusoidal blood flow in rats.J Surg Res 2000,89(1):26-30
    9. Boros M , Takaichi S , Hatanaka K . Ischemic time-dependent microvascular changes and reperfusion injury in the rat small intestine.J Surg Res 1995,59(2):311-320
    10. Ziegler S , Smith RJ , O’Dwyer ST , et al . Increased intestinal permeability associated with infection in burn patients.Arch Surg 1988,123(6):1313.1319
    11.蒋小华,李宁,李元新,等.创伤应激下肠黏膜通透性的改变.医学研究生学报2002,15(1):45-47
    12. Chakravortty D,Kumark SN.Modulation of barrier function of small intestinal epithehal cells by lamina propria fibroblasts in response toll-popolysaccharide :Possible role in TNF-αinducing barrier dysfunction . Microbiol Immunol 1999,43(6):527-533
    13.闫宏宪,罗丁,陈训如,查勇. CO2气腹对肝硬变大鼠肠黏膜通透性影响的实验研究.中国普外基础与临床杂志2005,12(6):548-550
    14.蒋朱明,于康.肠黏膜屏障损害与肠外和肠内营养.外科理论与实践2000,5(1):54-56
    15. Sola R, Soriano G.. Why do bacteria reach ascitic fluid?. Eur J Gastroenterol Hepatol 2002,14(4):351-354
    16. Motabagani MA. Morphological and morphometric study on the effect of simulated microgravity on rat testis. Chin J Physiol 2007,50(4):199-209
    17. Ferreira R,. Neuparth MJ, Vitorino R et al. Evidences of apoptosis during the early phases of soleus muscle atrophy in hindlimb suspended mice. Physiol. Res 2008,57: 601-611
    18. Volodina AV, Pozdnyakov OM. Ultrastructure of skeletal muscle capillaries under conditions of space mission. Bull Exp Biol Med 2006,141(6):755-759
    19. Cogoli A. Hematology and immunological changes during spaceflight. Acta Astraonautica 1981,8:995-1001
    20.白树民,黄纪明,朱德兵等.模拟失重对大鼠肠道菌群影响的研究.中国微生态学杂志2001,13(6):326-327
    21. Haglund U , Bulkley GB , Granger ND. On the pathophysiology of intestinal ischemic injury. Aeta Chi rScand 1997,153:321-326
    22.张嘉,程兴望,刘瑞林,等.大鼠急性坏死性胰腺炎肠黏膜膜屏障功能障碍的观察.蚌埠医学院学报,2005 30(2):114-116
    23.杭春华,史继新,黎介寿,等.创伤性脑损伤后肠勃膜结构和屏障功能的变化.肠外与肠内营养2005,12(2):94-98
    24.屠伟峰,肖光夏.胃肠道功能障碍的研究现状.消化外科2002,1:66-69
    25. Wright SR,Kolesnick RN.Dose endotoxin stimulate cells by mimicking ceramide Immunology Today 1995,16:298
    26.吴秀清,王虹,孙梅等.幼年大鼠肠源性内毒素血症时小肠上皮细胞凋亡及Capases-3的表达.中国当代儿科杂志2002,7(2):167-171
    27. Slee EA,Harte MT,Kluck RM,etal.Ordering the cytochrome c-initiated caspase cascade: hicrachical acvition of caspases2,3,6,7,8and10 in a caspase-9-dependent manner. J Cell Biol 1999,144(2):281-292
    28. Piguet PF,Vesin C,Donati Y,et al. TNF–αinduced enterocyte apoptosis and detachment in mice:induction of caspases and prevetion by a caspase inhibitor,ZVAD-fmk.Lab Invest 1999,79(4):495-500
    29. Paris F,Fuks Z,Kang A,et al,Endothelial apoptosisi as the primary lesion initiating radiation damage in mice.Science 2001,293(5528):293-297
    30. Cine I,Avlan D,Cine L,et al,Ischemic preconditioning reduces intestinal epithelial apoptosis in rats.Shock 2003,19(6):588-592
    31. Grewal HP,et al.Induction of tumor necrosis factor in severe acute pancreatitis and itssubsequent reduction after hepatic passage.Surgery 1994,115(2):213
    32. Aasen AO,Wang JE. Mediator responses in surgical infections. Surg Infect (Larchmt) 2006, 7(Suppl2): S3-S4
    33. Ji XH, Sun KY, Feng YH. Changes of inflammation-associated cytokine expressions during early phase of experimental endotoxic shock in macaques.World J Gastroenterol 2004, 10 (20):3026-3033
    34. Piguet PF,Vsin C,GuoJ,et al,TNF-induced enterocyte apoptosis in mice is mediated by TNF receptor and does not require P53.Eur J,Immunol 1998,28:3499-3505
    35.谢子安,方强.NO与感染性休克关系的实验和临床研究进展.中国病理生理杂志2002,18(11):1433-1437
    1. Amidon GL, DeBrincat GA, and Najib N. Effects of gravity on gastric emptying, intestinal transit, and drug absorption. J Clin Pharmacol 1991,31:968-973
    2. Li C, Browder W, Kao R. Early activation of transcription factor NF-κB during ischemia in perfused rat heart. Am J Physiol 1999,276:H543-H552
    3.王承珉,张汝果,付宏伟.尾悬吊模拟失重对大鼠肺脏的影响.航天医学与医学工程1995,8(4):239
    4.陈杰,马进,丁兆平,张立藩.一种模拟失重影响的大鼠尾部悬吊模型.空间科学学报1993,13:159-162
    5. Tarnawski AS, Szabo I. Apoptosis-programmed cell death and its relevance to gastrointestinal epithelium: survival signal from the matrix. Gastroenterology 2001,120(1):294-297.
    6. Lewis ML, Reynolds JL, Cubano LA, Hatton JP, Lawless BD, Piepmeier EH. Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat). FASEB J 1998;12:1007-1018
    7. Sarkar D, Nagaya T, Koga K, Nomura Y, Gruener R, Seo H. Culture in vector-averaged gravity under clinostat rotation results in apoptosis of osteoblastic ROS 17/2.8 cells. J Bone Miner Res 2000; 15:489-498
    8. Yang H, Bhat KG, Sridaran R.Clinostat Rotation Induces Apoptosis in Luteal Cells of the Pregnant Rat. Biology of Reproduction 2002,66, 770-777
    9. Ferreira R, Neuparth Mj, Vitorino R, Appell Hj, Amado F.Evidences of Apoptosis during the Early Phases of Soleus Muscle Atrophy in Hindlimb Suspended Mice. Physiol Res 2008,57: 601-611
    10. Wei LX, Zhou JN, Roberts AI, Shi YF. Cell Res 200313:465–471.
    11. Potten CS, Wilson JW, Booth C. Regulation and significance of apoptosis in the stem cells of the gastrointestinal epithilum. Stem cells 1997,15:82-93
    12. Alscher KT, Phang PT, McDonald TE, et al. Enteral feeding decreases gut apoptosis, permeability ,and lung inflammation during murine endotoxemia. Am J Physiol Gastrointest Liver Physiol 2001,281(2):569-576
    13. Rollwagen FM,Yu ZY, Li YY,et al. IL-6 rescues enterocytes hemorrhage induced apoptosis in vivo and in vitro by a Bcl-2 mediated mechanism.Clin Immunol Immunopathol 1998,89(3):205-213.
    14. Sileri P, Morini S, Sica GS, et al. Bacterial translocation and intestinal morphological findings in jaundiced rats.Dig Dis Sci 2002,47(4):929-934.
    15. DungerA, Augstein P, Schmidt S, et al. Identification of interleukin-linduced apotptosis in rat islet using in situ specific labeling of fragmented DNA. Autoimmun 1996, 9(3): 309-313
    16. Liu ZH, StrikerGE, Stetler-StevensonM, et a.l TNF-αand IL-1αinduce mannose receptors and apoptosis in glomerularmesangial but not endothelial cells.Am J Physiol 1996, 279(9):C1595-1601
    17. Jones BA, Gores GJ. Physiology and pathophysiology of apoptosis in epithelial cells of the liver, pancreas, and intestine.Am J Physiol 1997, 273(9):G1174-G1188
    18. Shah KA, Shurey S, Green CJ. Apoptosis after intestinal ischemia-reperfusion injury-amorphological study.Transplantation 1997,64(9): 1393-1397
    19. Gandia P, Saivin S, Lavit M and Houin G. Influence of simulated weightlessness on the pharmacokinetics of acetaminophen administered by the oral route: a study inthe rat. Fundam Clin Pharmacol 2004,18:57-64
    20. Gandia P, Bareille MP, Saivin S, Le-Traon AP, Lavit M, Guell A and Houin G. Influence of simulated weightlessness on the oral pharmacokinetics of acetaminophen as a gastric emptying probe in man: a plasma and a saliva study. J Clin Pharmacol 2003,43:1235-1243
    21.白树民,黄纪明,朱德兵,李志霞,洪建武,周熙成,梁明,熊德鑫.模拟失重对大鼠肠道菌群影响的研究.中国微生态学杂志2001,13:326-327
    22. Rivera CA, Tcharmtchi MH,Mendoza L and Smith CW. Endotoxemia and hepaic injury in a rodent model of hindlimb unloading. J Appl Physiol 2003,95:1656-1663
    23. Nichols TC. NF-kappaB and reperfusion injury. Drug News Perspect 2004,17:99-104
    24. Mallick IH, Yang WX, Winslet MC, Seifalian AM. Pyrrolidine dithiocarbamate reduces ischemia-reperfusion injury of the small intestine.World J Gastroenterol 2005,11:7308-7313
    25. Zhang XP, Zhang L, Chen LJ, Cheng QH, Wang JM, Cai W, Shen HP, Cai J. Influence of dexamethasone on inflammatory mediators and NF-kappaB expression in multiple organs of rats with severe acute pancreatitis. World J Gastroenterol 2007,13:548-556
    26. Suzuki T, Yamashita K, Jomen W, Ueki S, Aoyagi T, Fukai M, Furukawa H, Umezawa K, Ozaki M, Todo S. The novel NF-kappaB inhibitor, dehydroxymethylepoxyquinomicin, prevents local and remote organ injury following intestinal ischemia/reperfusion in rats. J Surg Res 2008,149:69-75
    27. Schmidt C, H?cherl K, Kurt B, Bucher M. Role of nuclear factor-kappaB-dependent induction of cytokines in the regulation of vasopressin V1A-receptors during cecal ligation and puncture-induced circulatory failure. Crit Care Med 2008,36:2363-2372
    28. Banan A, Keshavarzian A, Zhang L, Shaikh M, Forsyth CB, Tang Y, Fields JZ.NF-kappaB activation as a key mechanism in ethanol-induced disruption of the F-actin cytoskeleton and monolayer barrier integrity in intestinal epithelium. Alcohol 2007;41:447-460
    29. Gadjeva M, Wang Y, Horwitz BH. NF-kappaB p50 and p65 subunits controlintestinal homeostasis. Eur J Immunol 2007,37:2509-2517
    30. Sharma CS, Sarkar S, Periyakaruppan A, Ravichandran P, Sadanandan B, Ramesh V, Thomas R, Hall JC, Wilson BL, Ramesh GT.Simulated microgravity activates apoptosis and NF-kappaB in mice testis. Mol Cell Biochem 2008,313:71-78
    31. Egan LJ, Eckmann L, Greten FR, et al. IkappaB-kinase beta-independent NF-kappaB activation provides radioprotection to the intestinal epithelium. Proc Natl Acad SciUSA 2004;101:2452–2457
    32. Chen LW,Egan L,Li ZW,et al.The two faces of IKK and NF-kappaB inhibition: prevention of systemic inflammation but increased local injury following intestinal ischemia-reperfusion. Nat Med 2003;9:575–581
    33. Karrasch T and Jobin C. NF-κB and the Intestine: Friend or Foe? Inflamm Bowel Dis 2008;14:114–124
    34. Pinsky MR,Vineeni JL,Deviere J,et al. Serum eytokine levels in human septic shock. Relation to multiple-system organ failure and mortality. Chest 1993,103:565-575
    35. Grotz MR , Deiteh EA , Ding J , et al.Intestinal cytokine response after gut isehemia:role of gut barrier failure. AnnSurg 1999,229:478-86
    36. Sehmitz H,Fromm M,Bentzel CJ,et al.Tumor necrosis factor-alpha(TNFα) regulates the epithelial barrier in the human intestinal cell line HT-29/B6 .J Cell Sei 1999,112:137-146.
    37. Gitter AH,Bendfeldt K,Sehmit zH,et al.Epithelial barrier defects in HT-29/B6 colonic cell monolayers induced by tumor necrosis factor-alpha. Ann NY Acad Sei 2000,915:193-203
    38. Ma TY.Boivin M , Ye D , et al. Mechanism of TNFαmodulation of Caco-2 intestinal epithelial tight junction barrier: role of myosin light-chain kinase protein expression. Am J Physiol Gastrointest Liver Physiol.2005,288:G422-G430
    39. Ma TY, Wamoto G, Hoa NT,et al. TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-κB activation. Am J Physiol Gastroiniest Liver Physiol. 2004,286:G367-376
    40. Suenaert P,Bulteel V. Lemmen L, et al .Anti-tumor neCrosis factor treatment restores the gut barrier in Crohn’s disease.Am J Gastroenterol 2002;97(8):2000-2004
    41. Rutgeerts P, Feagan BG, Lichienstein GR,et al. Comparison of scheduled and episodic treatment strategies of infliximab in Crohn’s disease. Gastroenterology 2004, 126(2):402-413
    42. Bruewer M, Luegering A,Kueharzik T, et al. Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-Independent mechanisms. J Immunol 2003, 171(11): 6164- 6172
    43. Ye D,Ma I, Ma TY, Molecular mechanism of tumor necrosis factor-alpha modulation of intestinal epithelial tight junction barrier. Am J Physiol Gastroiniest Liver Physiol 2006,290(3):G496-504
    44. Wang F, Graham WV, Wang Y,et al. Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression.Am J Pathol 2005,166:409-419
    45. Patrick DM, Leone AK, Shellenberger JJ, et al. Proinflammatory cytokines tumor necrosis factor-αand interferon-γmodulate epithelial barrier function in Madin-Darby canine kidney cells through mitogen activated protein kinase signaling.BMC Physiol 2006;6:2-5
    46. Clark EC,Patel SD,Chadwick PR,et al. Glutamine deprivation facilitates tumour necrosis factor induced bacterial translocation in Caco-2 cells by depletion of enteroeyte fuel substrate. Gut. 2003,52:224-230
    47. Taylor CT, Dzus AL, Colgan SP. Autocrine regulation of epithelial permeability by hypoxia: role for polarized release of tumor necrosis factor alpha. Gastroenterology 1998;114:657-668.
    1. Sonnenfeld G. Immune responses in space flight. Int J Sports Med 1998 Suppl 3:S195–S202
    2. Sonnenfeld G, Foster M, Morton D,et al. Spaceflight and development of immune responses. J Appl Physiol 1998,85:1429–1433
    3.陈杰,马进,丁兆平,张立藩.一种模拟失重影响的大鼠尾部悬吊模型.空间科学学报1993, 13(2):159-162
    4.王承珉,张汝果,付宏伟.尾悬吊模拟失重对大鼠肺脏的影响.航天医学与医学工程1995, 8(4):239
    5.曹立宇,张洪福.大肠肿瘤P53和BCL-2蛋白表达.临床与病理杂志2000,16(3):214-216
    6.徐凯进,李兰娟.肠道正常菌群与肠道免疫,国外医学·流行病学传染病学分册2005,32(3):181-183
    7. Nagler-Anderson, C. Man the barrier:Strategic defences in the intestinal mucosa. Nat. Rev. Immunol 2001,1(1):59-67
    8. Robinson JK, Blanchard TG,Levine AD,et al. A mucosal IgA-mediated excretory immune system in vivo. J Immunol 2001,166: 3688-3692
    9. Fujioka H, Emancipator SN, Aikawa M,et al. Immunocytochemical colocalization of specific immunoglobulin A with Sendai virus protein in infected polarized epithelium. J Exp Med 1998,188: 1223-1229
    10. Fernandez MI,Pedron T, Tournebize R, et al. Anti-inflammatory role for intracellular dimeric immunoglobulin A by neutralization of lipopolysaccharide in epithelial cells. Immunity 2003,18: 739-749
    11. Russell MW, Sibley DA, Nikolova EB,et al. IgA antibody as a non-inflammatory regulator of immunity. Biochem Soc Trans 1997, 25: 466-470
    12. Mestecky J, Russell MW, Elson CO. Intestinal IgA: novel views on its function in the defence of the largest mucosal surface. Gut 1999,44: 2-5
    13. Pasquier B, Launay P, Kanamaru Y,et al. Identification of Fc RI as an inhibitory receptor that controls inflammation: dual role of FcR ITAM Immunity 2005,22: 31-42
    14. Geissmann F, Launay P, Pasquier B, et al. A subset of human dendritic cells expresses IgA Fc receptor (CD89), which mediates internalization and activation upon cross-linking by IgA complexes. J Immunol 2001,166: 346-352
    15. Heystek HC, Moulon C, A. Woltman M,et al. Human immature dendritic cells efficiently bind and take up secretory IgA without the induction of maturation. J Immunol 2002,168: 102-107
    16. Macpherson AJ, Hunziker L, McCoy K,et al. IgA responses in the intestinal mucosa against pathogenic and non-pathogenic microorganisms. Microbes Infect 2001,3:1021-1035
    17. Wu HY, Weiner HL. Oral tolerance. Immunol Res 2003,28: 265-284.
    18. Gordon DM,Diebel LN,Liberati DM,et a1.The effects of bacterial overgrowth and hemorrhagic shock on mucosal immunity.Am Surg 1998,64:718-721
    19. Saini MS. Diebel LN. Liberati DM. Hemorrhagic shock impairs mucosal immunity to gut-derived antigens.Am Surg 1999,65:637-642
    20.王旭霞,王景杰,朱少君,等.肠道sIgA含量的变化与溃疡性结肠炎相关性的分析研究。西南国防医药2007;17( 6):698-700
    21.王忠堂,姚咏明,肖光夏,等.补充双歧杆菌可促进烫伤大鼠肠道分泌型sIgA合成与分泌.中华外科杂志2003,41(5):385-388
    22.艾国平,粟永萍,魏永江,等.白细胞介素-4对受照小鼠小肠粘膜免疫功能的促恢复作用.辐射研究与辐射工艺学报2003,2l(3):214-217
    23.史艳莉,何小玲,余辉,郭莉.魔芋甘露聚糖对大负荷训练大鼠粘膜sIgA的影响.湖北体育科技2007,26( 01):48-49
    24. Sawai T,Goldstone N,Drongowski RA et a1.Effect of secretory immunoglobulin A on bacterial translocation in an enterocyte-lymphocyte co-culture model. Pediatr Surg Int 2001,17(4):275-279
    25. Raymond PS, Clarence FS, Duane LP. Effects of mission duration on neuroimmune responses in astronauts. Aviat Space Environ Med 2003 Dec ;74 (12):1281-4
    26. Walther I, Pippia P, Meloni MA, et al. Simulated microgravity inhibits the geneticexpression of interleukin-2 and its receptor in mitogen-activated T lymphocytes. FEBS Lett 1998,436: 115–118
    27. Cooper D and Pellis NR. Suppressed PHA activation of T lymphocytes in simulated microgravity is restored by direct activation of protein kinase C. J Leukoc Biol 1998,63: 550–562
    28. Grove DS, Pishak SA, and Mastro AM. The effect of a 10-day space flight on the function, phenotype, and adhesion molecule expression of splenocytes and lymph node lymphocytes. Exp Cell Res 1995,219: 102–109
    29. Meehan RT, Neale LS, Kraus ET, et al. Alteration in human mononuclear leucocytes following space flight. Immunology 1992,76: 491–497,
    30. Foster LJ, Catzel D, Atwa S, et al. Increase in synthesis of human monoclonal antibodies by transfected Sp2/0 myeloma mouse cell line under conditions of microgravity. Biotechnol Lett 2003,25: 1271–1274
    31. Smiley SA, Gillock ET, Black MC, et al.The effect of space flight on monoclonal antibody synthesis in a hybridoma mouse cell line. Exp Cell Res 1997,230: 411–414
    32. Wesche DE,Lomas-Neria JL,Perl M,et al. Leukocyte apoptosis and its significance in sepsis and shock. J Leukoc Biol 2005,78,325- 337
    33. Hotchkiss RS, Chang KC.Grayson MH,et al.adoptive transfer of apoptotic splenocytes worsen survival,whereas adoptive transfer of necrotic splenocytes improves survival in sepsis.Proc Natl Aced Sci USA 2003,100:6724-6729.
    1. Amidon GL, DeBrincat GA, and Najib N. Effects of gravity on gastric emptying, intestinal transit, and drug absorption. J Clin Pharmacol 1991 31:968-973
    2. Gandia P, Saivin S, Lavit M and Houin G. Influence of simulated weightlessness on the pharmacokinetics of acetaminophen administered by the oral route: a study in the rat. Fundam Clin Pharmacol 2004,18(1):57-64
    3. Gandia P, Bareille MP, Saivin S, Le-Traon AP, Lavit M, Guell A and Houin G.. Influence of simulated weightlessness on the oral pharmacokinetics of acetaminophen as a gastric emptying probe in man: a plasma and a saliva study. J Clin Pharmacol 2003, 43(11): 1235-1243
    4.曹立宇,张洪福.大肠肿瘤P53和BCL-2蛋白表达.临床与病理杂志2000,16(3):214-216
    5. Rivera CA, Tcharmtchi MH,Mendoza L and Smith CW. Endotoxemia and hepaic injury in a rodent model of hindlimb unloading. J Appl Physiol,2003,95:1656-1663
    6. Tanonaka K, Furuhama KI,Yoshida H,et al. Protective effect of heat shock protein 72 on contractile function of perfused failing heart. Am J Physiol Heart Circ Physiol 2001,281(1): H215-H222
    7. Jayakumar J,Suzuki K,Mak Khan,et al. Gene therapy for myocardial protection transfection of donor hearts with heat shock protein 70 gene protects cardiac function against ischemia-reperfusion injury. Circula tion 2000,102(19 Suppl3):III302-III306
    8. Nayeem MA,Hess ML,Qian YZ,et al. Delayed preconditioning of cultured adult rat cardiac myocytes: role of 70-and 90-kDa heat stress proteins. Am J Physiol 1997,273 (2 Pt 2):H861-868
    9. Okubo S,Wildner O,Shah MR, et al. Gene transfer of heat- shock protein 70 reduces infarct size in vivo after ischemia/reperfusion in the rabbit heart. Circulation 2001,103(6):877-881
    10. Ohnishi T, Tsuji K, Ohmura T, et al. Accumulation of stress protein 72 (HSP72) in muscle and spleen of goldfish taken into space. Adv Space Res 1998, 21:1077-1080
    11. Cotrupi S, Maier JA. Is Hsp70 upregulation crucial for cellular proliferative response in simulated microgravity? J Gravit Physiol, 2004, 11:173-176.
    12.刘春,张立藩,余志斌,等.模拟失重大鼠心肌与血管组织的热应激诱导Hsp70表达.生理学报2001, 53:123-127
    13. Amann RP, Deaver DR, Zirkin BR, et al.Effects of microgravity or simulated launch on testicular function in rats. J Appl Physiol 1992, 73:174S-185S
    14. Hoffman-Goetz L, Spagnuolo PA. Effect of repeated exercise stress on caspase 3, Bcl-2, HSP 70 and CuZn-SOD protein expression in mouse intestinal lymphocytes. J Neuroimmunol. 2007 187(1-2):94-101
    15.袁志强,彭毅志,李晓鲁,等.严重烧伤早期肠黏膜组织热休克蛋白70的表达规律.中国危重病急救医学杂志2005,17(5):264-267
    16.刘政军,卢才教,林才,等.654-2对烫伤早期大鼠小肠粘膜Hsp70表达的影响.昆明医学院学报2008,(1):56-60
    17. Gusarova V,Caplan AJ,Brodsky JL,et al.Apoprotein B degradation is promoted by the molecular chaperones HSP90 and HSP70. Biol Chem 2001, 276(27): 24891-24892
    18. Wang Q,Sun X,Pritts TA,et al. Induction of the stress response increases interleukin-6 production in the intestinal mucosa of endotoxaemic mice.Clin Sci,2000,99(6):489-496
    19. Dokladny K, Moseley LP, and Ma YT.Physiologically relevant increase in temperature causes an increase in intestinal epithelial tight junction permeability.Am J Physiol Gastrointest Liver Physiol 2006,290: G204-G212
    1. Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell,198646:705–716
    2. Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 1999;18:6853–6866.
    3. Jobin C, Sartor RB. The I kappa B/NF-kappa B system: a key determinant of mucosal inflammation and protection. Am J Physiol Cell Physiol. 2000;278:C451–462.
    4. Chen FE, Ghosh G. Regulation of DNA binding by Rel/NF-B transcription factors: structural views. Oncogene. 1999;18:6845–6852.
    5. Ballard DW, Dixon EP, Peffer NJ, et al. The 65-kDa subunit of human NF-κB functions as a potent transcriptional activator and a target for v-Rel-mediated repression. Proc Natl Acad Sci USA. 1992;89:1875–1879.
    6. Ruben SM, Narayanan ML, Klement JF, et al. Functional characterization of the NF-κB p65 transcriptional activator and an alternatively spliced derivative. Mol Cell Biol. 1992;12:444–454.
    7. Chen FE,Ghosh G.Regulation of DNA binding by Rel/NF-kappaB transcription factors:structural views.Oncogene,1999,18(49):6845-6 852.
    8. Blackwell TS,Christman JW.The role of nuclear factor-kappa B in cytokine gene regulation.Am J Respir Cell:Mol Bid,1997,17(1):3-9.
    9. Ghosh S,Kafin M. Missing pieces in the NF-kappaB puzzle.Cell,2002,109 Suppl:S81-96.
    10. Verma UN,Yamamoto Y,Prajapati S,et a1.Nuclear role of I kappa B Kinase-gamma/NF-kappa B essential modulator (IKKgamma/NEMO) in NF-kappaB-dependent gene expression.J Biol Chem,2004,279:3509-3515.
    11. Schreiber S, Nikolaus S, Hampe J. Activation of nuclear factor kappaB inflammatory bowel disease. Gut. 1998;42:477–484.
    12. Ellis RD, Goodlad JR, Limb GA, et al. Activation of nuclear factor kappa B inCrohn’s disease. Inflamm Res. 1998;47:440–445.
    13. Thiele K, Bierhaus A, Autschbach F, et al. Cell specific effects of glucocorticoid treatment on the NF-kappaBp65/IkappaBalpha system in patients with Crohn’s disease. Gut. 1999;45:693–704.
    14. Rogler G, Brand K, Vogl D, et al. Nuclear factor kappaB is activated in macrophages and epithelial cells of inflamed intestinal mucosa. Gastroenterology. 1998;115:357–369.
    15. Visekruna A, Joeris T, Seidel D, et al. Proteasome-mediated degradation of IkappaBalpha and processing of p105 in Crohn disease and ulcerative colitis. J Clin Invest. 2006;116:3195–3203.
    16. Berndt U, Bartsch S, Philipsen L, et al. Proteomic analysis of the inflamed intestinal mucosa reveals distinctive immune response profiles in Crohn’s disease and ulcerative colitis. J Immunol. 2007;179:295–304.
    17. Pizarro TT, Cominelli F. Cytokine therapy for Crohn’s disease: advances in translational research. Annu Rev Med. 2007;58:433–444.
    18. Elson CO, Cong Y, Weaver CT, et al. Monoclonal anti-interleukin 23 reverses active colitis in a T cell-mediated model in mice. Gastroenterology. 2007;132:2359–2370.
    19. Neurath MF, Becker C, Barbulescu K. Role of NF-kappaB in immune and inflammatory responses in the gut. Gut. 1998;43:856–860.
    20. HallerD,JobinC.Interaction between resident luminal bacteria and the host: can a healthy relationship turn sour? J Pediatr Gastroenterol,Nutr. 2004;38:123–136.
    21. Abreu MT, Fukata M, Arditi M. TLR signaling in the gut in health and disease. J Immunol. 2005;174:4453–4460.
    22. Sanderson IR, Walker WA. TLRs in the gut I. The role of TLRs/Nods in intestinal development and homeostasis. Am J Physiol Gastrointest Liver Physiol. 2007;292:G6–10.
    23. Cario E, Podolsky DK. Differential alteration in intestinal epithelial cell expression of toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. InfectImmun. 2000;68:7010–7017.
    24. Cario E, Rosenberg IM, Brandwein SL, et al. Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J Immunol. 2000;164:966–972.
    25. Bocker U, Yezerskyy O, Feick P, et al. Responsiveness of intestinal epithelial cell lines to lipopolysaccharide is correlated with Toll-like receptor 4 but not Toll-like receptor 2 or CD14 expression. Int J Colorectal Dis. 2003;18:25–32.
    26. Bambou JC, Giraud A, Menard S, et al. In vitro and ex vivo activation of the TLR5 signaling pathway in intestinal epithelial cells by a commensal Escherichia coli strain. J Biol Chem. 2004;279:42984–42992.
    27. Abreu MT, Arnold ET, Thomas LS, et al. TLR4 and MD-2 expression are regulated by immune-mediated signals in human intestinal epithelial cells. J Biol Chem. 2002;277:20431–20437.
    28. Abreu MT, Vora P, Faure E, et al. Decreased expression of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide. J Immunol. 2001;167:1609–1616.
    29. Melmed G, Thomas LS, Lee N, et al. Human intestinal epithelial cells are broadly unresponsive to Toll-like receptor 2-dependent bacterial ligands: implications for host-microbial interactions in the gut. J Immunol. 2003;170:1406–1415.
    30. Lotz M, Gutle D, Walther S, et al. Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells. J Exp Med. 2006;203:973–984.
    31. Otte JM,Cario E,Podolsky DK. Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells.Gastroenterology. 2004;126:1054–1070.
    32. Schreiber S, Nikolaus S, Hampe J. Activation of nuclear factor kappa B inflammatory bowel disease. Gut. 1998;42:477–484.
    33. Neurath MF, Fuss I, Schurmann G, Pettersson S, Arnold K, Muller-Lobeck H,Strober W, Herfarth C, Buschenfelde KH. Cytokine gene transcription by NF-kappa B family members in patients with inflammatory bowel disease. Ann N Y Acad Sci 1998;859:149-159
    34. Neurath MF, Pettersson S, Meyer zum Buschenfelde KH, et al. Local administration of antisense phosphorothioate oligonucleotides to the p65 subunit of NF-kappa B abrogates established experimental colitis in mice. Nat Med. 1996;2:998–1004.
    35. Bantel H, Berg C, Vieth M, et al. Mesalazine inhibits activation of transcription factor NF-kappaB in inflamed mucosa of patients with ulcerative colitis. Am J Gastroenterol. 2000;95:3452–3457.
    36. Fitzpatrick LR, Wang J, Le T. Gliotoxin, an inhibitor of nuclear factor-kappa B, attenuates peptidoglycan-polysaccharide-induced colitis in rats. Inflamm Bowel Dis. 2002;8:159–167.
    37. Fitzpatrick LR, Wang J, Le T. In vitro and in vivo effects of gliotoxin, a fungal metabolite: efficacy against dextran sodium sulfate-induced colitis in rats. Dig Dis Sci. 2000;45:2327–2336.
    38. Sugimoto K, Hanai H, Tozawa K, et al. Curcumin prevents and ameliorates trinitrobenzene sulfonic acid-induced colitis in mice. Gastroenterology. 2002;123:1912–1922.
    39. Salh B, Assi K, Templeman V, et al. Curcumin attenuates DNB-induced murine colitis. Am J Physiol Gastrointest Liver Physiol. 2003;285:G235–243.
    40. UkilA,MaityS,KarmakarS,et al.Curcumin,the major component of food flavour turmeric, reduces mucosal injury in trinitrobenzene sulphonic acid-induced colitis. Br J Pharmacol. 2003;139:209–218.
    41. Comalada M, Camuesco D, Sierra S, et al. In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-kappaB pathway. EurJ Immunol. 2005;35:584–592.
    42. Lin YL, Tsai SH, Lin-Shiau SY, et al. Theaflavin-3,3-digallate from black tea blocks the nitric oxide synthase by down-regulating the activation of NF-kappaB in macrophages. Eur J Pharmacol. 1999;367:379–388.
    43. Kim JS, Jobin C. The flavonoid luteolin prevents lipopolysaccharide-induced NF-kappaB signalling and gene expression by blocking IkappaB kinase activity in intestinal epithelial cells and bone-marrow derived dendritic cells. Immunology. 2005;115:375–387.
    44. Hendriks JJ, Alblas J, van der Pol SM, et al. Flavonoids influence monocytic GTPase activity and are protective in experimental allergic encephalitis. J Exp Med. 2004;200:1667–1672.
    45. Tormakangas L, Vuorela P, Saario E, et al. In vivo treatment of acute Chlamydia pneumoniae infection with the flavonoids quercetin and luteolin and an alkyl gallate, octyl gallate, in a mouse model. Biochem Pharmacol. 2005;70:1222–1230.
    46. Xagorari A, Papapetropoulos A, Mauromatis A, et al. Luteolin inhibits an endotoxin-stimulated phosphorylation cascade and proinflammatory cytokine production in macrophages. J Pharmacol Exp Ther. 2001;296:181–187.
    47. Chen CC, Chow MP, Huang WC, et al. Flavonoids inhibit tumor necrosis factor-alpha-induced up-regulation of intercellular adhesion molecule-1 (ICAM-1) in respiratory epithelial cells through activator protein-1 and nuclear factor-kappaB: structure-activity relationships.Mol Pharmacol. 2004;66:683–693.
    48. Hougee S, Sanders A, Faber J, et al. Decreased pro-inflammatory cytokine production by LPS-stimulated PBMC upon in vitro incubation with the flavonoids apigenin, luteolin or chrysin, due to selective elimination of monocytes/macrophages. Biochem Pharmacol.2005;69:241–248.
    49. Ruiz PA, Haller D. Functional diversity of flavonoids in the inhibition of the proinflammatory NF-kappaB, IRF, and Akt signaling pathways in murine intestinal epithelial cells. J Nutr. 2006;136:664–671.
    50. Paterson RL.Calley HF,Dhillon JK.et a1.Inereased nuclear factor kappa B activation in critically ill patients who die.Crit Care Med,2000,28(4):l047-l051.
    51.顾新华,李德春,谭纪伏,等.核因子-κB活化在重症急性胰腺炎肠道屏障损伤中的作用.实用临床医学, 2006, 7(1):4-6.
    52. Yeh KY,YehM,Glass J,et al.Rapid activation of NF-kppaB and AP1 and target gene expression in postischemic rat intestine.Gastroenterology,2000,118(3):525-534.
    53. Hassoun HT,Kozar RA,Kone BC,et al.Intraischemic hypothemia differentially modulates oxidative stress proteins during mesenterlc ischemia/repeffusion.Surgery,2002,132(2):369-376.
    54. Chen LW, Chen PH, Chang WJ,et al. IKappaB-kinase/nuclear factor-kappaB signaling prevents thermal injury-induced gut damage by inhibiting c-Jun NH2-terminal kinase activation. Crit Care Med. 2007;35(5):1332-40
    55. Eaden JA, Abrams KR, Mayberry JF. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut. 2001;48:526–535.
    56. Beg AA , Sha WC , Bronson RT , et a1 . Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B.Nature, 1995; 376:167-170.
    57. Waddick KG , Uckun FM . Innovative treatment programs against cancer :II . Nuclear factor-kappaB (NF-kappaB) as a molecular target . Biochem Pharmacol,1999;57:9-17
    58. Lwin T, Hazlehurst LA, Li Z, et al. Bone marrow stromal cells prevent apoptosis of lymphoma cells by upregulation of anti-apoptotic proteins associated with activation of NF-kappaB (RelB/p52) in non-Hodgkin’s lymphoma cells.Leukemia, 2007;21: 1521-1531.
    59. Danial NN, Korsmeyer SJ.Cell death: critical control points.Cell, 2004; 116:205-219.
    60. Greten FR, Eckmann L, Greten TF, et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell.2004;118:285–296.
    61. Kucharczak J,Simmons MJ, Fan Y, et a1.To be,or not to be: NF-kappaB is the answer-role of Rel/NFkappaB in the regu lation of apoptosis.Oncogene,2003; 22:8961-8982.
    62. Luo JL, Kam ata H, Karin M. IKK/NF-kappaB signaling: balancing life and death-a new approach to cancer therapy.J Clin Invest,2005;115:2625-2632.