基于生物信息学方法的水稻TLP、SBP-box、CPP-like、Cystatin和HAK基因家族的分子进化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因家族起源、分化的分子机制研究是生物进化领域的重要研究内容。随着各种模式生物基因组测序工作的完成,人们对基因家族研究兴趣越来越浓。植物基因组中基因家族的成员数目往往比动物等其他物种中更多,这主要是由于其在植物物种中特异性扩张造成的,物种特异性扩张主要有3种方式,即片段复制、串联重复和逆转录转座等。其中片段重复和串联重复为主要方式。重复的基因可能经历正选择和基因转换等适应性进化的选择压力。目前对重复基因的命运的讨论已比较多,主要模型有亚功能化、非功能化、新功能化和亚新功能化等模型。水稻基因组在进化过程中至少经历了两次全基因组倍增事件,从而产生了大量的重复基因。已有生物信息学分析表明水稻籼粳两个亚种的分化时间可能在距今50万年前。此外,在水稻基因组被测序之后,多个研究机构对水稻中基因家族的分子进化规律进行了分析,使得基因家族的分子进化研究成为水稻基因组研究领域的热点之一。本文在这些研究的基础上,从基因组水平上对水稻TLP、SBP-box、CPP-like、Cystatin和HAK 5个基因家族进行了生物信息学分析和分子进化研究。主要结果如下:
     (1)类Tubby蛋白质(Tubby-like proteins,TLP)在动物中属于一个较小的蛋白质家族,但是在动物生长发育中起着重要作用,主要表现在对神经细胞的维持和功能等方面。该基因家族的成员广泛存在于动植物等多细胞生物中。本研究中,对拟南芥、水稻和杨树的TLP基因家族进行了系统发生分析,并进行了分子进化研究。通过在基因组水平上的搜索,在拟南芥、水稻和杨树基因组中分别发现了11、14和11个TLP基因。植物中的大部分TLP蛋白质包含两个高度保守的结构域,分别是TUB和F-box结构域。通过系统发生分析,可以将植物中的该基因家族成员分成3个亚族,并且发现该基因家族成员数目在单子叶和双子叶植物分离之后按照物种特异性的方式进行了扩张。该基因家族的内含子位置在大多数基因中是保守的,表明这一基因家族的外显子/内含子结构在单子叶和双子叶植物分离之前便已经形成了。在基因组水平上对这3个物种的基因扩张模式进行了分析,发现水稻和杨树TLP基因家族的扩张主要是由于片段重复引起的,而非串联重复和随机性复制与重复事件。协同进化分析表明TUB和F-box结构域在进化过程中是协同进化的,并且可能一起行使着一定的功能。对3个物种中TLP的旁系同源基因进行的组织特异性表达分析表明在长期的进化过程中,重复基因发生功能分歧是其主要特征。对重复基因的Ka /Ks分析表明正选择和自然选择可能对重复基因的功能性分歧起着重要作用。
     (2)SBP-box基因家族是植物特有的转录因子基因家族。这类基因编码的蛋白质序列中包含一个高度保守的SBP结构域,并能够特异结合在植物花分生组织识别基因SQUAMOSA及其同源基因的启动子区段,以调控其表达。本研究中,利用已知SBP-box基因所编码蛋白质的SBP结构域为检索序列,在拟南芥和水稻基因组中分别鉴定出17和19个SBP-box基因。系统发生分析表明这类基因的基本特点在拟南芥和水稻分离之前便已经建立,并且在单子叶和双子叶植物分离之后,在拟南芥和水稻中均按照物种特异性的方式进行了扩张,片段复制对这两个物种中SBP-box基因家族的扩张均起到重要的作用。根据系统发生树将SBP-box基因家族分成了9个同源簇,每一同源簇中均具有相似的基序,并且基序在蛋白质中的排列顺序也非常相似。非同义替换率与同义替换率分析表明同源基因的SBP结构域区段经历了纯化选择,而结构域之外的区段则经历了正选择或者较弱的纯化选择。通过对EST数据库的搜索,进一步分析了SBP-box基因家族的表达模式,结果表明拟南芥的SBP-box基因主要在花、叶、根和种子中表达,而水稻的SBP-box基因则主要在花和愈伤组织中表达。
     (3)类CPP基因家族(CPP-like gene family)属于一类成员数目较少的基因家族,该基因家族成员编码的蛋白质序列含有一到两个富含半胱氨酸的结构域,即CXC结构域。该基因家族在植物和动物中广泛存在,但是没有在酵母中发现。为了解CPP-like基因家族在植物中的进化规律,本研究对拟南芥和水稻基因组中的CPP-like基因家族进行了比较分析和分子进化研究。系统进化分析表明在单子叶和双子叶植物分化完成之后,拟南芥和水稻基因组中的CPP-like基因家族按照物种特异性的方式进行了扩张,并且在拟南芥中还发现了基因丢失现象。对重复基因的内含子/外显子结构分析表明内含子获得和丢失均对这些基因的进化起到重要的作用。进一步分析表明正选择压力是植物中CPP-like基因进化的主要动力,并且发现具有正选择作用的氨基酸位点大部分位于结构域之外的序列中。此外本研究还发现CPP-like基因编码的蛋白质中存在两段CXC结构域,这两段CXC结构域序列及连接这两段结构域的序列在长期的进化过程中是协同进化的。
     (4)半胱氨酸蛋白酶抑制剂(cystatin)基因广泛存在于植物物种中。该类基因能够起到抑制某些病原微生物和昆虫体内半胱氨酸蛋白酶的作用,在植物的防卫体系中起到重要作用。我们利用已经分离出的植物cystatin基因的cystatin结构域为检索序列在基因组水平上对拟南芥和水稻中的cystatin基因家族的成员进行了鉴定和系统发生分析。结合结构域的鉴定、多序列联配以及MEME分析最终确定了7个拟南芥和12个水稻的cystatin基因。系统发生分析表明cystatin基因的基本特征很可能是在拟南芥和水稻的分离之前就已经形成了。cystatin结构域在蛋白质间是高度保守的。拟南芥与水稻Cystatin基因家族的两个亚族之间发生了功能性分歧,并且适应性进化在其进化过程中起着重要作用。拟南芥和水稻的cystatin基因主要在花、叶、根、种子和愈伤组织中表达,这对植物避免昆虫的侵害将起到重要作用。
     (5)高亲和力钾离子(high-affinity K+)转运体基因家族是植物中最大的钾离子转运基因家族,在植物的生长发育中起着重要作用。本研究中通过全基因组搜索,在水稻基因组中发现27个编码高亲和力钾离子转运体的基因。通过系统发生树将拟南芥与水稻的HAK转运子基因家族分成4个相互独立的亚族。在单子叶和双子叶植物分离之后,水稻中的HAK基因按照种系特异性方式进行了扩张。对该基因家族的功能性分歧分析表明该家族发生了功能性分歧现象。对该基因家族的适应性进化分析表明具有正选择效应的点突变和基因转换事件在该基因家族的进化过程中起到重要的作用。
     以上关于水稻5个基因家族的生物信息学分析和分子进化研究结果将为这些基因的功能鉴定奠定重要基础。
The molecular mechanism for genesis, differentiation of gene families was the important content in the field of molecular evolution. With the completeness of sequencing projects for some model organisms, more attention was put on the evolutionary analysis of gene families. There usually are more members for a gene family in plants than in animals and other organisms. This was the result of species-specific expansion of gene families in plants. Gene duplication may arise through three principal mechanisms: segmental duplication, tandem duplication and transposition events such as retroposition and replicative transposition. The main mechanism of gene duplication was segmental duplication and tandem duplication. The genes in duplicate pairs may go through positive selection and gene conversion after the duplication. Some models were developed to explain the fate of duplicated genes. Among them, nonfunctionalization, neofunctionalization, subfunctionalization and subneofuncitonalizaiton were widely accepted. In previous studies, several rounds of whole genome duplication in rice genome were reported. And this resulted in many duplicated genes. With bioinformatic analysis, the indica-japonica divergence was found occuring at the last 0.5 million years ago. Many researches consisted with the evolution of rice gene families after the sequencing of rice genomes, and the evolutionary anlyses of gene families in rice had become one of the most important subjects in the field of rice genetics. In present study, we performed the bioinformatic and evolutionary analyses of TLP, SBP-box, CPP-like, Cystatin and HAK gene families in rice. The main results showed as follows:
     (1) Tubby-like proteins (TLP) played an important role in maintenance and functionization of neuronal cells during postdifferentiation and development in mammals, and had been found in multicellular organisms from both the plant and animal kingdoms. We presented here a comparative phylogentic and molecular evolutionary analysis of the TLP gene family in Arabidopsis, rice and poplar. At the level of genome-wide screening, we identified 11 TLP genes in Arabidopsis, 14 in rice and 11 in poplar. Most Tubby-like proteins in plants contained both highly conserved TUB and F-box domains. Alignment of predicted protein sequences showed that there were four conserved blocks in TUB domain. Phylogenetic analysis grouped this family into three subfamilies and suggested that species-specific expansion contributed to the evolution of this family in plants. The intron distribution of this family was conserved in most members of this family, suggesting that the exon/intron structure of this family had been existent before the split of monocots and dicots. On a genome scale we revealed that the rice and poplar TLP family should have expanded mainly through segmental duplication events, rather than through tandem duplication and replicative transposition events. Co-evolutionary analysis revealed that TUB and F-box domains had possibly co-evolved during the evolution of proteins that possessed both domains. The tissue-specific expression analysis illustrated that functional diversification of the duplicated TLP genes was a major feature of the long-term evolution. Furthermore, analysis of nonsynonymous and synonymous substitution rates indicated positive and neutral selections contributed to the functional diversification of duplicated pairs.
     (2) SBP-box proteins are plant-specific putative transcription factors, which contain highly conserved SBP domain and could bind specifically to promoters of the floral meristem identity gene SQUAMOSA and its orthologous genes to regulate their expressions. In this study, 17 nonredundant SBP-box genes in Arabidopsis genome and 19 in rice genome were identified by using the known SBP domain sequences as queries. The phylogenetic analysis suggested that the main characteristics of this family might have been in existence before the split of Arabidopsis and rice, and most SBP-box genes expanded in a species-specific manner after the split of monocotyledon and dicotyledon. Segmental duplication events contributed mostly to the expansion of this family in two species. All the SBP-box proteins were classified into 9 subgroups based on the phylogenetic tree, where each group shared similar motifs and the orders of the motifs in the same group were found almost identical. Analysis of nonsynonymous and synonymous substitution rates revealed that the SBP domain had gone through purifying selection, whereas some regions outside SBP domain had gone through positive or relaxed purifying selection. The expression patterns of the SBP-box genes were further investigated by searching against the EST database. Results showed that the Arabidopsis SBP-box genes are expressed chiefly in flowers, leaves, roots and seeds, while those in rice mainly in flowers and callus.
     (3) CPP-like genes are members of a small family which features the existence of two similar Cys-rich domains termed CXC domain in their protein products and distribute widely in plants and animals but do not exist in yeast. The members of this family in plants play an important role in development of reproductive tissue and control of cell division. To gain insights into how CPP-like genes evolved in plants, we conducted a comparative phylogentic and molecular evolutionary analysis of the CPP-like gene family in Arabidopsis and rice. The results of phylogeny revealed that both gene loss and species-specific expansion contributed to the evolution of this family in Arabidopsis and rice. Both intron gain and loss were observed through intron/exon structure analysis for duplicated genes. Our results also suggested that positive selection was a major force during the evolution of CPP-like genes in plants, and most amino acid residues under positive selection were disproportionately located in the region outside the CXC domains. Further analysis revealed that two CXC domains and sequences connecting them might have co-evolved during the long evolutionary period.
     (4) Plant cystatins or phytocystatins are cysteine proteinase inhibitors, which exist widely in different plant species. Because these genes can kill insects and pathogens by inhibiting the digestive function of the cysteine proteinase in gut, they are believed to play an important role in plant defense against pests and pathogens. In this study, we used the cystatin domain sequences that identified from the cystatin genes in plants as queries to search for cystatin genes in both Arabidopsis and rice genomes. A phylogenetic tree was then constructed based on the corresponding cystatin proteins from Arabidopsis and rice and the conserved sequences of these proteins were analyzed. Finally we searched the Genbank EST database to get the expression information of these genes. The results showed that 7 non-redundant cystatin genes in Arabidopsis and 12 in rice were identified based the identification of the cystatin domains and combining the results with the analysis of alignment and MEME. The phylogenetic analysis of these sequences indicated that the main character for cystatin genes might have been existent before the differentiation of Arabidopsis and rice. The cystatin domains among these proteins are highly conserved. The Arabidopsis and rice cystatin genes are expressed mainly in flower, leave, root, seed and callus, which is important for plant to defend the insects.
     (5) The high-affinity K+ (HAK) transporter gene family was the largest family in plant that functioned as potassium transporter and was important for various aspects of plant life. In present analysis, we identified 27 members of this family in rice in a genome-wide scale. The phylogenetic tree divided HAK transporter proteins into four distinct groups. The HAK genes in rice were found to have expanded in lineage-specific manner after the split of monocots and dicots. Functional divergence analysis for this family provided statistical evidence for shifted evolutionary rate after gene duplication. Further analysis indicated that both point mutant with positive selection and gene conversion events contributed to the evolution of this family in rice.
     The above results would lay a foundation for functional validation exercise aimed at understanding the role of the members of these gene families.
引文
1. Aiyar A: The use of CLUSTAL W and CLUSTAL X for multiple sequence alignment.Methods Mol Biol 2000, 132:221-241.
    2. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R et al: Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23(21):2947-2948.
    3. Ogden TH, Rosenberg MS: Alignment and topological accuracy of the direct optimization approach via POY and traditional phylogenetics via ClustalW + PAUP*. Syst Biol 2007, 56(2):182-193.
    4. Retief JD: Phylogenetic analysis using PHYLIP. Methods Mol Biol 2000, 132:243-258.
    5. Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 2007, 24(8):1596-1599.
    6. Yang Z: PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007, 24(8):1586-1591.
    7. Lespinet O, Wolf YI, Koonin EV, Aravind L: The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res 2002, 12(7):1048-1059.
    8. Guyot R, Keller B: Ancestral genome duplication in rice. Genome 2004, 47(3):610-614.
    9. Yu J, Wang J, Lin W, Li S, Li H, Zhou J, Ni P, Dong W, Hu S, Zeng C et al: The Genomes of Oryza sativa: a history of duplications. PLoS Biol 2005, 3(2):e38.
    10. Gu X, Zhang Z, Huang W: Rapid evolution of expression and regulatory divergences after yeast gene duplication. Proc Natl Acad Sci U S A 2005, 102(3):707-712.
    11. Gu Z, Steinmetz LM, Gu X, Scharfe C, Davis RW, Li WH: Role of duplicate genes in genetic robustness against null mutations. Nature 2003, 421(6918):63-66.
    12. Bowers JE, Chapman BA, Rong J, Paterson AH: Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 2003, 422(6930):433-438.
    13. Raes J, Vandepoele K, Simillion C, Saeys Y, Van de Peer Y: Investigating ancient duplication events in the Arabidopsis genome. J Struct Funct Genomics 2003, 3(1-4):117-129.
    14. Remington DL, Vision TJ, Guilfoyle TJ, Reed JW: Contrasting modes of diversification in the Aux/IAA and ARF gene families. Plant Physiol 2004, 135(3):1738-1752.
    15.李鸿健,谭军:拟南芥基因倍增及基因流失分析.重庆邮电学院学报(自然科学版) 2006, 18(4):548-552.
    16. Kong H, Landherr LL, Frohlich MW, Leebens-Mack J, Ma H, dePamphilis CW: Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth. Plant J 2007, 50(5):873-885.
    17. Nakano T, Suzuki K, Fujimura T, Shinshi H: Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 2006, 140(2):411-432.
    18. Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KF, Li WH: Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 2004, 16(5):1220-1234.
    19. Hurles M: Gene duplication: the genomic trade in spare parts. PLoS Biol 2004, 2(7):E206.
    20. Wang W, Zheng H, Fan C, Li J, Shi J, Cai Z, Zhang G, Liu D, Zhang J, Vang S et al: High rate of chimeric gene origination by retroposition in plant genomes. Plant Cell 2006, 18(8):1791-1802.
    21. Burki F, Kaessmann H: Birth and adaptive evolution of a hominoid gene that supports high neurotransmitter flux. Nat Genet 2004, 36(10):1061-1063.
    22. Brosius J: Retroposons--seeds of evolution. Science 1991, 251(4995):753.
    23. Mladek C, Guger K, Hauser MT: Identification and characterization of the ARIADNE gene family in Arabidopsis. A group of putative E3 ligases. Plant Physiol 2003, 131(1):27-40.
    24. Mondragon-Palomino M, Gaut BS: Gene conversion and the evolution of three leucine-rich repeat gene families in Arabidopsis thaliana. Mol Biol Evol 2005, 22(12):2444-2456.
    25. Juretic N, Hoen DR, Huynh ML, Harrison PM, Bureau TE: The evolutionary fate of MULE-mediated duplications of host gene fragments in rice. Genome Res 2005, 15(9):1292-1297.
    26. Mondragon-Palomino M, Meyers BC, Michelmore RW, Gaut BS: Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana. Genome Res 2002, 12(9):1305-1315.
    27. Sun X, Cao Y, Wang S: Point mutations with positive selection were a major force during the evolution of a receptor-kinase resistance gene family of rice. Plant Physiol 2006,
    140(3):998-1008.
    28. Yang X, Tuskan GA, Cheng MZ: Divergence of the Dof gene families in poplar, Arabidopsis, and rice suggests multiple modes of gene evolution after duplication. Plant Physiol 2006, 142(3):820-830.
    29. Yang Z, Wang X, Gu S, Hu Z, Xu H, Xu C: Comparative study of SBP-box gene family in Arabidopsis and rice. Gene 2007.
    30. Sawyer S: Statistical tests for detecting gene conversion. Mol Biol Evol 1989, 6(5):526-538.
    31. Teshima KM, Innan H: The effect of gene conversion on the divergence between duplicated genes. Genetics 2004, 166(3):1553-1560.
    32. Drouin G: Characterization of the gene conversions between the multigene family members of the yeast genome. J Mol Evol 2002, 55(1):14-23.
    33. Semple C, Wolfe KH: Gene duplication and gene conversion in the Caenorhabditis elegans genome. J Mol Evol 1999, 48(5):555-564.
    34. Ezawa K, S OO, Saitou N: Proceedings of the SMBE Tri-National Young Investigators' Workshop 2005. Genome-wide search of gene conversions in duplicated genes of mouse and rat. Mol Biol Evol 2006, 23(5):927-940.
    35. Xu S, Clark T, Zheng H, Vang S, Li R, Wong GK, Wang J, Zheng X: Gene conversion in the rice genome. BMC Genomics 2008, 9(1):93.
    36.季军,杨四海,田大成:水稻基因组中抗病基因正选择方式及基因转换的研究.中国农业科学2007, 40(9):1856-1863.
    37. Ohno S: Evolution by Gene Duplication. Heideberg: Springer-Verlag; 1970.
    38. Hughes AL: The evolution of functionally novel proteins after gene duplication. Proc Biol Sci 1994, 256(1346):119-124.
    39. Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J: Preservation of duplicate genes by complementary, degenerative mutations. Genetics 1999, 151(4):1531-1545.
    40. He X, Zhang J: Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution. Genetics 2005, 169(2):1157-1164.
    41. Moore RC, Purugganan MD: The evolutionary dynamics of plant duplicate genes. Curr Opin Plant Biol 2005, 8(2):122-128.
    42. Rodin SN, Riggs AD: Epigenetic silencing may aid evolution by gene duplication. J Mol Evol 2003, 56(6):718-729.
    43. Rapp RA, Wendel JF: Epigenetics and plant evolution. New Phytol 2005, 168(1):81-91.
    44. Nei M, Kumar S: Molecular Evolution and Phylogenetics. Oxford: Oxford University Press; 2000.
    45. Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X et al: A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 2002, 296(5565):79-92.
    46. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H et al: A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 2002, 296(5565):92-100.
    47. The map-based sequence of the rice genome. Nature 2005, 436(7052):793-800.
    48.樊龙江,郭兴益:从水稻基因组序列中挖掘生物信息.浙江大学学报(农业与生命科学版) 2005, 31(4):355-361.
    49. Vandepoele K, Simillion C, Van de Peer Y: Evidence that rice and other cereals are ancient aneuploids. Plant Cell 2003, 15(9):2192-2202.
    50. Lin H, Zhu W, Silva JC, Gu X, Buell CR: Intron gain and loss in segmentally duplicated genes in rice. Genome Biol 2006, 7(5):R41.
    51. Wang X, Shi X, Hao B, Ge S, Luo J: Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol 2005, 165(3):937-946.
    52. Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L et al: The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res 2007, 35(Database issue):D883-887.
    53. Yuan Q, Ouyang S, Liu J, Suh B, Cheung F, Sultana R, Lee D, Quackenbush J, Buell CR: The TIGR rice genome annotation resource: annotating the rice genome and creating resources for plant biologists. Nucleic Acids Res 2003, 31(1):229-233.
    54. Paterson AH, Bowers JE, Chapman BA: Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci U S A 2004, 101(26):9903-9908.
    55. Bennetzen JL: Comparative sequence analysis of plant nuclear genomes:m microcolinearity and its many exceptions. Plant Cell 2000, 12(7):1021-1029.
    56. Shen YJ, Jiang H, Jin JP, Zhang ZB, Xi B, He YY, Wang G, Wang C, Qian L, Li X et al:Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol 2004, 135(3):1198-1205.
    57.蔡星星,刘晶,仇吟秋,赵伟,宋志平,卢宝荣:籼稻93-11和粳稻日本晴DNA插入缺失差异片段揭示的水稻籼-粳分化.复旦学报(自然科学版) 2006, 45(309-314).
    58. Shahmuradov IA, Akbarova YY, Solovyev VV, Aliyev JA: Abundance of plastid DNA insertions in nuclear genomes of rice and Arabidopsis. Plant Mol Biol 2003, 52(5):923-934.
    59. Wolfe KH, Gouy M, Yang YW, Sharp PM, Li WH: Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acad Sci U S A 1989, 86(16):6201-6205.
    60. Sall T, Jakobsson M, Lind-Hallden C, Hallden C: Chloroplast DNA indicates a single origin of the allotetraploid Arabidopsis suecica. J Evol Biol 2003, 16(5):1019-1029.
    61. Guo X, Ruan S, Hu W, Cai D, Fan L: Chloroplast DNA insertions into the nuclear genome of rice: the genes, sites and ages of insertion involved. Funct Integr Genomics 2008, 8(2):101-108.
    62. Ma J, Bennetzen JL: Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci U S A 2004, 101(34):12404-12410.
    63. Lu BR, Zheng KL, Qian HR, Zhuang JY: Genetic differentiation of wild relatives of rice as assessed by RFLP analysis. Theor Appl Genet 2002, 106(1):101-106.
    64. Sang T, Ge S: Genetics and phylogenetics of rice domestication. Curr Opin Genet Dev 2007,
    17(6):533-538.
    65. Ross-Ibarra J, Morrell PL, Gaut BS: Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc Natl Acad Sci U S A 2007, 104 Suppl 1:8641-8648.
    66. Li C, Zhou A, Sang T: Rice domestication by reducing shattering. Science 2006, 311(5769):1936-1939.
    67. Sweeney MT, Thomson MJ, Pfeil BE, McCouch S: Caught red-handed: Rc encodes a basic helix-loop-helix protein conditioning red pericarp in rice. Plant Cell 2006, 18(2):283-294.
    68. Olsen KM, Caicedo AL, Polato N, McClung A, McCouch S, Purugganan MD: Selection under domestication: evidence for a sweep in the rice waxy genomic region. Genetics 2006, 173(2):975-983.
    69. Kovach MJ, Sweeney MT, McCouch SR: New insights into the history of rice domestication. Trends Genet 2007, 23(11):578-587.
    70.董亿,张建国,王永军,张劲松,陈受宜: Phylogenetic analysis of receptor-like kinases from rice.植物学报2004, 46(6):647-654.
    71. Strain E, Muse SV: Positively selected sites in the Arabidopsis receptor-like kinase gene family. J Mol Evol 2005, 61(3):325-332.
    72. Morohashi K, Minami M, Takase H, Hotta Y, Hiratsuka K: Isolation and characterization of a novel GRAS gene that regulates meiosis-associated gene expression. J Biol Chem 2003, 278(23):20865-20873.
    73. Bolle C, Koncz C, Chua NH: PAT1, a new member of the GRAS family, is involved inphytochrome A signal transduction. Genes Dev 2000, 14(10):1269-1278.
    74. Tian C, Wan P, Sun S, Li J, Chen M: Genome-wide analysis of the GRAS gene family in rice and Arabidopsis. Plant Mol Biol 2004, 54(4):519-532.
    75. Hagen G, Guilfoyle T: Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 2002, 49(3-4):373-385.
    76. Jain M, Tyagi AK, Khurana JP: Genome-wide analysis, evolutionary expansion, and expression of early auxin-responsive SAUR gene family in rice (Oryza sativa). Genomics 2006, 88(3):360-371.
    77. Yanagisawa S: Dof domain proteins: plant-specific transcription factors associated with diverse phenomena unique to plants. Plant Cell Physiol 2004, 45(4):386-391.
    78. Lijavetzky D, Carbonero P, Vicente-Carbajosa J: Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families. BMC Evol Biol 2003, 3:17.
    79. Buttner M: The monosaccharide transporter(-like) gene family in Arabidopsis. FEBS Lett 2007, 581(12):2318-2324.
    80. Johnson DA, Thomas MA: The monosaccharide transporter gene family in Arabidopsis and rice: a history of duplications, adaptive evolution, and functional divergence. Mol Biol Evol 2007, 24(11):2412-2423.
    81. Johnson DA, Hill JP, Thomas MA: The monosaccharide transporter gene family in land plants is ancient and shows differential subfamily expression and expansion across lineages. BMC Evol Biol 2006, 6:64.
    1. Ikeda A, Nishina PM, Naggert JK: The tubby-like proteins, a family with roles in neuronal development and function. J Cell Sci 2002, 115(Pt 1):9-14.
    2. Kleyn PW, Fan W, Kovats SG, Lee JJ, Pulido JC, Wu Y, Berkemeier LR, Misumi DJ, Holmgren L, Charlat O et al: Identification and characterization of the mouse obesity gene tubby: a member of a novel gene family. Cell 1996, 85(2):281-290.
    3. Noben-Trauth K, Naggert JK, North MA, Nishina PM: A candidate gene for the mouse mutation tubby. Nature 1996, 380(6574):534-538.
    4. North MA, Naggert JK, Yan Y, Noben-Trauth K, Nishina PM: Molecular characterization of TUB, TULP1, and TULP2, members of the novel tubby gene family and their possible relation to ocular diseases. Proc Natl Acad Sci U S A 1997, 94(7):3128-3133.
    5. Lai CP, Lee CL, Chen PH, Wu SH, Yang CC, Shaw JF: Molecular analyses of the Arabidopsis TUBBY-like protein gene family. Plant Physiol 2004, 134(4):1586-1597.
    6. Jain M, Nijhawan A, Arora R, Agarwal P, Ray S, Sharma P, Kapoor S, Tyagi AK, Khurana JP: F-box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol 2007, 143(4):1467-1483.
    7. Carroll K, Gomez C, Shapiro L: Tubby proteins: the plot thickens. Nat Rev Mol Cell Biol 2004, 5(1):55-63.
    8. Kong H, Landherr LL, Frohlich MW, Leebens-Mack J, Ma H, dePamphilis CW: Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth. Plant J 2007, 50(5):873-885.
    9. Cannon SB, Mitra A, Baumgarten A, Young ND, May G: The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 2004, 4:10.
    10. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000, 408(6814):796-815.
    11. The map-based sequence of the rice genome. Nature 2005, 436(7052):793-800.
    12. Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X et al: A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 2002, 296(5565):79-92.
    13. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H et al: A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 2002, 296(5565):92-100.
    14. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A et al: The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 2006, 313(5793):1596-1604.
    15. Sonnhammer EL, Eddy SR, Durbin R: Pfam: a comprehensive database of protein domainfamilies based on seed alignments. Proteins 1997, 28(3):405-420.
    16. Aiyar A: The use of CLUSTAL W and CLUSTAL X for multiple sequence alignment. Methods Mol Biol 2000, 132:221-241.
    17. Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol Biol Evol 2007, 24(8):1596-1599.
    18. Bailey TL, Elkan C: Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 1994, 2:28-36.
    19. Goh CS, Bogan AA, Joachimiak M, Walther D, Cohen FE: Co-evolution of proteins with their interaction partners. J Mol Biol 2000, 299(2):283-293.
    20. Maher C, Stein L, Ware D: Evolution of Arabidopsis microRNA families through duplication events. Genome Res 2006, 16(4):510-519.
    21. Jaiswal P, Ni J, Yap I, Ware D, Spooner W, Youens-Clark K, Ren L, Liang C, Zhao W, Ratnapu K et al: Gramene: a bird's eye view of cereal genomes. Nucleic Acids Res 2006, 34(Database issue):D717-723.
    22. Comeron JM: K-Estimator: calculation of the number of nucleotide substitutions per site and the confidence intervals. Bioinformatics 1999, 15(9):763-764.
    23. Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KF, Li WH: Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 2004, 16(5):1220-1234.
    24. Blanc G, Wolfe KH: Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 2004, 16(7):1667-1678.
    25. Yu J, Wang J, Lin W, Li S, Li H, Zhou J, Ni P, Dong W, Hu S, Zeng C et al: The Genomes of Oryza sativa: a history of duplications. PLoS Biol 2005, 3(2):e38.
    26. Lynch M, Conery JS: The evolutionary fate and consequences of duplicate genes. Science 2000, 290(5494):1151-1155.
    27. Reinartz J, Bruyns E, Lin JZ, Burcham T, Brenner S, Bowen B, Kramer M, Woychik R: Massively parallel signature sequencing (MPSS) as a tool for in-depth quantitative gene expression profiling in all organisms. Brief Funct Genomic Proteomic 2002, 1(1):95-104.
    28. Leseberg CH, Li A, Kang H, Duvall M, Mao L: Genome-wide analysis of the MADS-box gene family in Populus trichocarpa. Gene 2006, 378:84-94.
    29. Li X, Duan X, Jiang H, Sun Y, Tang Y, Yuan Z, Guo J, Liang W, Chen L, Yin J et al: Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiol 2006, 141(4):1167-1184.
    30. Devoto A, Hartmann HA, Piffanelli P, Elliott C, Simmons C, Taramino G, Goh CS, Cohen FE, Emerson BC, Schulze-Lefert P et al: Molecular phylogeny and evolution of the plant-specific seven-transmembrane MLO family. J Mol Evol 2003, 56(1):77-88.
    31. Liu Q, Xue Q: Molecular phylogeny, evolution, and functional divergence of the LSD1-like gene family: inference from the rice genome. J Mol Evol 2007, 64(3):354-363.
    32. Yang X, Tuskan GA, Cheng MZ: Divergence of the Dof gene families in poplar, Arabidopsis, and rice suggests multiple modes of gene evolution after duplication. PlantPhysiol 2006, 142(3):820-830.
    33. Ohlrogge J, Benning C: Unraveling plant metabolism by EST analysis. Curr Opin Plant Biol 2000, 3(3):224-228.
    34. Juretic N, Hoen DR, Huynh ML, Harrison PM, Bureau TE: The evolutionary fate of MULE-mediated duplications of host gene fragments in rice. Genome Res 2005, 15(9):1292-1297.
    35. Jordan IK, Makarova KS, Spouge JL, Wolf YI, Koonin EV: Lineage-specific gene expansions in bacterial and archaeal genomes. Genome Res 2001, 11(4):555-565.
    36. Lespinet O, Wolf YI, Koonin EV, Aravind L: The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res 2002, 12(7):1048-1059.
    37. Zhang S, Chen C, Li L, Meng L, Singh J, Jiang N, Deng XW, He ZH, Lemaux PG: Evolutionary expansion, gene structure, and expression of the rice wall-associated kinase gene family. Plant Physiol 2005, 139(3):1107-1124.
    38. Yang Z, Wang X, Gu S, Hu Z, Xu H, Xu C: Comparative study of SBP-box gene family in Arabidopsis and rice. Gene 2008, 407(1-2):1-11.
    39. Jain M, Tyagi AK, Khurana JP: Genome-wide analysis, evolutionary expansion, and expression of early auxin-responsive SAUR gene family in rice (Oryza sativa). Genomics 2006, 88(3):360-371.
    40. Wang X, Shi X, Hao B, Ge S, Luo J: Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol 2005, 165(3):937-946.
    41. Raes J, Vandepoele K, Simillion C, Saeys Y, Van de Peer Y: Investigating ancient duplication events in the Arabidopsis genome. J Struct Funct Genomics 2003, 3(1-4):117-129.
    42. Simillion C, Vandepoele K, Van Montagu MC, Zabeau M, Van de Peer Y: The hidden duplication past of Arabidopsis thaliana. Proc Natl Acad Sci U S A 2002, 99(21):13627-13632.
    43. Sterck L, Rombauts S, Jansson S, Sterky F, Rouze P, Van de Peer Y: EST data suggest that poplar is an ancient polyploid. New Phytol 2005, 167(1):165-170.
    44. Pazos F, Valencia A: Similarity of phylogenetic trees as indicator of protein-protein interaction. Protein Eng 2001, 14(9):609-614.
    45. Thornton JW, DeSalle R: Gene family evolution and homology: genomics meets phylogenetics. Annu Rev Genomics Hum Genet 2000, 1:41-73.
    46. Lijavetzky D, Carbonero P, Vicente-Carbajosa J: Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families. BMC Evol Biol 2003, 3:17.
    47. Tatusov RL, Koonin EV, Lipman DJ: A genomic perspective on protein families. Science 1997, 278(5338):631-637.
    48. Blanc G, Wolfe KH: Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 2004, 16(7):1679-1691.
    49. Shan H, Zhang N, Liu C, Xu G, Zhang J, Chen Z, Kong H: Patterns of gene duplication andfunctional diversification during the evolution of the AP1/SQUA subfamily of plant MADS-box genes. Mol Phylogenet Evol 2007, 44(1):26-41.
    50. He X, Zhang J: Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution. Genetics 2005, 169(2):1157-1164.
    1. Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR et al: Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 2000, 290(5499):2105-2110.
    2. Xiong Y, Liu T, Tian C, Sun S, Li J, Chen M: Transcription factors in rice: a genome-wide comparative analysis between monocots and eudicots. Plant Mol Biol 2005, 59(1):191-203.
    3. Klein J, Saedler H, Huijser P: A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA. Mol Gen Genet 1996, 250(1):7-16.
    4. Becraft PW, Bongard-Pierce DK, Sylvester AW, Poethig RS, Freeling M: The liguleless-1 gene acts tissue specifically in maize leaf development. Dev Biol 1990, 141(1):220-232.
    5. Cardon GH, Hohmann S, Nettesheim K, Saedler H, Huijser P: Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: a novel gene involved in the floral transition. Plant J 1997, 12(2):367-377.
    6. Shao CX, Takeda Y, Hatano S, Matsuoka M, Hirano HY: Rice genes encoding the SBP domain protein, which is a new type of transcription factor controlling plant development. Rice Genet Newsl 1999, 16:114.
    7. Lannenpaa M, Janonen I, Holtta-Vuori M, Gardemeister M, Porali I, Sopanen T: A new SBP-box gene BpSPL1 in silver birch (Betula pendula). Physiol Plant 2004, 120(3):491-500.
    8. Birkenbihl RP, Jach G, Saedler H, Huijser P: Functional dissection of the plant-specific SBP-domain: overlap of the DNA-binding and nuclear localization domains. J Mol Biol 2005, 352(3):585-596.
    9. Schmid M, Uhlenhaut NH, Godard F, Demar M, Bressan R, Weigel D, Lohmann JU: Dissection of floral induction pathways using global expression analysis. Development 2003, 130(24):6001-6012.
    10. Unte US, Sorensen AM, Pesaresi P, Gandikota M, Leister D, Saedler H, Huijser P: SPL8, an SBP-box gene that affects pollen sac development in Arabidopsis. Plant Cell 2003, 15(4):1009-1019.
    11. Wang H, Nussbaum-Wagler T, Li B, Zhao Q, Vigouroux Y, Faller M, Bomblies K, Lukens L, Doebley JF: The origin of the naked grains of maize. Nature 2005, 436(7051):714-719.
    12. Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Nunokawa E et al: A novel zinc-binding motif revealed by solution structures of DNA-binding domains of Arabidopsis SBP-family transcription factors. J Mol Biol 2004, 337(1):49-63.
    13. Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X et al: A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 2002, 296(5565):79-92.
    14. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H et al: A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 2002, 296(5565):92-100.
    15. The map-based sequence of the rice genome. Nature 2005, 436(7052):793-800.
    16. Sonnhammer EL, Eddy SR, Durbin R: Pfam: a comprehensive database of protein domain families based on seed alignments. Proteins 1997, 28(3):405-420.
    17. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997, 25(24):4876-4882.
    18. Saitou N, Nei M: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987, 4(4):406-425.
    19. Zhai Y, Tchieu J, Saier MH, Jr.: A web-based Tree View (TV) program for the visualization of phylogenetic trees. J Mol Microbiol Biotechnol 2002, 4(1):69-70.
    20. Comeron JM: K-Estimator: calculation of the number of nucleotide substitutions per site and the confidence intervals. Bioinformatics 1999, 15(9):763-764.
    21. Kong H, Landherr LL, Frohlich MW, Leebens-Mack J, Ma H, dePamphilis CW: Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth. Plant J 2007, 50(5):873-885.
    22. Raes J, Vandepoele K, Simillion C, Saeys Y, Van de Peer Y: Investigating ancient duplication events in the Arabidopsis genome. J Struct Funct Genomics 2003, 3(1-4):117-129.
    23. Guyot R, Keller B: Ancestral genome duplication in rice. Genome 2004, 47(3):610-614.
    24. Yu J, Wang J, Lin W, Li S, Li H, Zhou J, Ni P, Dong W, Hu S, Zeng C et al: The Genomes of Oryza sativa: a history of duplications. PLoS Biol 2005, 3(2):e38.
    25. Bailey TL, Elkan C: Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 1994, 2:28-36.
    26. Wang W, Zheng H, Yang S, Yu H, Li J, Jiang H, Su J, Yang L, Zhang J, McDermott J et al: Origin and evolution of new exons in rodents. Genome Res 2005, 15(9):1258-1264.
    27. Ohlrogge J, Benning C: Unraveling plant metabolism by EST analysis. Curr Opin Plant Biol 2000, 3(3):224-228.
    28. Adams MD, Kerlavage AR, Fleischmann RD, Fuldner RA, Bult CJ, Lee NH, Kirkness EF, Weinstock KG, Gocayne JD, White O et al: Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature 1995, 377(6547 Suppl):3-174.
    29. Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W: GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 2004, 136(1):2621-2632.
    30. Wolfe KH, Gouy M, Yang YW, Sharp PM, Li WH: Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acad Sci U S A 1989, 86(16):6201-6205.
    31. Haas BJ, Wortman JR, Ronning CM, Hannick LI, Smith RK, Jr., Maiti R, Chan AP, Yu C, Farzad M, Wu D et al: Complete reannotation of the Arabidopsis genome: methods, tools, protocols and the final release. BMC Biol 2005, 3:7.
    32. Wortman JR, Haas BJ, Hannick LI, Smith RK, Jr., Maiti R, Ronning CM, Chan AP, Yu C, Ayele M, Whitelaw CA et al: Annotation of the Arabidopsis genome. Plant Physiol 2003, 132(2):461-468.
    33. Yuan Q, Ouyang S, Wang A, Zhu W, Maiti R, Lin H, Hamilton J, Haas B, Sultana R, Cheung F et al: The institute for genomic research Osa1 rice genome annotation database. Plant Physiol 2005, 138(1):18-26.
    34. Ohyanagi H, Tanaka T, Sakai H, Shigemoto Y, Yamaguchi K, Habara T, Fujii Y, Antonio BA,Nagamura Y, Imanishi T et al: The Rice Annotation Project Database (RAP-DB): hub for Oryza sativa ssp. japonica genome information. Nucleic Acids Res 2006, 34(Database issue):D741-744.
    35. Lijavetzky D, Carbonero P, Vicente-Carbajosa J: Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families. BMC Evol Biol 2003, 3:17.
    36. Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KF, Li WH: Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 2004, 16(5):1220-1234.
    37. Martinez M, Abraham Z, Carbonero P, Diaz I: Comparative phylogenetic analysis of cystatin gene families from arabidopsis, rice and barley. Mol Genet Genomics 2005, 273(5):423-432.
    38. Feng Y, Liu Q, Xue Q: Comparative study of rice and Arabidopsis actin-depolymerizing factors gene families. J Plant Physiol 2006, 163(1):69-79.
    39. Stone JM, Liang X, Nekl ER, Stiers JJ: Arabidopsis AtSPL14, a plant-specific SBP-domain transcription factor, participates in plant development and sensitivity to fumonisin B1. Plant J 2005, 41(5):744-754.
    40. Bai J, Pennill LA, Ning J, Lee SW, Ramalingam J, Webb CA, Zhao B, Sun Q, Nelson JC, Leach JE et al: Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res 2002, 12(12):1871-1884.
    41. Zhang S, Chen C, Li L, Meng L, Singh J, Jiang N, Deng XW, He ZH, Lemaux PG: Evolutionary expansion, gene structure, and expression of the rice wall-associated kinase gene family. Plant Physiol 2005, 139(3):1107-1124.
    42. Jain M, Tyagi AK, Khurana JP: Genome-wide analysis, evolutionary expansion, and expression of early auxin-responsive SAUR gene family in rice (Oryza sativa). Genomics 2006, 88(3):360-371.
    43. Yang X, Tuskan GA, Cheng MZ: Divergence of the Dof gene families in poplar, Arabidopsis, and rice suggests multiple modes of gene evolution after duplication. Plant Physiol 2006, 142(3):820-830.
    44. Brosius J: Retroposons--seeds of evolution. Science 1991, 251(4995):753.
    1. Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR et al: Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 2000, 290(5499):2105-2110.
    2. Xiong Y, Liu T, Tian C, Sun S, Li J, Chen M: Transcription factors in rice: a genome-wide comparative analysis between monocots and eudicots. Plant Mol Biol 2005, 59(1):191-203.
    3. Andersen SU, Algreen-Petersen RG, Hoedl M, Jurkiewicz A, Cvitanich C, Braunschweig U, Schauser L, Oh SA, Twell D, Jensen EO: The conserved cysteine-rich domain of a tesmin/TSO1-like protein binds zinc in vitro and TSO1 is required for both male and female fertility in Arabidopsis thaliana. J Exp Bot 2007, 58(13):3657-3670.
    4. Hauser BA, Villanueva JM, Gasser CS: Arabidopsis TSO1 regulates directional processes in cells during floral organogenesis. Genetics 1998, 150(1):411-423.
    5. Hauser BA, He JQ, Park SO, Gasser CS: TSO1 is a novel protein that modulates cytokinesis and cell expansion in Arabidopsis. Development 2000, 127(10):2219-2226.
    6. Song JY, Leung T, Ehler LK, Wang C, Liu Z: Regulation of meristem organization and cell division by TSO1, an Arabidopsis gene with cysteine-rich repeats. Development 2000, 127(10):2207-2217.
    7. Cvitanich C, Pallisgaard N, Nielsen KA, Hansen AC, Larsen K, Pihakaski-Maunsbach K, Marcker KA, Jensen EO: CPP1, a DNA-binding protein involved in the expression of a soybean leghemoglobin c3 gene. Proc Natl Acad Sci U S A 2000, 97(14):8163-8168.
    8. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000, 408(6814):796-815.
    9. The map-based sequence of the rice genome. Nature 2005, 436(7052):793-800.
    10. Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X et al: A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 2002, 296(5565):79-92.
    11. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H et al: A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 2002, 296(5565):92-100.
    12. Sonnhammer EL, Eddy SR, Durbin R: Pfam: a comprehensive database of protein domain families based on seed alignments. Proteins 1997, 28(3):405-420.
    13. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997, 25(24):4876-4882.
    14. Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 2007, 24(8):1596-1599.
    15. Shiu SH, Bleecker AB: Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol 2003, 132(2):530-543.
    16. Maher C, Stein L, Ware D: Evolution of Arabidopsis microRNA families through duplication events. Genome Res 2006, 16(4):510-519.
    17. Schauser L, Wieloch W, Stougaard J: Evolution of NIN-like proteins in Arabidopsis, rice, and Lotus japonicus. J Mol Evol 2005, 60(2):229-237.
    18. Anisimova M, Bielawski JP, Yang Z: Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Mol Biol Evol 2001, 18(8):1585-1592.
    19. Yang Z, Nielsen R, Goldman N, Pedersen AM: Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 2000, 155(1):431-449.
    20. Yang Z, Bielawski JP: Statistical methods for detecting molecular adaptation. Trends in Ecology and Evolution 2000, 15(12):496-503.
    21. Suyama M, Torrents D, Bork P: PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res 2006, 34(Web Server issue):W609-612.
    22. Yang Z: PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007, 24(8):1586-1591.
    23. Friedman R, Hughes AL: Likelihood-ratio tests for positive selection of human and mouse duplicate genes reveal nonconservative and anomalous properties of widely used methods. Mol Phylogenet Evol 2007, 42(2):388-393.
    24. Mondragon-Palomino M, Meyers BC, Michelmore RW, Gaut BS: Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana. Genome Res 2002, 12(9):1305-1315.
    25. Yang Z, Wong WS, Nielsen R: Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol 2005, 22(4):1107-1118.
    26. Goh CS, Bogan AA, Joachimiak M, Walther D, Cohen FE: Co-evolution of proteins with their interaction partners. J Mol Biol 2000, 299(2):283-293.
    27. Jia L, Clegg MT, Jiang T: Evolutionary dynamics of the DNA-binding domains in putative R2R3-MYB genes identified from rice subspecies indica and japonica genomes. Plant Physiol 2004, 134(2):575-585.
    28. Cai J, Shin S, Wright L, Liu Y, Zhou D, Xue H, Khrebtukova I, Mattson MP, Svendsen CN, Rao MS: Massively parallel signature sequencing profiling of fetal human neural precursor cells. Stem Cells Dev 2006, 15(2):232-244.
    29. Keeling PJ: Ostreococcus tauri: seeing through the genes to the genome. Trends Genet 2007, 23(4):151-154.
    30. Cannon SB, Mitra A, Baumgarten A, Young ND, May G: The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 2004, 4:10.
    31. Jordan IK, Makarova KS, Spouge JL, Wolf YI, Koonin EV: Lineage-specific gene expansions in bacterial and archaeal genomes. Genome Res 2001, 11(4):555-565.
    32. Lespinet O, Wolf YI, Koonin EV, Aravind L: The role of lineage-specific gene familyexpansion in the evolution of eukaryotes. Genome Res 2002, 12(7):1048-1059.
    33. Jain M, Tyagi AK, Khurana JP: Genome-wide analysis, evolutionary expansion, and expression of early auxin-responsive SAUR gene family in rice (Oryza sativa). Genomics 2006, 88(3):360-371.
    34. Yang X, Tuskan GA, Cheng MZ: Divergence of the Dof gene families in poplar, Arabidopsis, and rice suggests multiple modes of gene evolution after duplication. Plant Physiol 2006, 142(3):820-830.
    35. Yang Z, Wang X, Gu S, Hu Z, Xu H, Xu C: Comparative study of SBP-box gene family in Arabidopsis and rice. Gene 2008, 407(1-2):1-11.
    36. Zhang S, Chen C, Li L, Meng L, Singh J, Jiang N, Deng XW, He ZH, Lemaux PG: Evolutionary expansion, gene structure, and expression of the rice wall-associated kinase gene family. Plant Physiol 2005, 139(3):1107-1124.
    37. Kong H, Landherr LL, Frohlich MW, Leebens-Mack J, Ma H, dePamphilis CW: Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth. Plant J 2007, 50(5):873-885.
    38. Wang X, Shi X, Hao B, Ge S, Luo J: Duplication and DNA segmental loss in the rice genome: implications for diploidization. New Phytol 2005, 165(3):937-946.
    39. Yu J, Wang J, Lin W, Li S, Li H, Zhou J, Ni P, Dong W, Hu S, Zeng C et al: The Genomes of Oryza sativa: a history of duplications. PLoS Biol 2005, 3(2):e38.
    40. Raes J, Vandepoele K, Simillion C, Saeys Y, Van de Peer Y: Investigating ancient duplication events in the Arabidopsis genome. J Struct Funct Genomics 2003, 3(1-4):117-129.
    41. Simillion C, Vandepoele K, Van Montagu MC, Zabeau M, Van de Peer Y: The hidden duplication past of Arabidopsis thaliana. Proc Natl Acad Sci U S A 2002, 99(21):13627-13632.
    42. Wang C, Liu Z: Arabidopsis ribonucleotide reductases are critical for cell cycle progression, DNA damage repair, and plant development. Plant Cell 2006, 18(2):350-365.
    43. Swanson WJ, Yang Z, Wolfner MF, Aquadro CF: Positive Darwinian selection drives the evolution of several female reproductive proteins in mammals. Proc Natl Acad Sci U S A 2001, 98(5):2509-2514.
    44. Martinez-Castilla LP, Alvarez-Buylla ER: Adaptive evolution in the Arabidopsis MADS-box gene family inferred from its complete resolved phylogeny. Proc Natl Acad Sci U S A 2003, 100(23):13407-13412.
    45. Mondragon-Palomino M, Gaut BS: Gene conversion and the evolution of three leucine-rich repeat gene families in Arabidopsis thaliana. Mol Biol Evol 2005, 22(12):2444-2456.
    46. Sun X, Cao Y, Wang S: Point mutations with positive selection were a major force during the evolution of a receptor-kinase resistance gene family of rice. Plant Physiol 2006, 140(3):998-1008.
    47. Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KF, Li WH: Comparative analysis ofthe receptor-like kinase family in Arabidopsis and rice. Plant Cell 2004, 16(5):1220-1234.
    48. Devoto A, Hartmann HA, Piffanelli P, Elliott C, Simmons C, Taramino G, Goh CS, Cohen FE, Emerson BC, Schulze-Lefert P et al: Molecular phylogeny and evolution of the plant-specific seven-transmembrane MLO family. J Mol Evol 2003, 56(1):77-88.
    49. Pazos F, Valencia A: Similarity of phylogenetic trees as indicator of protein-protein interaction. Protein Eng 2001, 14(9):609-614.
    50. Liu Q, Xue Q: Molecular Phylogeny, Evolution, and Functional Divergence of the LSD1-Like Gene Family: Inference from the Rice Genome. J Mol Evol 2007, 64(3):354-363.
    1. Barrett AJ, Fritz H, Grubb A, Isemura S, Jarvinen M, Katunuma N, Machleidt W, Muller-Esterl W, Sasaki M, Turk V: Nomenclature and classification of the proteins homologous with the cysteine-proteinase inhibitor chicken cystatin. Biochem J 1986, 236(1):312.
    2. Abe K, Emori Y, Kondo H, Suzuki K, Arai S: Molecular cloning of a cysteine proteinase inhibitor of rice (oryzacystatin). Homology with animal cystatins and transient expression in the ripening process of rice seeds. J Biol Chem 1987, 262(35):16793-16797.
    3. Belenghi B, Acconcia F, Trovato M, Perazzolli M, Bocedi A, Polticelli F, Ascenzi P, Delledonne M: AtCYS1, a cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death. Eur J Biochem 2003, 270(12):2593-2604.
    4. Yamada T, Ohta H, Shinohara A, Iwamatsu A, Shimada H, Tsuchiya T, Masuda T, Takamiya K: A cysteine protease from maize isolated in a complex with cystatin. Plant Cell Physiol 2000, 41(2):185-191.
    5. Misaka T, Kuroda M, Iwabuchi K, Abe K, Arai S: Soyacystatin, a novel cysteine proteinase inhibitor in soybean, is distinct in protein structure and gene organization from othercystatins of animal and plant origin. Eur J Biochem 1996, 240(3):609-614.
    6. Gaddour K, Vicente-Carbajosa J, Lara P, Isabel-Lamoneda I, Diaz I, Carbonero P: A constitutive cystatin-encoding gene from barley (Icy) responds differentially to abiotic stimuli. Plant Mol Biol 2001, 45(5):599-608.
    7. Corr-Menguy F, Cejudo FJ, Mazubert C, Vidal J, Lelandais-Briere C, Torres G, Rode A, Hartmann C: Characterization of the expression of a wheat cystatin gene during caryopsis development. Plant Mol Biol 2002, 50(4-5):687-698.
    8. Walsh TA, Strickland JA: Proteolysis of the 85-kilodalton crystalline cysteine proteinase inhibitor from potato releases functional cystatin domains. Plant Physiol 1993, 103(4):1227-1234.
    9. Kondo H, Abe K, Emori Y, Arai S: Gene organization of oryzacystatin-II, a new cystatin superfamily member of plant origin, is closely related to that of oryzacystatin-I but different from those of animal cystatins. FEBS Lett 1991, 278(1):87-90.
    10. Qin Q, He W, Lliang J, Zhang X: Researches on sequence of plant cystatin: phytocystatin. Chinese Forestry Science and Technology 2005, 4(2):87-94.
    11. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000, 408(6814):796-815.
    12. Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X et al: A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 2002, 296(5565):79-92.
    13. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H et al: A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 2002, 296(5565):92-100.
    14. The map-based sequence of the rice genome. Nature 2005, 436(7052):793-800.
    15. Wortman JR, Haas BJ, Hannick LI, Smith RK, Jr., Maiti R, Ronning CM, Chan AP, Yu C, Ayele M, Whitelaw CA et al: Annotation of the Arabidopsis genome. Plant Physiol 2003, 132(2):461-468.
    16. Ohyanagi H, Tanaka T, Sakai H, Shigemoto Y, Yamaguchi K, Habara T, Fujii Y, Antonio BA, Nagamura Y, Imanishi T et al: The Rice Annotation Project Database (RAP-DB): hub for Oryza sativa ssp. japonica genome information. Nucleic Acids Res 2006, 34(Database issue):D741-744.
    17. Tanaka T, Antonio BA, Kikuchi S, Matsumoto T, Nagamura Y, Numa H, Sakai H, Wu J, Itoh T, Sasaki T et al: The Rice Annotation Project Database (RAP-DB): 2008 update. Nucleic Acids Res 2008, 36(Database issue):D1028-1033.
    18. Ouyang S, Zhu W, Hamilton J, Lin H, Campbell M, Childs K, Thibaud-Nissen F, Malek RL, Lee Y, Zheng L et al: The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res 2007, 35(Database issue):D883-887.
    19. Martinez M, Abraham Z, Carbonero P, Diaz I: Comparative phylogenetic analysis of cystatin gene families from arabidopsis, rice and barley. Mol Genet Genomics 2005, 273(5):423-432.
    20. Sonnhammer EL, Eddy SR, Durbin R: Pfam: a comprehensive database of protein domain families based on seed alignments. Proteins 1997, 28(3):405-420.
    21. Aiyar A: The use of CLUSTAL W and CLUSTAL X for multiple sequence alignment. Methods Mol Biol 2000, 132:221-241.
    22. Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 2007, 24(8):1596-1599.
    23. Page RD: TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 1996, 12(4):357-358.
    24. Bailey TL, Williams N, Misleh C, Li WW: MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 2006, 34(Web Server issue):W369-373.
    25. Gu X, Vander Velden K: DIVERGE: phylogeny-based analysis for functional-structural divergence of a protein family. Bioinformatics 2002, 18(3):500-501.
    26. Gu X: Functional divergence in protein (family) sequence evolution. Genetica 2003, 118(2-3):133-141.
    27. Creevey CJ, McInerney JO: An algorithm for detecting directional and non-directional positive selection, neutrality and negative selection in protein coding DNA sequences. Gene 2002, 300(1-2):43-51.
    28. Creevey CJ, McInerney JO: CRANN: detecting adaptive evolution in protein-coding DNA sequences. Bioinformatics 2003, 19(13):1726.
    29. Yang Z, Nielsen R: Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol Biol Evol 2000, 17(1):32-43.
    30. Yang Z: Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 1998, 15(5):568-573.
    31. Bennetzen J: The rice genome. Opening the door to comparative plant biology. Science 2002, 296(5565):60-63.
    32. Griffiths S, Dunford RP, Coupland G, Laurie DA: The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol 2003, 131(4):1855-1867.
    33. Lijavetzky D, Carbonero P, Vicente-Carbajosa J: Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families. BMC Evol Biol 2003, 3:17.
    34. Yokoyama R, Nishitani K: Genomic basis for cell-wall diversity in plants. A comparative approach to gene families in rice and Arabidopsis. Plant Cell Physiol 2004, 45(9):1111-1121.
    35. Urwin PE, Lilley CJ, McPherson MJ, Atkinson HJ: Resistance to both cyst and root-knot nematodes conferred by transgenic Arabidopsis expressing a modified plant cystatin. Plant J 1997, 12(2):455-461.
    1. Santa-Maria GE, Rubio F, Dubcovsky J, Rodriguez-Navarro A: The HAK1 gene of barley is a member of a large gene family and encodes a high-affinity potassium transporter. Plant Cell 1997, 9(12):2281-2289.
    2. Gierth M, Maser P, Schroeder JI: The potassium transporter AtHAK5 functions in K(+) deprivation-induced high-affinity K(+) uptake and AKT1 K(+) channel contribution to K(+) uptake kinetics in Arabidopsis roots. Plant Physiol 2005, 137(3):1105-1114.
    3. Ashley MK, Grant M, Grabov A: Plant responses to potassium deficiencies: a role for potassium transport proteins. J Exp Bot 2006, 57(2):425-436.
    4. Epstein E, Rains DW, Elzam OE: Resolution of Dual Mechanisms of Potassium Absorption by Barley Roots. Proc Natl Acad Sci U S A 1963, 49(5):684-692.
    5. Maser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D et al: Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 2001, 126(4):1646-1667.
    6. Ahn SJ, Shin R, Schachtman DP: Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake. Plant Physiol 2004, 134(3):1135-1145.
    7. Schroeder JI, Ward JM, Gassmann W: Perspectives on the physiology and structure of inward-rectifying K+ channels in higher plants: biophysical implications for K+ uptake. Annu Rev Biophys Biomol Struct 1994, 23:441-471.
    8. Grabov A: Plant KT/KUP/HAK potassium transporters: single family - multiple functions. Ann Bot (Lond) 2007, 99(6):1035-1041.
    9. Banuelos MA, Garciadeblas B, Cubero B, Rodriguez-Navarro A: Inventory and functional characterization of the HAK potassium transporters of rice. Plant Physiol 2002, 130(2):784-795.
    10. Kim EJ, Kwak JM, Uozumi N, Schroeder JI: AtKUP1: an Arabidopsis gene encoding high-affinity potassium transport activity. Plant Cell 1998, 10(1):51-62.
    11. Fu HH, Luan S: AtKuP1: a dual-affinity K+ transporter from Arabidopsis. Plant Cell 1998, 10(1):63-73.
    12. Su H, Golldack D, Zhao C, Bohnert HJ: The expression of HAK-type K(+) transporters is regulated in response to salinity stress in common ice plant. Plant Physiol 2002,
    129(4):1482-1493.
    13. Very AA, Sentenac H: Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol 2003, 54:575-603.
    14. Rodriguez-Navarro A: Potassium transport in fungi and plants. Biochim Biophys Acta 2000, 1469(1):1-30.
    15. Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H et al: A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 2002, 296(5565):92-100.
    16. Yu J, Hu S, Wang J, Wong GK, Li S, Liu B, Deng Y, Dai L, Zhou Y, Zhang X et al: A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 2002, 296(5565):79-92.
    17. The map-based sequence of the rice genome. Nature 2005, 436(7052):793-800.
    18. Amrutha RN, Sekhar PN, Varshney RK, Kishor PBK: Genome-wide analysis and identification of genes related to potassium transporter families in rice (Oryza sativa L.). Plant Science 2007, 172(4):708-721.
    19. Sonnhammer EL, Eddy SR, Durbin R: Pfam: a comprehensive database of protein domain families based on seed alignments. Proteins 1997, 28(3):405-420.
    20. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD: Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 2003, 31(13):3497-3500.
    21. Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis(MEGA) software version 4.0. Mol Biol Evol 2007, 24(8):1596-1599.
    22. Gu X, Vander Velden K: DIVERGE: phylogeny-based analysis for functional-structural divergence of a protein family. Bioinformatics 2002, 18(3):500-501.
    23. Gu X: Functional divergence in protein (family) sequence evolution. Genetica 2003, 118(2-3):133-141.
    24. Yang Z: PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007, 24(8):1586-1591.
    25. Mondragon-Palomino M, Meyers BC, Michelmore RW, Gaut BS: Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana. Genome Res 2002, 12(9):1305-1315.
    26. Sawyer S: Statistical tests for detecting gene conversion. Mol Biol Evol 1989, 6(5):526-538.
    27. Kong H, Landherr LL, Frohlich MW, Leebens-Mack J, Ma H, dePamphilis CW: Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth. Plant J 2007, 50(5):873-885.
    28. Ware DH, Jaiswal P, Ni J, Yap IV, Pan X, Clark KY, Teytelman L, Schmidt SC, Zhao W, Chang K et al: Gramene, a tool for grass genomics. Plant Physiol 2002, 130(4):1606-1613.
    29. Maher C, Stein L, Ware D: Evolution of Arabidopsis microRNA families through duplication events. Genome Res 2006, 16(4):510-519.
    30. Yu J, Wang J, Lin W, Li S, Li H, Zhou J, Ni P, Dong W, Hu S, Zeng C et al: The Genomes of Oryza sativa: a history of duplications. PLoS Biol 2005, 3(2):e38.
    31. Guyot R, Keller B: Ancestral genome duplication in rice. Genome 2004, 47(3):610-614.
    32. Wang Y, Gu X: Functional divergence in the caspase gene family and altered functional constraints: statistical analysis and prediction. Genetics 2001, 158(3):1311-1320.
    33. Mondragon-Palomino M, Gaut BS: Gene conversion and the evolution of three leucine-rich repeat gene families in Arabidopsis thaliana. Mol Biol Evol 2005, 22(12):2444-2456.
    34. Yang Z: Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 1998, 15(5):568-573.
    35. Yang Z, Bielawski JP: Statistical methods for detecting molecular adaptation. Trends Ecol Evol 2000, 15(12):496-503.
    36. Nielsen R, Yang Z: Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 1998, 148(3):929-936.
    37. Jordan IK, Makarova KS, Spouge JL, Wolf YI, Koonin EV: Lineage-specific gene expansions in bacterial and archaeal genomes. Genome Res 2001, 11(4):555-565.
    38. Lespinet O, Wolf YI, Koonin EV, Aravind L: The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res 2002, 12(7):1048-1059.
    39. Bai J, Pennill LA, Ning J, Lee SW, Ramalingam J, Webb CA, Zhao B, Sun Q, Nelson JC, Leach JE et al: Diversity in nucleotide binding site-leucine-rich repeat genes in cereals. Genome Res 2002, 12(12):1871-1884.
    40. Zhang S, Chen C, Li L, Meng L, Singh J, Jiang N, Deng XW, He ZH, Lemaux PG:Evolutionary expansion, gene structure, and expression of the rice wall-associated kinase gene family. Plant Physiol 2005, 139(3):1107-1124.
    41. Jain M, Tyagi AK, Khurana JP: Genome-wide analysis, evolutionary expansion, and expression of early auxin-responsive SAUR gene family in rice (Oryza sativa). Genomics 2006, 88(3):360-371.
    42. Yang Z, Wang X, Gu S, Hu Z, Xu H, Xu C: Comparative study of SBP-box gene family in Arabidopsis and rice. Gene 2008, 407(1-2):1-11.
    43. Martinez-Castilla LP, Alvarez-Buylla ER: Adaptive evolution in the Arabidopsis MADS-box gene family inferred from its complete resolved phylogeny. Proc Natl Acad Sci U S A 2003, 100(23):13407-13412.
    44. Liu Q, Zhu H: Molecular evolution of the MLO gene family in Oryza sativa and their functional divergence. Gene 2008, 409(1-2):1-10.
    45. Gu X: Statistical methods for testing functional divergence after gene duplication. Mol Biol Evol 1999, 16(12):1664-1674.