造血细胞分化相关基因的鉴别以及ASB-8和mir-223的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类造血涉及多能干细胞的自我更新、向多个造血细胞链系的分化决定及进一步分化发育成熟。这个过程涉及关键的转录因子和造血生长因子的协同调控。为了研究造血干细胞链系分化的分子机制,我们首先用免疫磁珠(MACS)从正常成人骨髓中分离CD34+细胞,用特异的表面标志进一步分离获得造血干细胞(HSC;CD34+/CD38-/CD33-)和多能髓系祖细胞(MMP;CD34+/CD38-/CD33+)。同时用特异的细胞因子分别诱导CD34+细胞向红系、巨核系和粒系分化,收集红系祖细胞衍生的集落(EC)、巨核系祖细胞衍生的集落(MC)和粒系祖细胞衍生的集落(GC)。从这些细胞制备RNA并进行逆转录差异显示PCR(DDRT-PCR)分析,共获得差异表达条带(ESTs)近500条。挑选差异表达显著的条带进行PCR再扩增、克隆到T载体、DNA测序并在NCBI进行BLAST比对,发现这些ESTs所代表的基因为转录因子、信号转导分子、细胞代谢酶类、细胞周期调控因子、细胞凋亡相关分子、肿瘤相关分子、核糖体蛋白和未知功能的基因。我们发现特异的基因表达上调和特异的基因表达下调都在HSC链系特异分化中发挥重要作用。这些结果为揭示造血细胞分化的分子机制提供了线索。
     粒系形成包括HSC向粒系祖细胞的分化决定和进一步分化发育成具有功能活性的成熟粒细胞。这个过程不仅涉及粒系特异转录因子的调控,还涉及细胞因子及其受体、其它转录因子的调控。我们研究了DDRT-PCR分析中一个在GC中特异高表达的基因ASB-8在粒系分化中的作用。用real-time PCR分析验证了ASB-8在GC中高表达,在HSC、MMC、EC和MC中表达很低。在全反式视黄酸(ATRA)诱导NB4和HL-60向粒系分化的过程中,ASB-8 mRNA表达呈现上调趋势。pEGFP-N1-ASB-8融合蛋白定位于NIH-3T3的细胞质,并集中在核周围。我们构建了ASB-8的过表达质粒pcDNA3.1-ASB-8和RNAi质粒pAVU6+27-ASB-8i,分别转染NB4获得ASB-8的过表达稳定转化子pcDNA3.1-ASB-8/NB4和RNAi稳定转化子pAVU6+27-ASB-8i/NB4。与NB4相比,在ATRA诱导之前,在pcDNA3.1-ASB-8/NB4中CD11b mRNA的表达升高,而MPO mRNA的表达无明显变化。在ATRA诱导向粒系分化中,CD11b mRNA在pcDNA3.1-ASB-8/NB4的表达均要高出在相应诱导时间的NB4细胞中的表达,而MPO mRNA的表达无明显差别,但在96h降低为1/3。在ATRA诱导之前,在pAVU6+27-ASB-8i/NB4中CD11bmRNA和MPO mRNA的表达分别只有NB4中的1/10和1/2。在ATRA诱导向粒系分化过程中,在pAVU6+27-ASB-8i/NB4中CD11b mRNA一直处于极低的表达水平,而MPO mRNA的表达基本保持不变。在ATRA诱导向粒系分化48h后,NBT还原试验发现pcDNA3.1-ASB-8/NB4和pAVU6+27-ASB-8i/NB4中的A_(570)nm/10~6(细胞)要比NB4分别增加13%和减少20%;Gimesa染色发现pcDNA3.1-ASB-8/NB4中的细胞核分叶比NB4中更多,而pAVU6+27-ASB-8i/NB4中的细胞核分叶则更少。这些结果说明过表达ASB-8促进ATRA诱导的NB4向粒系的分化,而ASB-8的表达阻遏则抑制ATRA诱导NB4向粒系的分化。
     近来的研究表明miRNAs可能参与造血细胞分化的调控。我们课题组先前发现mir-223在红系分化中可能具有一定的调节作用,本文进一步研究mir-223调节红系分化的功能和机制。通过分别转染寡核苷酸小RNA223前体(Pre-mir-223)和小RNA223抑制剂(Anti-mir-223),分别观察到联苯胺染色阳性细胞百分比以及γ-珠蛋白mRNA表达的降低和升高,说明在K562中mir-223的过表达和表达阻遏分别抑制和促进hemin诱导的红系分化。我们构建了mir-223过表达质粒pcDNA3.1-pri-mir-223(小RNA223初级转录本)和pSilencer 2.1-U6-Neo-pre-mir-223,分别转染K562细胞,获得mir-223过表达稳定转化子pcDNA3.1-pri-mir-223/K562和pSilencer 2.1-U6-Neo-pre-mir-223/K562。在hemin诱导向红系分化中,在pcDNA3.1-pri-mir-223/K562和pSilencer 2.1-U6-Neo-pre-mir-223/K562中的联苯胺染色阳性细胞百分比和γ-珠蛋白mRNA表达均要低于K562,进一步说明在K562中过表达mir-223会抑制hemin诱导的红系分化。为了鉴别mir-223的靶基因,把LMO2和HLF的3'-UTR插入到pRL-TK和pEGFP-C1,构建了LMO2和HLF-双萤光和荧光报告基因质粒,与Pre-mir-223共转染K562和NIH-3T-3,发现LMO2和HLF-报告基因的表达受到抑制,说明LMO2和HLF可能是mir-223的靶基因。把LMO2-报告基因质粒分别转染到过表达稳定转化子pcDNA3.1-pri-mir-223/K562、pSilencer2.1-U6-Neo-pre-mir-223/K562和K562中,发现LMO2-报告基因在过表达稳定转化子中的表达受到抑制。Real-time PCR还发现LMO2 mRNA在mir-223过表达稳定转化子中的表达要低于K562,这些说明LMO2很可能就是mir-223的靶基因。这些结果提示在hemin诱导K562向红系分化过程中,mir-223表达的降低部分解除了对LMO2表达的抑制,进而促进了红系分化。在PMA诱导向巨核系分化过程中,Giemsa染色发现pcDNA3.1-pri-mir-223/K562的大核和多核细胞比K562多,PI染色后FACS分析发现在pcDNA3.1-pri-mir-223/K562的4倍体细胞数目多于K562。这些结果说明过表达mir-223可能会促进PMA诱导K562向巨核系的分化。
Haematopoiesis,the differentiation of haematopoietic stem cells and progenitors into various lineages,involves complex interactions of transcription factors that modulate the expression of downstream genes and mediate proliferation and differentiation signals and complex interplay of hematopoietic cytokines and their receptors.To better understand the transcriptional program that accompanies orderly lineage-specific hematopoietic differentiation,we analyzed expression changes during the lineage-specific differentiation of human hematopoietic stem cells(HSC).HSC (CD34+/CD38-/CD33-) and multipotent myeloid progenitors(MMP; CD34+/CD38-/CD33+) were isolated from the bone marrow of healthy individuals by Magnetic Activated Cell Sorting(MACS).CD34+ cells in semi-solid culture were stimulated with the cytokines erythropoietin(EPO),interleukin 6(IL-6) and granulocyte colony-stimulating factor(G-CSF) to promote differentiation to committed erythroid, megakaryocytic,and granulocytic clones,respectively.Differential display reverse transcription polymerase chain reaction analysis was performed to compare the mRNA transcripts in HSC,MMP,and the clones derived from their committed lineage-specific progenitors.Expressed sequence tags(ESTs;n=256) that were differentially expressed were identified.194 were homologous to known genes,and some of which were related to genes involved in hematopoiesis.These known genes were classified as involved in transcription/translation,signal transduction,cell surface receptors/ligands,cell signaling, cell metabolism,cell cycle,cell apoptosis,and oncogenesis.We identified genes that were specifically up-or down-regulated in the lineage-committed clones compared with HSC or/and MMP,suggesting that both specific gene activation and repression might be necessary for specific lineage commitment and differentiation.
     Granulopoiesis is a complex process by which HSC differentiates into fully differentiated,functionally active granulocytes.Various transcription factors both specific to the granulocytic lineage as well as more widely expressed molecules control the differentiation,including growth factors and their receptors,other transcription factors as well as various molecules important for the function of mature cells.The role of ASB-8 in granulocytic differentiation was studied in the paper.ASB-8 mRNA was mainly expressed in GC from DDRT-PCR and confirmed this by real-time PCR.ASB-8 mRNA was increased during the granulocytic differentiation of NB4 and HL-60 treated by ATRA.pEGFP-N1-ASB-8 was located in cytoplasma of NIH-3T3 and around nucleus.Enforced plasmid of ASB-8 and RNAi plasmid of ASB-8 was constructed and plasmid was transfectted into NB4 and stable transfectants with enforced expression of ASB-8 and with RNA interfere of ASB-8 were created,pcDNA3.1-ASB-8/NB4, pAVU6+27-ASB-8i/NB4.CD11b mRNA in pcDNA3.1-ASB-8/NB4 was much more than that in NB4 and remained this following granulocytic differentiation treated by ATRA.MPO mRNA was comparative to NB4 and was one third time in NB4 at 96h treated by ATRA.CD11b and MPO mRNA in pAVU6+27-ASB-Si/NB4 was lower than that in NB4.CD11b mRNA was hardly undetectable and MPO mRNA remained almost no change following granulocytic differentiation treated by ATRA.A_(570)nm/10~6 of pcDNA3.1-ASB-8/NB4 was more and pAVU6+27-ASB-8i/NB4 less than that in NB4 from NBT reduction.The morphological changes in cell smears of pcDNA3.1-ASB-8/NB4 were more and pAVU6+27-ASB-Si/NB4 less than that in NB4 from Giemsa staining.The results suggested that the enforced expression of ASB-8 in NB4 may accelerate the granulocytic differentiation treated by ATRA and RNA interfere of ASB-8 in NB4 may delay the granulocytic differentiation treated by ATRA.
     MiRNAs have been implicated in the differentiation of mammalian blood cell lineages.Our lab had found that mir-223 may be associated with and regulate erythroid differentiation.The fraction of benzidine positive cells andγ-globin mRNA of K562 with endogenous over expression and suppression of mature mir-223 via olio-nucleotide transfection were much less and more than that of K562.Stable transfectants with enforced expression of mir-223 in K562 was constructed and they are pcDNA3.1-pri-mir-223/K562 and pSilencer 2.1-U6-Neo-pre-mir-223/K562.The fraction of benzidine positive cells andγ-globin mRNA in pcDNA3.1-pri-mir-223/K562 and pSilencer 2.1-U6-Neo-pre-mir-223/K562 was much lower than that in K562 following erythroid differentiation treated by hemin.These results suggested that the enforced expression of mir-223 may suppress erythroid differentiation of K562 treated by hemin. The expression of LMO2 and HLF was suppressed in K562 and NIH-3T3 transfected with pre-mir-223 examined by reporter system of luciferase and fluorescence.The mRNA of LMO2 in pcDNA3.1-pri-mir-223/K562 and pSilencer 2.1-U6-Neo-pre-mir-223/K562 was much lower than that in K562 and reporter system of luciferase and fluorescence also confirmed this decrease.These results indicated that LMO2 may be one of target genes of mir-223.The mechanism may be that mir-223 may unblock LMO2 to promote eryhtroid differentiation of K562 treated by hemin.The increase in cell size and extensive multinuclearity in pcDNA3.1-pri-mir-223/K562 in May-Gru"nwald-Giemsa staining was much more than that in K562 following megakaryocytic differentiation treated by PMA.Ploidy analysis by FACS after PI staining showed that the peak corresponding to 4N cells in pcDNA3.1-pri-mir-223/K562 was much higher than that in K562 following megakaryocytic differentiation treated by PMA.These results suggested that the enforced expression of mir-223 may promote megakaryocytic differentiation of K562 treated by PMA.
引文
[1] Grover, C. Bagby. Jr. Hematopoiesis. In: Stamatoyannopoulos G. Nienhuis AW,Majerus PW, Varmus H (eds) The molecular basis of blood diseases, 2nd ed. 1994,Saunders, Philadelphia, pp 107-155.
    
    [2] Bellantuono I. Haemopoietic stem cells. Int J Biochem Cell Biol. 2004, 36(4):607-20.
    
    [3] Georgopoulos K. Haematopoietic cell-fate decisions, ikaros. Nat Rev Immunol 2002,2:162-174.
    
    [4] Orkin SH. GATA-binding transcription factors in hematopoietic cells. Blood 1992,80:575-581.
    
    [5] Cantor, A.B., Orkin, S.H. Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene 2002, 21 (21):3368—3376.
    
    [6] Friedman, A.D. Transcriptional regulation of granulocyte and monocyte development.Oncogene 2002, 21 (21):3377-3390.
    
    [7] Zhu J, Emerson SG. Hematopoietic cytokines, transcription factors and lineage commitment. Oncogene 2002, 21(21):3295-313.
    
    [8] Socolovsky M, Lodish HF, Daley GQ. Control of hematopoietic differentiation: lack of specificity in signaling by cytokine receptors. Proc Natl Acad Sci U S A 1998,95:6573-6575.
    
    [9] Ogawa, M. Differentiation and proliferation of hematopoietic stem cells. Blood 1993,81 (11):2844-2853.
    
    [10] Broudy, V.C. Stem cell factor and hematopoiesis. Blood 1997, 90 (4), 1345-1364.
    
    [11] Haylock, D.N., Horsfall, M.J. Dowse, T.L., Ramshaw, H.S, Niutta, S., Protopsaltis,S., Peng. L., Burrell, C, Rappold, I., Buhring, H.J., Simmons, P.J. Increased recruitment of hematopoietic progenitor cells underlies the ex vivo expansion potential of FLT3 ligand. Blood 1997, 90 (6):2260-2269.
    
    [12] Ishibashi, T., Kimura, H., Uchida, T., Kariyone, S., Friese, P., Burstein, S.A. Human interleukin 6 is a direct promoter of maturation of megakaryocytes in vitro. Proc Natl Acad Sci USA. 1997, 86(15):5953-5957.
    
    [13] Ward AC. Loeb DM. Soede-Bobok AA. Touw IP. Friedman AD. Regulation of granulopoiesis by transcription factors and cytokine signals. Leukemia 2000,14(6):973-90.
    
    [14] Yamanaka R, Kim GD. Radomska HS, Lekstrom-Himes J, Smith LT, Antonson P,Tenen DG. Xanthopoulos KG. CCAAT/enhancer binding protein epsilon is preferentially up-regulated during granulocytic differentiation and its functional versatility is determined by alternative use of promoters and differential splicing. Proc Natl Acad Sci U S A. 1997, 94(12):6462-7.
    
    [15] Lowney P, Corral J, Detmer K, LeBeau MM, Deaven L, Lawrence HJ, Largman C.A human Hox 1 homeobox gene exhibits myeloid-specific expression of alternative transcripts in human hematopoietic cells. Nucleic Acids Res. 1991, 19(12):3443-9.
    
    [16] Fraizer GC, Patmasiriwat P, Zhang X, Saunders GF. Expression of the tumor suppressor gene WT1 in both human and mouse bone marrow. Blood 1995,86(12):4704-6.
    
    [17] Lieschke GJ. CSF-deficient mice—what have they taught us? Ciba Found Symp1997,204:60-74.
    
    [18] Fukunaga R, Ishizaka-Ikeda E, Seto Y, Nagata S. Expression cloning of a receptor for murine granulocyte colony-stimulating factor. Cell 1990,61(2):341-50.
    
    [19] Avalos BR. Molecular analysis of the granulocyte colony-stimulating factor receptor.Blood 1996, 88(3):761-77.
    
    [20] Fukunaga R, Ishizaka-Ikeda E, Nagata S. Growth and differentiation signals mediated by different regions in the cytoplasmic domain of granulocyte colony-stimulating factor receptor. Celll993, 74(6): 1079-87.
    
    [21] Lanotte M, Martin-Thoruvenin V, Najman S , Balerini P, Valensi F, Berger R: NB4,a maturation inducible cell line with t(15; 17) marker isolated from a human acute promyelocytic leukemia (M3). Blood 1991, 77:1080-1085.
    
    [22] S.J. Collins, The HL-60 promyelocytic leukemia cell line: proliferation, differentiation, and cellular oncogene expression, Blood 1987, (70): 1233-1244.
    
    [23] Khanna-Gupta A, Kolibaba K. Zibello TA. Berliner N. NB4 cells show bilineage potential and an aberrant pattern of neutrophil secondary granule protein gene expression.Blood 1994. 84(1):294-302.
    
    [24] Meng-er H, Yu-chen Y, Shu-rong C, Jin-ren C, Jia-Xiang L, Lin Z, Long-jun G,Zhen-yi W: Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 1988, 27:567-570.
    
    [25] H.P. Koef痚r, Induction of differentiation of human acute myelogenous leukemia cells: therapeutic implications, Blood 1983, 62:709? 21.
    
    [26] Breitman T, Selonick S, Collins S: Induction of differentiation of the human promyelocytic leukemia cell line (HL-60) by retinoic acid. Proc Natl Acad Sci USA 1980,77:2936-2941.
    
    [27] Collins SJ, Ruscetti FW, Gallagher RE, Gallo RC. Normal functional characteristics of cultured human promyelocytic leukemia cells (HL-60) after induction of differentiation by dimethylsulfoxide. J Exp Med. 1979, 149(4):969-74.
    
    [28] C.Z. Chen, L. Li, H.F. Lodish, D.P. Bartel, MicroRNAs modulate hematopoietic lineage differentiation, Science 2004, 303: 83-86.
    
    [29] Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F, Liuzzi F, Lulli V,Morsilli O, Santoro S, Valtieri M, Calin GA, Liu CG, Sorrentino A, Croce CM, Peschle C.MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci U S A. 2005, 102(50): 18081-6.
    
    [30] Garzon R, Pichiorri F, Palumbo T, Iuliano R, Cimmino A, Aqeilan R, Volinia S,Bhatt D, Alder H, Marcucci G, Calin GA, Liu CG, Bloomfield CD, Andreeff M, Croce CM. MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci U S A. 2006, 103(13):5078-83.
    
    [31] Naguibneva I, Ameyar-Zazoua M, Polesskaya A, Ait-Si-Ali S, Groisman R, Souidi M, Cuvellier S, Harel-Bellan A. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat Cell Biol. 2006, 8(3):278-84.
    [32] Georgantas RW, Hildreth R, Morisot S, Alder J, Liu CG, Heimfeld S, Calin GA,Croce CM. Civin CI. CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc Natl Acad Sci U S A. 2007,104(8):2750-5.
    
    [33] Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C, Bozzoni I. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 2005, 123(5):819-31.
    
    [34] Rutherford TR, Clegg JB, Weatherall DJ. K562 human leukaemic cells synthesise embryonic haemoglobin in response to haemin. Nature 1979, 280:164-165.
    
    [35] Tabilio A, Pelicci PG, Vinci G, Mannoni P, Civin CI, Vainchenker W, Testa U,Lipinski M, Rochant H, Breton-Gorius J. Myeloid and megakaryocytic properties of K-562 cell lines. Cancer Res, 1983, 43:4569-4574.
    
    [36] Liu, Y, Li, J., Zhang, F., Qin, W., Yao, G., He, X., Xue, P., Ge, C., Wan, D., Gu, J.Molecular cloning and characterization of the human ASB-8 gene encoding a novel member of ankyrin repeat and SOCS box containing protein family. Biochem Biophys Res Commun. 2003, 300 (4), 972-979.
    
    [37] Gratas C, Menot ML, Dresch C, Chomienne C. Retinoid acid supports granulocytic but not erythroid differentiation of myeloid progenitors in normal bone marrow cells.Leukemia 1993, 7(8):1156-62.Links
    
    [38] Loose M, Patient R. Global genetic regulatory networks controlling hematopoietic cell fates. Curr Opin Hematol. 2006, 13(4):229-36.
    
    [39] Savino W, Smaniotto S, Dardenne M. Hematopoiesis. Adv Exp Med Biol. 2005,567:167-85.
    
    [40] Akashi K, Traver D, Miyamoto T, Weissman IL. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 2000, 404(6774): 193-7.
    
    [41] Swiers G, Patient R, Loose M. Genetic regulatory networks programming hematopoietic stem cells and erythroid lineage specification. Dev Biol. 2006,294(2):525-40.
    [42] Komor, M., Guller. S., Baldus, C.D., de Vos, S., Hoelzer, D., Ottmann, O.G.,Hofmann, W.K. Transcriptional profiling of human hematopoiesis during in vitro lineage-specific differentiation. Stem Cells 2005, 23 (8):1154-1169.
    
    [43] Graf, L., Torok-Storb, B. Identification of a novel DNA sequence differentially expressed between normal human CD34+ CD38hi and CD34+ CD381o marrow cells.Blood 1995, 86(2): 548-556.
    
    [44] Kulessa, H., Frampton, J., Graf, T. GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblasts. Genes Dev.1995, 9(10):1250-1262.
    
    [45] Zhang P, Iwama A, Datta MW, Darlington GJ, Link DC, Tenen DG. Upregulation of interleukin 6 and granulocyte colony-stimulating factor receptors by transcription factor CCAAT enhancer binding protein alpha (C/EBP alpha) is critical for granulopoiesis. J Exp Med. 1998, 188(6): 1173-84.
    
    [46] Nuchprayoon I, Meyers S, Scott LM, Suzow J, Hiebert S, Friedman AD.PEBP2/CBF, the murine homolog of the human myeloid AML1 and PEBP2 beta/CBF beta proto-oncoproteins, regulates the murine myeloperoxidase and neutrophil elastase genes in immature myeloid cells. Mol Cell Biol. 1994, 14(8):5558-68.
    
    [47] OelgeschlMer M, Nuchprayoon I, L(?)cher B, Friedman AD. C/EBP, c-Myb, and PU.1 cooperate to regulate the neutrophil elastase promoter. Mol Cell Biol. 1996,16(9):4717-25.
    
    [48] Nuchprayoon I, Simkevich CP, Luo M, Friedman AD, Rosmarin AG. GABP cooperates with c-Myb and C/EBP to activate the neutrophil elastase promoter. Blood 1997, 89(12):4546-54
    
    [49] Rekhtman N, Radparvar F, Evans T, Skoultchi AI. Direct interaction of hematopoietic transcription factors PU.l and GATA-1: functional antagonism in erythroid cells. Genes Dev. 1999, 13(11): 1398-411.
    
    [50] Zhang P, Behre G, Pan J, Iwama A, Wara-Aswapati N, Radomska HS, Auron PE,Tenen DG, Sun Z. Negative cross-talk between hematopoietic regulators: GATA proteins repress PU.1.Proc Natl Acad Sci U S A. 1999, 96(15):8705-10.
    
    [51] Hedge SP. Kumar A. Kurschner C. Shapiro LH. c-Maf interacts with c-Myb to regulate transcription of an early myeloid gene during differentiation. Mol Cell Biol.1998, 18(5):2729-37.
    
    [52] Hegde SP, Zhao J, Ashmun RA, Shapiro LH. c-Maf induces monocytic differentiation and apoptosis in bipotent myeloid progenitors. Blood 1999,94(5):1578-89.
    
    [53] Rausch O, Marshall CJ. Tyrosine 763 of the murine granulocyte colony-stimulating factor receptor mediates Ras-dependent activation of the JNK/SAPK mitogen-activated protein kinase pathway. Mol Cell Biol. 1997, 17(3): 1170-9.
    
    [54] Behre G, Whitmarsh AJ, Coghlan MP, Hoang T, Carpenter CL, Zhang DE, Davis RJ,Tenen DG. c-Jun is a JNK-independent coactivator of the PU.1 transcription factor. J Biol Chem. 1999, 274(8):4939-46.
    
    [55] Li AC, Guidez FR, Collier JG, Glass CK. The macrosialin promoter directs high levels of transcriptional activity in macrophages dependent on combinatorial interactions between PU.1 and c-Jun. J Biol Chem. 1998, 273(9):5389-99.
    
    [56] Kerkhoff, C, Klempt, M., Sorg, C. Novel insights into structure and function of MRP8 (S100A8) and MRP14 (S100A9). Biochim. Biophys. Acta. 1998, 1448 (2):200-211.
    
    [57] Nacken, W., Roth, J., Sorq, C., Kerkhoff, C. S100A9/S100A8: Myeloid representatives of the S100 protein family as prominent players in innate immunity. Microsc. Res. Tech. 2003, 60 (6): 569-580.
    
    [58] Hilton DJ, Richardson RT, Alexander WS et al. Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc Natl Acad Sci USA 1998,95:114-119.
    
    [59] An DS, Kung SK, Bonifacino A, Wersto RP, Metzger ME, Agricola BA, Mao SH,Chen IS, Donahue RE. Lentivirus vector-mediated hematopoietic stem cell gene transfer of common gamma-chain cytokine receptor in rhesus macaques. J Virol. 2001, 75(8):3547-55.
    
    [60] Starr R, Willson TA, Viney EM et al. A family of cytokineinducible. inhibitors of signalling. Nature 1997, 387:917-921.
    
    [61] Cohney SJ, Sanden D, Cacalano NA et al. SOCS-3 is tyrosine phosphorylated in response to interleukin-2 and suppresses STAT5 phosphorylation and lymphocyte proliferation. Mol Cell Biol 1999, 19:4980-4988.
    
    [62] Matsumoto A, Masuhara M, Mitsui K et al. CIS, a cytokine inducible SH2 protein,is a target of the JAK-STAT5 pathway and modulates STAT5 activation. Blood 1997,89:3148-3154.
    
    [63] Marine JC, McKay C, Wang D et al. SOCS3 is essential in the regulation of fetal liver erythropoiesis. Cell 1999, 98:617-627.
    
    [64] Matsumoto A, Seki Y, Kubo M et al. Suppression of STAT5 functions in liver,mammary glands, and T cells in cytokineinducible SH2-containing protein 1 transgenic mice. Mol Cell Biol 1999, 19:6396-6407.
    
    [65] Naka T, Narazaki M, Hirata M et al. Structure and function of a new STAT-induced STAT inhibitor. Nature 1997, 387:924-929.
    
    [66] Endo TA, Masuhara M, Yokouchi M et al. A new protein containing an SH2 domain that inhibits JAK kinases. Nature 1997, 387:921-924.
    
    [67] Nicholson SE, Willson TA, Farley A et al. Mutational analyses of the SOCS proteins suggest a dual domain requirement but distinct mechanisms for inhibition of LIF and IL-6 signal transduction. EMBO J 1999, 18:375-385.
    
    [68] Yasukawa H, Misawa H, Sakamoto H et al. The JAK-binding protein JAB inhibits Janus tyrosine kinase activity through binding in the activation loop. EMBO J 1999,18:1309-1320.
    
    [69] Benjamin T. Kile, Donald Metcalf, Sandra Mifsud, Ladina Dirago, Nicos A. Nicola,Douglas J. Hilton, And Warren S. Alexander. Functional Analysis of Asb-1 Using Genetic Modification in Mice. Molecular And Cellular Biology, Sept. 2001, p.6189-6197
    [70] Junya Kohrokia, Sayaka Fujitaa, Norio Itoha, Yukiko Yamadaa, Harue Imaia.Noboru Yumotob, Tsuyoshi Nakanishia, Keiichi Tanakaa. ATRA-regulated Asb-2 gene induced in di rentiation of HL-60 leukemia cells FEBS Letters 2001, 505:223-228.
    
    [71] Florence C. Guibal, Christel Moog-Lutz, Piotr Smolewski, Yolande Di Gioia,Zbigniew Darzynkiewicz, Pierre G. Lutz, and Yvon E. Cayre. ASB-2 Inhibits Growth and Promotes Commitment in Myeloid Leukemia Cells. The Journal Of Biological Chemistry,Vol. 277, No. 1, Issue of January 2002, 4:218-224.
    
    [72] Chung AS, Guan YJ, Yuan ZL, Albina JE, Chin YE. Ankyrin Repeat and SOCS Box 3 (ASB3) Mediates Ubiquitination and Degradation of Tumor Necrosis Factor Receptor II. Mol Cell Biol. 2005, 25(11):4716-26.
    
    [73] Kohroki J, Nishiyama T, Nakamura T, Masuho Y. ASB proteins interact with Cullin5 and Rbx2 to form E3 ubiquitin ligase complexes. FEBS Lett. 2005, 579(30):6796-802.
    
    [74] Ramkissoon SH, Mainwaring LA, Ogasawara Y, Keyvanfar K, McCoy JP, Sloand EM, Kajigaya S, Young NS. Hematopoietic-specific microRNA expression in human cells. Leuk Res. 2006, 30(5):643-7.
    
    [75] Hutvagner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science 2002, 297: 2056-2060.
    
    [76] Petersen CP, Bordeleau ME, Pelletier J, Sharp PA. Short RNAs repress translation after initiation in mammalian cells. Mol Cell 2006, 21: 533-542.
    
    [77] Wadman, I.A., Osada, H., Grutz, G.G., Agulnick, A.D., Westphal, H., Forster, A. &Rabbitts, T.H. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldbl/NLI proteins. EMBO J.1997, 16 (11):3145-3157.
    1 Koury MJ,Sawyer ST,Brandt SJ.2002.New insights into erythropoiesis.Curr.Opin.Hematol.9:93-100.
    2 Chava Perry,Hermona Soreq.Transcriptional regulation of erythropoiesis Fine tuning of combinatorial multi-domain elements Eur.J.Biochem.269,3607-3618(2002).
    3 Alan B Cantorl,Stuart H Orkin Transcriptional regulation of erythropoiesis:an a.air involving multiple partners Oncogene(2002) 21,3368 ? 3376
    4 Lewin,There are many types of DNA-binding Domains.Gene Ⅷ,2004,522.85 Wojchowski DM,Gregory RC,Miller CP,Pandit AK,Pircher TJ.Signal transduction in the erythropoietin receptor system.Exp Cell Res.1999 Nov 25;253(1):143-56.
    6 Wojchowski DM,He TC.Signal transduction in the erythropoietin receptor system.Stem Cells.1993 Sep:11(5):381-92.
    7 Mason-Garcia M.Beckman BS.Signal transduction in erythropoiesis.FASEB J.1991 Nov:5(14):2958-64.
    8 Hanada T.Kinjyo I,Inagaki-Ohara K.Yosbimura A.Negative regulation of cytokine signaling by CIS/SOCS family proteins and their roles in inflammatory diseases.Rev Physiol Biochem Pharmacol.2003:149:72-86.Epub 2003 Mar 29.
    9 Zhang J.Somani AK.Siminovitch KA.Roles of the StlP-1 tyrosine phosphatase in the negative regnlation of cell signalling.Semin Immunol.2000 Aug:12(4):361-78.
    10 Qu CK.The SHP-2 tyrosine phosphatase:signaling mechanisms and biological functions.Cell Res.2000Dec:10(4):279-88.
    11 Irie-Sasaki J.Sasaki T.Matsumoto W et al.CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling.Nature 2001:409:349-354.
    12 Naka T.Fujimoto M.Kishimoto T.Trends Biochem Sci.1999 Oct;24(10):394-8.Negative regulation of cytokine signaling:STAT-induced STAT inhibitor.
    13 Larsen L,Ropke C,Suppressors of cytokine signalling:SOCS.APMIS.2002 Dec;110(12):833-44.
    14 Robyn Start and Douglas J.Hilton.Negative regulation of the JAK/STAT pathway.BioEssays 21:47-52,1999.
    15 Starr R,Willson TA,Viney EM et al.A family of cytokineinducible,inhibitors of signalling.Nature 1997:387:917-921.
    16 Hilton DJ,Richardson RT,Alexander WS et al.Twenty proteins containing a C-terminal SOCS box form five structural classes.Proc Natl Acad Sci USA 1998;95:114-119.
    17 Naka T,Narazaki M,Hirata M et al.Structure and function of a new STAT-induced STAT inhibitor.Nature 1997:387:924-929.
    18 Yoshimura A,Ohkubo T,Kiguchi T et al.A novel cytokineinducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors.EMBO J 1995:14:2816-2826.
    19 Vasiliauskas D,Hancock S,Stern CD.SWiP-1:novel SOCS box containing WD-protein regulated by signalling centres and by Shh during development.Mech Dev 1999;82:79-94.
    20 Minamoto S,Ikegame K,Ueno K et al.Cloning and functional analysis of new members of STAT induced STAT inhibitor(SSI) family:SSI-2 and SSI-3.Biochem Biophys Res Commun 1997;237:79-83.
    21 Cohney SJ.Sanden D,Cacalano NA et al.SOCS-3 is tyrosine phosphorylated in response to interleukin-2 and suppresses STAT5 phosphorylation and lymphocyte proliferation.Mol Cell Biol 1999:19:4980-4988.
    22 Pezet A,Favre H,Kelly PA et al.Inhibition and restoration of prolactin signal transduction by suppressors of cytokine signaling.J Biol Chem 1999;274:24497-24502.
    23 Davey HW,McLachlan MJ,Wilkins RJ et al.STAT5b mediates the GH-induced expression of SOCS-2 and SOCS-3mRNA in the liver.Mol Cell Endocrinol 1999;158:111-116.
    24 Endo TA,Masuhara M,Yokouchi M et al.A new protein containing an SH2 domain that inhibits JAK kinases.Nature 1997;387:921-924.
    25 Cohney SJ,Sanden D,Cacalano NA et al.SOCS-3 is tyrosine phosphorylated in response to interleukin-2 and suppresses STAT5 phosphorylation and lymphocyte proliferation.Mol Cell Biol 1999;19:4980-4988.
    26 Matsumoto A,Masuhara M,Mitsui K et al.CIS,a cytokine inducible SH2 protein,is a target of the JAK-STAT5pathway and modulates STAT5 activation.Blood 1997;89:3148-3154.
    27 Marine JC,McKay C,Wang D et al.SOCS3 is essential in the regulation of fetal liver erythropoiesis.Cell 1999;98:617-627.
    28 Matsumoto A,Seki Y,Kubo M et al.Suppression of STAT5 functions in liver,mammary glands,and T cells in cytokineinducible SH2-containing protein 1 transgenic mice.Mol Cell Biol 1999;19:6396-6407.
    29 10 Nicholson SE.Willson TA.Farley A et al.Mutational analyses of the SOCS proteins suggest a dual domain requirement but distinct mechanisms for inhibition of LIF and IL-6 signal transduction,EMBO J 1999:18:375-385.
    30 Yasukawa H.Misawa H.Sakamoto H et al.The JAK-binding protein JAB,inhibits Janus tyrosine kinase activity through binding in the activation loop.EMBO J 1999:18:1309-1320.
    31 15 Pezet A.Favre H.Kelly PA et al.Inhibition and restoration of prolactin signal transduction by suppressors of cytokine signaling.J Biol Chem 1999:274:24497-24502.
    32 Sarna MK,Ingley E.Busfield SJ.Cull VS,Lepere W,McCarthy DJ,Wright MJ,Palmer GA,Chappell D.Sayer MS.Alexander WS,Hilton DJ,Starr R,Watowich SS,Bittorf T,Klinken SP.Tilbrook PA.Differential regulation of SOCS genes in normal and transformed erythroid cells.Oncogene.2003 May 22:22(21):3221-30.
    33 Yoshimura A.Ohkubo T,Kiguchi T,Jenkins NA,Gilbert DJ.Copeland NG.Hara T.Miyajima A.A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors.EMBO J.1995 Jun 15:14(12):2816-26
    34 Matsumoto A,Masuhara M,Mitsui K,Yokouchi M,Ohtsubo M,Misawa H.Miyajima A.Yoshimura A.CIS.a cytokine inducible SH2 protein,is a target of the JAK-STAT5 pathway and modulates STAT5 activation.Blood.1997May 1:89(9):3148-54.
    35 Jegalian AG,Wu H.Differential roles of SOCS family members in EpoR signal transduction.J Interferon Cytokine Res.2002 Aug;22(8):853-60.
    36 Metcalf D,Alexander WS.Elefanty AG.Nicola NA,Hilton DJ.Starr R,Mifsud S,Di Rago L.Aberrant hematopoiesis in mice with inactivation of the gene encoding SOCS-1.Leukemia.1999 Jun:13(6):926-34.
    37 Masashi Narazaki,Minoru Fujimoto.Tomoshige Matsumoto,Yoshiaki Morita,Hiroshi Saito,Tadahiro Kajita.Kazuyuki Yoshizak,Tetsuji Naka,And Tadamitsu Kishimoto.Three distinct domains of SSI-lySOCS-lyJAB protein are required for its suppression of interleukin 6 signaling.Proc.Natl.Acad.Sci.USA Vol.95.pp.13130-13134,October 1998 Immunology
    38 Starr R,Willson TA,Viney EM,Murra,LJL,Rayner JR,Jenkins B J,et al.A family of cytokine-inducible inhibitors of signalling.Nature 1997;387:917-21.
    39 Marine JC,McKay C,Wang D,Topham D J,Parganas E,Nakajima H,et al.SOCS3 is essential in the regulation of fetal liver erythropoiesis.Cell 1999;98:617-27.
    40 Roberts AW,Robb L,Rakar S,Hartley L,Cluse L,Nicola NA,et al.Placental defects and embryonic lethality in mice lacking suppressors of cytokine signalling 3.Proc Natl Acad Sci USA 2001;98:9324-9.
    41 Sasaki,A.,Yasukawa,H.,Suzuki,A.,Kamizono,S.,Syoda,T.,Kinjyo,I.,Sasaki,M.,Johnston,J.A.,and Yoshimura.A.(1999) Genes Cells 4,339-351
    42 Sasaki A,Yasukawa H,Shouda T,Kitamura T,Dikic I,Yoshimura A.CIS3/SOCS-3 suppresses erythropoietin(EPO)signaling by binding the EPO receptor and JAK2.J Biol Chem.2000 Sep 22;275(38):29338-47.
    43 Benjamin T.Kile,Donald Metcalf,Sandra Mifsud,Ladina Dirago,Nicos A.Nicola,Douglas J.Hilton,And Warren S.Alexander.Functional Analysis of Asb-1 Using Genetic Modification in Mice.Molecular And Cellular Biology,Sept.2001,p.6189-6197
    44 Junya Kohrokia.,Sayaka Fujitaa,Norio Itoha,Yukiko Yamadaa,Harue Imaia,Noboru Yumotob,Tsuyoshi Nakanishia,Keiichi Tanakaa.ATRA-regulated Asb-2 gene induced in di rentiation of HL-60 leukemia cells FEBS Letters 505(2001)223-228.
    45 Florence C.Guibal,Christel Moog-Lutz,Piotr Smolewski,Yolande Di Gioia,Zbigniew Darzynkiewicz,Pierre G.Lutz,and Yvon E.Cayre.ASB-2 Inhibits Growth and Promotes Commitment in Myeloid Leukemia Cells.The Journal Of Biological Chemistry,Vol.277,No.1,Issue of January 4,pp.218-224,2002
    46 Chung AS,Guan YJ.Yuan ZL.Albina JE,Chin YE.Ankyrin Repeat and SOCS Box 3(ASB3) Mediates Ubiquitination and Degradation of Tumor Necrosis Factor Receptor Ⅱ.Mol Cell Biol.2005 Jun:25(11):4716-26.
    47 Masters SL.Palmer KR.Stevenson WS.Metcalf D.Viney EM.Sprigg NS.Alexauder WS.Nicola NA.Nicholson SE Wang D,Li Z,Messing EM,Wu G.The SPRY domain-containing SOCS box protein 1(SSB-1) interacts with MET and enhances the hepatocyte growth factor-induced Erk-Elk-1-scrum response clement pathway.J Biol Chem.2005 Apt 22:280(16):16393-401.
    48 Genetic deletion of murine SPRY domain-containing SOCS box protein 2(SSB-2) results in very mild thrombocytopenia.Mol Cell Biol.2005 Jul:25(13):5639-47.
    49 Vasiliauskas D,Hancock S,Stern CD.SWiP-1:novel SOCS box containing WD-protein regulated by signalling centres and by Shh during development.Mech Dev 1999:82:79-94.
    50 Shuai K,Liu B.Regulation of JAK-STAT signaling in the immune system.Nat Rev Immunol 2003:3:900-11.
    52 Wu C,Sun M,Liu L.Zhou GW.The function of the protein tyrosine phosphatase SHP-1 in cancer.Gene 2003;13(306):1-12.
    53 Shultz LD,Rajah TV,Greiner DL.Severe defects in immunity and hematopoiesis caused by SHP-1protein-tyrosine-phosphatase deficiency.Trends Biotechnnol 1997:15:302-307.
    54 Shultz LD,Schweitzer PA.Rajah TV.Yi T,Ihle JN,Matthews RJ,Thomas ML,Beier DR.Mutations at the murine motheaten locus are within the hematopoietic cell protein-tyrosine phosphatase(Hcph) gene.Cell 1993:73:1445-1454.
    55 Tsui HW,Siminovitch KA,de Souza L,Tsui FW.Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene.Nature Genet 1993;4:124-129.
    56 Klingmuller U.Lorenz U,Cantley LC.Neel BG,Lodish HF.Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals.Cell 1995;80:729-738.
    57 Yi T.Mui AL,Krystal G,Ihle JN.Hematopoietic cell phosphatasen associates with the interleukin-3(IL-3) receptor beta chain and downregulates IL-3-induced tyrosine phosphorylation and mitogenesis.Mol Cell Biol 1993:13:7577-7586.
    58 David M,Chert HE.Goelz S.Larner AC,Neel BG.Differential regulation of the alpha/beta interferon-stimulated Jak/Stat pathway by the SH2 domaincontainingtyrosine phosphatase SHPTP1.Mol Cell Biol 1995;15:7050-7058.
    59 Chen HE,Chang S,Trub T.Neel BG.Regulation of colony-stimulating factor 1 receptor signaling by the SH2domain-containing tyrosine phosphatase SHPTP1.Mol Cell Biol 1996;16:3685-3697.
    60 Paulson RF.Vesely S,Siminovitch KA,Bernstein A.Signalling by the W/Kit receptor tyrosine kinase is negatively regulated in vivo by the protein tyrosine phosphatase Shp1.Nature Genet 1996;13:309-315.
    61 Jiao H,Berrada K,Yang W,Tabrizi M,Platanias LC,Yi T.Direct association with and dephosphorylation of Jak2kinase by the SH2-domain containing protein tyrosine phosphatase SHP-1.Mol Cell Biol 1996;16:6985-992.
    62 de la Chapelle A,Traskelin AL,Juvonen E.Truncated erythropoietin receptor causes dominantly inherited benign erythrocytosis.Proc Natl Acad Sci USA 1993;90:4495-4499.
    63 Feng GS.Shp-2 tyrosine phosphatase:signaling one cell or many.Exp Cell Res 1999;253:47-54.
    64 Loh ML,Vattikuti S,Schubbert S,Reynolds MG,Carlson E,Lieuw KH,et al.Mutations in PTPN11 implicate the SHP-2 phosphatase in leukemogenesis.Blood 2004;103:2325-31.
    65 Alexander,D.R.(2000) The CD45 tyrosine phosphatase:a positive and negative regulator of immune cell function.Semin.Immunol.12,349-359.
    66 Irie-Sasaki,J.,Sasaki,T.,Matsumoto,W.,Opavsky,A.,Cheng,M.,Welstead,G.,Griffiths,E.,Krawczyk,C.,Richardson,C.D.,Aitken,K.,Iscove,N.,Koretzky,G.,Johnson,P.,Liu,P.,Rothstein,D.M.,Penninger,J.M.(2001)CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling.Nature 409,349-354.
    67 Wong KA. Kim R. Christofk H, Gao J, Lawson G. Wu H. Protein inhibitor of activated STAT Y (PIASy) and a splice variant lacking exon 6 enhance sumoylation but are not essential for embryogenesis and adult life. Mol Cell Biol 2004:24:5577-86.
    
    68 Helgason CD. Damon JE. Rosten P. Grewal R. Sorensen P. Chappel SM. Borowski A. Jirik F. Krystal G. Humphries RK. Targeted disruption of SHIP leads to hemopoitic perturbations, lung pathology, and a shortened life span. Genes Dev.1998: 12. 1610-1620.
    
    69 Liu B. Liao J. Rao X. et al. Inhibition of Statl- mediated gene activation by PIAS1. Proc Natl Acad Sci U S A.1998:95:10626-10631.
    
    70 Chung CD. Liao J. Liu B. et al. Specific inhibition of Stat3 signal transduction by PIAS3.Science. 1997:278:1803-1805.
    
    71 Liao J. Fu Y. Shuai K. Distinct roles of the NH2-and COOH-terminal domains of the protein inhibitor of activated signal transducer and activator of transcription (STAT) 1 (PIAS1) in cytokineinduced PIAS1-Stat1 interaction. Proc Natl Acad Sci U S A. 2000:97:5267-5272.
    
    72 Kotaja N. Aittoma? ki S. Silvennoinen O. Palvimo JJ, Ja(?)ne OA. ARIP3 (androgen receptor-interacting protein 3) and other PIAS (protein inhibitor of activated STAT) proteins differ in their ability to modulate steroid receptor-dependent transcriptional activation. Mol Endocrinol. 2000; 14:1986-2000.
    
    73 Wu L. Wu H, Ma L, et al. Mizl, a novel zinc finger transcription factor that interacts with Msx2 and enhances its affinity for DNA. Mech Dev. 1997:65:3-17.
    
    74 Tan JA. Hall SH. Hamil KG, Grossman G, Petrusz P. French FS. Protein inhibitors of activated STAT resemble scaffold attachment factors and function as interacting nuclear receptor coregulators. J Biol Chem.2002:277:16993-17001.
    
    75 Kotaja N. Karvonen U. Ja(?)ne OA, Palvimo JJ. PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol Cell Biol. 2002:22:5222-5234.
    
    76 Johnson ES, Gupta AA. An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell.2001:106:735-744.
    
    77 Takahashi Y, Kahyo T, Toh EA, Yasuda H, Kikuchi Y. Yeast U111/Siz1 is a novel SUMO1/Smt3 ligase for septin components and functions as an adaptor between conjugating enzyme and substrates. J Biol Chem.2001:276:48973-48977.
    
    78 Sachdev S, Bruhn L, Sieber H. Pichler A, Melchior F, Grosschedl R. PIASy, a nuclear matrixassociated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev. 2001; 15:3088-3103.
    
    79 Melchior F. SUMO—nonclassical ubiquitin. Annu Rev Cell Dev Biol. 2000; 16:591-626.
    
    80 Schmidt D, Muller S. Members of the PIAS family act as SUMO ligases for c-Jun and p53 and repress p53 activity.Proc Natl Acad Sci U S A. 2002;99:2872-2877.
    
    81 Liu B, Liao J, Rao X, Kushner SA, Chung CD, Chang DD, et al. Inhibition of Stat1-mediated gene activation by PIAS1. Proc Natl Acad Sci USA 1998;95:10626-31.
    
    82 Kotaja N. Aittomaki S, Silvennoinen O, Palvimo JJ, Janne OA. ARIP3 (androgen receptor-interacting protein 3) and other PIAS (protein inhibitor of activated STAT) proteins differ in their ability to modulate steroid receptor-dependent transcriptional activation. Mol Endocrinol 2000; 14:1986-2000.
    
    83 Arora T, Liu B, He H. Kim J, Murphy TL, Murphy KM, et al. PIASx is a transcriptional co-repressor of signal transducer and activator of transcription 4. J Biol Chem 2003;278:21327-30.
    
    84 Gross M, Yang R, Top I, Gasper C, Shuai K. PIASy-mediated repression of the androgen receptor is independent of sumoylation. Oncogene 2004;23:3059-66.
    85 Suzuki. A. et al. (2001) CIS3/SOCS3/SSI3 plays a negative regulatory role in STAT3 activation and intestinal inflammation. .J. Exp. Med. 193. 471-481.
    
    86 Lovato. P. ct al. (2003) Constitutive STAT3 activation in intestinal T cells from patients with Crohn's disease. J. Biol.Chem. 278. 16777-16781
    
    87 Shouda. T. et al. (2001) Induction of the cytokine signal regulator SOCS3/CIS3 as a therapeutic strategy for treating inflammatory arthritis. J. Clin. Invest. 108. 1781-1788
    
    88 Egan. P.J. ct al. (2003) Suppressor of cytokine signaling-1 regulates acute inflammatory arthritis and T cell activation.J. Clin. Invest. 111.915-924
    
    89 Seki. Y. et al. (2003) SOCS-3 regulates onset and maintenance of T(H)2-mediated allergic responses. Nat. Med. 9.1047-1054
    
    90 Yoshikawa. H. et al. (2001) SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat. Genet. 28, 29-35
    
    91 Nagai. H. et al. (2001) Inactivation of SSI-I, a JAK/STAT inhibitor, in human hepatocellular carcinomas, as revealed by two-dimensional electrophoresis. J. Hepatol. 34, 416-421
    
    92Galm, O. et al. (2003) SOCS-1. a negative regulator of cytokine signaling, is frequently silenced by methylation in multiple myeloma. Blood 101, 2784-2788
    
    93 Yasukawa. H. et al. (2003) The suppressor of cytokine signaling-1 (SOCS1) is a novel therapeutic target for enterovirus-induced cardiac injury. J. Clin. Invest. 111. 469-478
    
    94 Bertholet, S. et al. (2003) Leishmania donovani-induced expression of suppressor of cytokine signaling 3 in human macrophages: a novel mechanism for intracellular parasite suppression of activation. Infect. Immun. 71. 2095-2101
    
    95 Bode. J.G. et al. (2003) IFN-a antagonistic activity of HCV core protein involves induction of suppressor of cytokine signaling-3. FASEB J. 17, 488-490
    
    96 Sakamoto, H. et al. (1998) A Janus kinase inhibitor, JAB, is an interferon-g-inducible gene and confers resistance to interferons. Blood 92, 1668-1676
    
    97 Sakai, I. et al. (2002) Constitutive expression of SOCS3 confers resistance to IFN-a in chronic myelogenous leukemia cells. Blood 100,2926-2931
    
    98 Dogusan Z, Hooghe-Peters EL, Berus D, Velkeniers B, Hooghe R. Expression of SOCS genes in normal and leukemic human leukocytes stimulated by prolactin, growth hormone and cytokines. Neuroimmunol. 2000 Sep 1; 109(1 ):34-9.
    
    99 Schultheis B, Carapeti-Marootian M, Hochhaus A, Weisser A, Goldman JM, Melo JV. Overexpression of SOCS-2 in advanced stages of chronic myeloid leukemia: possible inadequacy of a negative feedback mechanism. Blood. 2002 Mar 1;99(5):1766-75.
    
    100 Harder KW, Quilici C, Naik E, Inglese M, Kountouri N, Turner A, Zlatic K, Tarlinton DM, Hibbs ML. Perturbed myelo/erythropoiesis in Lyn-deficient mice is similar to that in mice lacking the inhibitory phosphatases SHP-1 and SHIP-1. Blood. 2004 Dec 15;104(13):3901-10.
    
    101 Tartaglia M. Martinelli S, Cazzaniga G, Cordeddu V, Iavarone I, Spinelli M, et al. Genetic evidence for lineage-related and differentiation stage-related contribution of somatic PTPN11 mutations to leukemogenesis in childhood acute leukemia. Blood 2004; 104:307- 13.
    
    102 Kumar S. Rajkumar SV, Kimlinger T, Greipp PR, Witzig TE. CD45 expression by bone marrow plasma cells in multiple myeloma: clinical and biological correlations. Leukemia. 2005 Aug; 9(8): 1466-70.