小鼠17号染色体全长有丝分裂重组系统构建以及平衡染色体初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着小鼠及人类基因组测序的完成,人们越来越意识到小鼠基因组对于解析人类基因组功能及生物医学研究的重要性。虽然研究人员积累了众多基因突变品系,但与果蝇等模式生物相比目前小鼠基因功能研究手段还不丰富,有丝分裂重组介导的嵌合体分析技术和平衡染色体技术还刚刚起步。为进一步发展这两种基因功能分析技术,方便利用各种突变深入研究基因作用机理,本文在小鼠中建立了基于17号染色体的有丝分裂重组系统,并对构建全长17号平衡染色体进行了探索。
     有丝分裂重组介导的嵌合体分析技术在胚胎致死基因功能研究及体细胞基因功能筛选中有着广泛的应用。现有的有丝分裂重组系统主要是基于Flp/FRT或Cre/loxP定点重组系统。我们利用基因打靶技术在小鼠17号染色体的近着丝粒端插入了FRT和loxP重组序列以及外源抗原等标记基因。通过泛表达的Pgk-Cre和T细胞特异表达的Lck-Cre诱导,在淋巴细胞中观察到了发生有丝分裂重组的细胞,并发现Lck-Cre能稳定诱导有丝分裂重组。Flp诱导也能使该系统发生有丝分裂重组,但效率要低得多。这一有丝分裂重组系统的建立为进一步对17号染色体进行基因诱变筛选和嵌合体分析等研究奠定了基础
     含有倒位的平衡染色体能有效抑制染色体同源重组的发生,在突变筛选和品系保存中发挥了至关重要的作用。建立一个全长平衡染色体需要引入多个倒位,能否选择合适的倒位点并插入可诱导定点重组的loxP序列是建立小鼠平衡染色体的关键一步。我们已经成功地将loxP位点及相应的标记基因在不同的ES细胞中插入到17号染色体的4个不同位置,并证明这些倒位点插入不会引起任何小鼠发育异常。我们同时利用含有两个倒位点插入的ES细胞建立了相应的小鼠品系,由此证明了多次电转后ES细胞依然能够保持多潜能特特性。从而为使用Cre/loxP系统在小鼠17号染色体上制造倒位解决了一个重大的技术难题。
The completion of mouse and human genome sequencing has paved the way of functional analysis of mammalian genes genome wide. However, elegant genetic tools such as mitotic recombination mediated mosaic analysis and balancer chromosomes are still limited in mouse. Mitotic recombination mediated mosaic analysis permits a variety of cellular and molecular studies, including lineage analysis and loss-of-function analysis in intact organisms, while balancer chromosomes are genetic reagents that play important roles in mutagenesis screen and stock maintenance. My thesis focused on establishing a mitotic recombination system and exploring new strategies towards a full-length balancer chromosome for mouse chromosome 17.
     To generate a mitotic recombination system, I have integrated recombination sites FRT and loxP, and exogenous markers such as hCD2, at the proximal end of chr. 17. Mitotic recombination events were stably observed in lymphocytes with the presence of T cell specific Lck-Cre. Ubiquitously expressed Pgk-Cre or Actin-Flp recombinase could also induce mitotic recombination, though the latter gave a lower efficiency. Thus, this recombination system could be utilized for mosaic analysis and mutational screens of the genes on chr. 17.
     Balancer chromosomes carry inversions that effectively suppress recombination between homologous chromosomes. To generate a balancer chromosome covering full-length mouse chr. 17, I have integrated loxP sequences along with marker genes into four selected loci so that three continuous inversions may be induced thereafter with minimal interference of the viability and fertility. As expected, single locus insertion did not cause developmental abnormalities in vivo. Mouse lines carrying two insertions were also generated from ES cell clones experienced three rounds of electroporation, indicating the feasibility of repeated chromosomal manipulations in ES cells. These studies provided a key step toward the development of a full-length mouse balancer chr. 17 with multiple inversions.
引文
Alexander, W.S., Roberts, A.W., Nicola, N.A., Li, R., and Metcalf, D. (1996). Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietic receptor c-Mpl. Blood 87, 2162-2170.
    
    Beier, D.R. (2000). Sequence-based analysis of mutagenized mice. Mammalian genome : official journal of the International Mammalian Genome Society 11, 594-597.
    
    Beutler, B., Crozat, K., Koziol, J.A., and Georgel, P. (2005). Genetic dissection of innate immunity to infection: the mouse cytomegalovirus model. Current Opinion in Immunology 17, 36-43.
    
    Casselton, L., and Zolan, M. (2002). The art and design of genetic screens: filamentous fungi. Nature Reviews Genetics 3, 683-697.
    
    Chen, Y., Yee, D., Dains, K., Chatterjee, A., Cavalcoli, J., Schneider, E., Om, J., Woychik, R.P., and Magnuson, T. (2000). Genotype-based screen for ENU-induced mutations in mouse embryonic stem cells. Nature genetics 24, 314-317.
    
    Chick, W.S., Mentzer, S.E., Carpenter, D.A., Rinchik, E.M., and You, Y. (2004). Modification of an existing chromosomal inversion to engineer a balancer for mouse chromosome 15. Genetics 167, 889-895.
    
    Coghill, E.L., Hugill, A., Parkinson, N., Davison, C, Glenister, P., Clements, S., Hunter, J., Cox, R.D., and Brown, S.D. (2002). A gene-driven approach to the identification of ENU mutants in the mouse. Nature genetics 30, 255-256.
    
    Concepcion, D., Seburn, K.L., Wen, G, Frankel, W.N., and Hamilton, B.A. (2004). Mutation rate and predicted phenotypic target sizes in ethylnitrosourea-treated mice. Genetics 168, 953-959.
    
    Cuenot, L. (1902). La loi de Mendel et l'heredite e de la pigmentation chez les Souris. Arch Zool Exp Gen 3, 27-32.
    
    Dietrich, W.F., Miller, J., Steen, R., Merchant, M.A., Damron-Boles, D., Husain, Z., Dredge, R., Daly, M.J., Ingalls, K.A., and O'Connor, T.J. (1996). A comprehensive genetic map of the mouse genome. Nature 380, 149-152.
    
    Doetschman, T, Gregg, R.G., Maeda, N., Hooper, M.L., Melton, D.W., Thompson, S., and Smithies, O. (1987). Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330, 576-578.
    
    Evans, M.J., and Kaufman, M.H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154-156.
    
    Festing, M., ed. (1996). Origins and characteristics of inbred strains of mice.
    Forsburg, S.L. (2001). The art and design of genetic screens: yeast. Nature Reviews Genetics 2, 659-668.
    
    Gordon, J.W. (1997). Transgenic technology and laboratory animal science. ILAR Journal 38.
    
    Gregory, S.G, Sekhon, M., Schein, J., Zhao, S., Osoegawa, K., Scott, C.E., Evans, R.S., Burridge, P.W., Cox, T.V., Fox, C.A., et al. (2002). A physical map of the mouse genome. Nature 418, 743-750.
    
    Herron, B.J., Lu, W., Rao, C, Liu, S., Peters, H., Bronson, R.T., Justice, M.J., McDonald, J.D., and Beier, D.R. (2002). Efficient generation and mapping of recessive developmental mutations using ENU mutagenesis. Nature Genetics 30, 185-189.
    
    Heston, W.E. (1949). Development of inbred strains in mouse and their use in cancer research. In Lectures on genetics, cancer, growth and social behavior (Bar Harbor, Jackson Memorial Laboratory), pp. 9-13.
    
    Hitotsumachi, S., Carpenter, D.A., and Russell, W.L. (1985). Dose-repetition increases the mutagenic effectiveness of N-ethyl-N-nitrosourea in mouse spermatogonia. Proceedings of the National Academy of Sciences of the United States of America 82, 6619-6621.
    
    Hoebe, K., Du, X., Georgel, P., Janssen, E., Tabeta, K., Kim, S.O., Goode, J., Lin, P., Mann, N., Mudd, S., et al. (2003). Identification of Lps2 as a key transducer of MyD88-independent TIR signalling.[see comment]. Nature 424, 743-748.
    
    Hoebe, K., Georgel, P., Rutschmann, S., Du, X., Mudd, S., Crozat, K., Sovath, S., Shamel, L., Hartung, T., Zahringer, U., et al. (2005). CD36 is a sensor of diacylglycerides. Nature 433, 523-527.
    
    Hrabe de Angelis, M.H., Flaswinkel, H., Fuchs, H., Rathkolb, B., Soewarto, D., Marschall, S., Heffner, S., Pargent, W., Wuensch, K.., Jung, M., et al. (2000). Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nature Genetics 25, 444-447.
    
    Jackson-lab (1966). Biology of the laboratory mouse (New York, Dover publications, INC.).
    
    Jaenisch, R. (1976). Germ line integration and Mendelian transmission of the exogenous Moloney leukemia virus. Proceedings of the National Academy of Sciences of the United States of America 73, 1260-1264.
    
    Jorgensen, E.M., and Mango, S.E. (2002). The art and design of genetic screens: caenorhabditis elegans. Nature Reviews Genetics 3, 356-369.
    
    Jun, J.E., Wilson, L.E., Vinuesa, C.G., Lesage, S., Blery, M., Miosge, L.A., Cook, M.C., Kucharska, E.M., Hara, H., Penninger, J.M., et al. (2003). Identifying the MAGUK protein Carma-1 as a central regulator of humoral immune responses and atopy by genome-wide mouse mutager,esis.[see comment]. Immunity 18, 751-762.
    Kasarskis, A., Manova, K., and Anderson, K.V. (1998). A phenotype-based screen for embryonic lethal mutations in the mouse. Proceedings of the National Academy of Sciences of the United States of America 95, 7485-7490.
    
    Kile, B.T., Hentges, K.E., Clark, A.T., Nakamura, H., Salinger, A.P., Liu, B., Box, N., Stockton, D.W., Johnson, R.L., Behringer, R.R., et al. (2003). Functional genetic analysis of mouse chromosome 1 l.[see comment]. Nature 425, 81-86.
    
    Kile, B.T., and Hilton, D.J. (2005). The art and design of genetic screens: mouse. Nature Reviews Genetics 6, 557-567.
    
    Klysik, J., Dinh, C, and Bradley, A. (2004). Two new mouse chromosome 11 balancers. Genomics 83,303-310.
    
    McHugh, T.J., Blum, K.I., Tsien, J.Z., Tonegawa, S., and Wilson, M.A. (1996). Impaired hippocampal representation of space in CA1-specific NMDAR1 knockout mice.[see comment]. Cell 87, 1339-1349.
    
    Nelms, K.A., and Goodnow, C.C. (2001). Genome-wide ENU mutagenesis to reveal immune regulators. Immunity 15, 409-418.
    
    Nishijima, I., Mills, A., Qi, Y., Mills, M., and Bradley, A. (2003). Two new balancer chromosomes on mouse chromosome 4 to facilitate functional annotation of human chromosome 1p. Genesis: the Journal of Genetics & Development 36, 142-148.
    
    Nolan, P.M., Peters, J., Strivens, M., Rogers, D., Hagan, J., Spurr, N., Gray, I.C., Vizor, L., Brooker, D., Whitehill, E., et al. (2000). A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nature Genetics 25, 440-443.
    
    Palmiter, R.D., Brinster, R.L., Hammer, R.E., Trumbauer, M.E., Rosenfeld, M.G., Birnberg, N.C., and Evans, R.M. (1982). Dramatic growth of mice that develop from eggs microinjected with metallothionein-growth hormone fusion genes. Nature 300, 611-615.
    
    Papathanasiou, P., Perkins, A.C., Cobb, B.S., Ferrini, R., Sridharan, R., Hoyne, GF., Nelms, K.A., Smale, S.T., and Goodnow, C.C. (2003). Widespread failure of hematolymphoid differentiation caused by a recessive niche-filling allele of the Ikaros transcription factor. Immunity 19, 131-144.
    
    Roderick, T.H., and Hawes, N.L. (1974). Nineteen paracentric chromosomal inversions in mice. Genetics 76, 109-117.
    
    Russell, W.L., Hunsicker, P.R., Carpenter, D.A., Coraett, C.V, and Guinn, GM. (1982). Effect of dose fractionation on the ethylnitrosourea induction of specific-locus mutations in mouse spermatogonia. Proceedings of the National Academy of Sciences of the United States of America 79, 3592-3593.
    
    Russell, W.L., Kelly, E.M., Hunsicker, P.R., Bangham, J.W., Maddux, S.C., and Phipps, E.L. (1979). Specific-locus test shows ethylnitrosourea to be the most potent mutagen in the mouse. Proceedings of the National Academy of Sciences of the United States of America 76, 5818-5819.
    
    Silver, L.M., ed. (1995). Mouse Genetics: Concepts and Applications (New York, Oxford Univ. Press).
    
    St Johnston, D. (2002). The art and design of genetic screens: Drosophila melanogaster. Nature Reviews Genetics 3, 176-188.
    
    Staats, J. (1964). Standardized nomenclature for inbred strains of mice, Third listing. Cancer Res 24, 147-168.
    
    Thomas, K.R., and Capecchi, M.R. (1987). Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503-512.
    
    Tsien, J.Z., Chen, D.F., Gerber, D., Tom, C, Mercer, E.H., Anderson, D.J., Mayford, M., Kandel, E.R., and Tonegawa, S. (1996). Subregion- and cell type-restricted gene knockout in mouse brain.[see comment]. Cell 87, 1317-1326.
    
    Vinuesa, C.G, Cook, M.C., Angelucci, C, Athanasopoulos, V., Rui, L., Hill, K.M., Yu, D., Domaschenz, H., Whittle, B., Lambe, T., et al, (2005). A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435, 452-458.
    
    Wakayama, T., Perry, A.C., Zuccotti, M., Johnson, K.R., and Yanagimachi, R. (1998). Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369-374.
    
    Waterston, R.H., Lindblad-Toh, K., Birney, E., Rogers, J, Abril, J.F., Agarwal, P., Agarwala, R., Ainscough, R., Alexandersson, M., An, P., et al. (2002). Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520-562.
    
    Wilson, L, Ching, Y.H., Farias, M, Hartford, S.A., Howell, G., Shao, H., Bucan, M., and Schimenti, J.C. (2005). Random mutagenesis of proximal mouse chromosome 5 uncovers predominantly embryonic lethal mutations. Genome Res 75, 1095-1105.
    
    Zheng, B., Sage, M., Cai, W.W., Thompson, D.M., Tavsanli, B.C., Cheah, Y.C, and Bradley, A. (1999). Engineering a mouse balancer chromosome. Nature Genetics 22, 375-378.
    Ashbumer, M., ed. (1989). Drosophila A Laboratory Handbook (Cold Spring Harbor, Cold Spring Harbor Laboratory Press).
    
    Balschun, D., Wolfer, D.P, Gass, P, Mantamadiotis, T., Welzl, H., Schutz, G, Frey, J.U., and Lipp, H.P. (2003). Does cAMP response elementbinding protein have a pivotal role in hippocampal synaptic plasticity and hippocampus-dependent memory? J Neurosci 23, 6304-6314.
    
    Branda, C.S., and Dymecki, S.M. (2004). Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. Dev Cell 6, 7-28.
    
    Buchholz, F., Angrand, P.O., and Stewart, A.F. (1998). Improved properties of FLP recombinase evolved by cycling mutagenesis. Nature Biotechnology 16, 657-662.
    
    Buchholz, F., Ringrose, L., Angrand, P.O., Rossi, F, and Stewart, A.F. (1996). Different thermostabilities of FLP and Cre recombinases: implications for applied site-specific recombination. Nucleic Acids Res 24,4256-4262.
    
    de Wind, N., Dekker, M., Berns, A., Radman, M., and te Riele, H. (1995). Inactivation of the mouse Msh2 gene results in mismatch repair deficiency, methylation tolerance, hyperrecombination, and predisposition to cancer. Cell 82, 321-330.
    
    Dymecki, S.M. (1996). Flp recombinase promotes site-specific DNA recombination in embryonic stem cells and transgenic mice. Proceedings Of The National Academy Of Sciences Of The United States Of America 93, 6191-6196.
    
    Golic, K..G (1991). Site-specific recombination between homologous chromosomes in Drosophila. Science (New York, N Y) 252, 958-961.
    
    Hari, L., Brault, V., Kleber, M., Lee, H.Y., Me, F., Leimeroth, R., Paratore, C, Suter, U., Kemler, R., and Sommer, L. (2002). Lineage-specific requirements of beta-catenin in neural crest development. Journal of Cell Biology 159, 867-880.
    
    Herault, Y., Rassoulzadegan, M., Cuzin, F., and Duboule, D. (1998). Engineering chromosomes in mice through targeted meiotic recombination (TAMERE). Nature Genetics 20, 381-384.
    
    Huang, X., Huang, P., Robinson, M.K., Stern, M.J., and Jin, Y. (2003). UNC-71, a disintegrin and metalloprotease (ADAM) protein, regulates motor axon guidance and sex myoblast migration in C. elegans. Development 130, 3147-3161.
    
    Liu, P., Jenkins, N.A., and Copeland, N.G. (2002). Efficient Cre-loxP-induced mitotic recombination in mouse embryonic stem cells.[see comment]. Nature Genetics 30, 66-72.
    
    Muzumadar, M.D., Luo, L., and Zong, H. (2007). Modeling sporadic loss of heterozygosity in mice by using mosaic analysis with double markers (MADM). Proceedings of the National Academy of Sciences of the United States of America 104,4495-4500.
    
    Orban, P.C., Chui, D., and Marth, J.D. (1992). Tissue- and site-specific DNA recombination in transgenic mice. Proceedings Of The National Academy Of Sciences Of The United States Of America 89, 6861-6865.
    
    Reitmair, A.H., Redston, M, Cai, J.C., Chuang, T.C., Bjerknes, M., Cheng, H., Hay, K., Gallinger, S., Bapat, B., and Mak, T.W. (1996). Spontaneous intestinal carcinomas and skin neoplasms in Msh2-deficient mice. Cancer Res 56, 3842-3849.
    
    Ringrose, L., Lounnas, V., Ehrlich, L., Buchholz, F., Wade, R., and Stewart, A.R (1998). Comparative kinetic analysis of FLP and cre recombinases: mathematical models for DNA binding and recombination. J Mol Biol 284, 363-384.
    
    Rodriguez, C.I., Buchholz, R, Galloway, J., Sequerra, R., Kasper, J., Ayala, R., Stewart, A.F., and Dymecki, S.M. (2000). High-efficiency deleter mice show that FLPe is an alternative to Cre-loxP. Nature Genetics 25, 139-140.
    
    Schnutgen, F., Doerflinger, N., Calleja, C, Wendling, O., Chambon, P., and Ghyselinck, N.B. (2003). A directional strategy for monitoring Cremediated recombination at the cellular level in the mouse. Nat Biotechnol 21, 562-565.
    
    Smith, A.J., De Sousa, M.A., Kwabi-Addo, B., Heppell-Parton, A., Impey, H., and Rabbitts, P. (1995). A site-directed chromosomal translocation induced in embryonic stem cells by Cre-loxP recombination. Nature Genetics 9, 376-385.
    
    Sulston, J.E., Schierenberg, E., White, J.G., and Thomson, J.N. (1983). The embryonic cell lineage of the nematode Caenorhabditis elegans. Developmental Biology 100, 64-119.
    
    Wang, W., Warren, M., and Bradley, A. (2007). Induced mitotic recombination of p53 in vivo. Proceedings Of The National Academy Of Sciences Of The United States Of America 104, 4501-4505.
    
    White, J.G, Southgate, E., Thomson, J.N., and Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc London [Biol] 314, 1-340.
    
    Wu, S., Ying, G., Wu, Q., and Capecchi, M.R. (2007). Toward simpler and faster genome-wide mutagenesis in mice. Nature Genetics 39, 922-930.
    
    Xu, T., Wang, W., Zhang, S., Stewart, R.A., and Yu, W. (1995). Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121, 1053-1063.
    
    Zong, H., Espinosa, J.S., Su, H.H., Muzumdar, M.D., and Luo, L. (2005). Mosaic analysis with double markers in mice.[see comment]. Cell 121, 479-492.
    Bangham, J.W. (1965). Hairy ears Eh. Mouse News Lett 33, 68.
    
    Bangham, J.W. (1968). Personal communication. Mouse News Lett 35, 32.
    
    Bedell, M.A. (1995). DNA rearrangements located over 100kb 50 of the Steel (Sl)-coding region in Steel-panda and Steel-contrasted mice deregulate Sl expression and cause female sterility by disrupting ovarian follicle development. Genes Dev 9, 455-470.
    
    Chick, W.S., Mentzer, S.E, Carpenter, D.A, Rinchik, E.M., and You, Y. (2004). Modification of an existing chromosomal inversion to engineer a balancer for mouse chromosome 15. Genetics 167, 889-895.
    
    Davisson, M.T. (1990). The hairy ears (Eh) mutation is closely associated with a chromosomal rearrangement in mouse chromosome 15. Genet Res 56, 167-178.
    
    Hentges, K.E., and Justice, M.J. (2004). Checks and balancers: balancer chromosomes to facilitate genome annotation.[erratum appears in Trends Genet. 2005 Jan;21(1):36]. Trends in Genetics 20, 252-259.
    
    Justice, M.J., and Bode, V.C. (1988). Genetic analysis of mouse t haplotypes using mutations induced by ethylnitrosourea mutagenesis: the order of T and qk is inverted in t mutants. Genetics 120, 533-543.
    
    Kile, B.T., Hentges, K.E., Clark, A.T., Nakamura, H., Salinger, A.P., Liu, B., Box, N., Stockton, D.W., Johnson, R.L., Behringer, R.R., et al. (2003). Functional genetic analysis of mouse chromosome 11.[see comment]. Nature 425, 81-86.
    
    Klysik, J., Dinh, C, and Bradley, A. (2004). Two new mouse chromosome 11 balancers. Genomics 83, 303-310.
    
    Lyon, M.F., and Searle, A.G, eds. (1989). Chromosomal variants (Oxford University Press).
    
    Muller, H.J. (1918). Genetic variability, twin hybrids, and constant hybrids, in a case of balanced lethal factors. Genetics 3, 422-499.
    
    Muller, H.J. (1927). Artificial transmutation of the gene. Science 66, 84-87.
    
    Nishijima, I., Mills, A., Qi, Y., Mills, M., and Bradley, A. (2003). Two new balancer chromosomes on mouse chromosome 4 to facilitate functional annotation of human chromosome 1p. Genesis: the Journal of Genetics & Development 36, 142-148.
    
    Roderick, T.H., and Hawes, N.L. (1970). Two radiation-induced chromosomal inversions in mice (Mus musculus). Proceedings of the National Academy of Sciences of the United States of America 67, 961-967.
    
    Roderick, T.H., and Hawes, N.L. (1974). Nineteen paracentric chromosomal inversions in mice. Genetics 76,109-117.
    Yu,Y.,and Bradley,A.(2001).Engineering chromosomal rearrangements in mice.Nature Reviews Genetics 2,780-790.
    Zheng,B.,Sage,M.,Cai,W,W.,Thompson,D.M.,Tavsanli,B.C.,Cheah,Y.C.,and Bradley,A.(1999).Engineering a mouse balancer chromosome.Nature Genetics 22,375-378.
    Zou,Y.R.,Muller,W.,Gu,H.,and Rajewsky,K.(1994).Cre-loxP-mediated gene replacement:a mouse strain producing humanized antibodies.Current Biology 4,1099-1103.
    刘祖洞,ed.(1990).遗传学