双峰谱和长周期波浪对系泊船舶作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
系泊船舶运动是港口设计和运营过程中的重要问题,泊位作业时间、船舶装卸生产效率及安全与系泊船舶运动密切相关。系泊船舶运动不仅受多种环境动力因素的耦合影响,还与船舶自身的运动响应特性有关。对于大型开敞式码头,亟待解决双峰谱波浪(混波浪)、长周期波浪、脉动风等诸因素作用下系泊船舶运动响应问题。
     本文以物理模型试验为主,结合数值模拟计算的方法,对上述亟待解决的问题进行了较为系统的研究。
     长周期波浪(试验波浪周期范围:10-50秒)作用下系泊船舶物理模型试验结果表明:
     船舶某运动分量的动力放大响应与船舶在该分量上的固有周期密切相关(同时自然与船舶载量有关),但与波高关系不大。在试验范围内:
     ●纵移运动分量随周期增长而增大;纵移分量发生动力放大时的波浪谱峰周期与船舶纵移的固有周期接近。
     ●横移运动分量随周期增长而增大;同时横移运动分量出现数次动力放大(横移运动分量出现数次峰值)。
     ●升沉运动分量随周期增长而略有增大;当波浪谱峰周期大于30s后,试验条件下船舶升沉运动分量可维持在一定数值上保持基本稳定(不再增长),其运动幅值与作用波高值大体相当。
     ●横浪作用下,纵摇运动分量基本不随波浪谱峰周期增长而变化。
     ●横摇运动分量也出现多次动力放大,但多次动力放大时横摇运动分量幅值基本相同。
     ●回转运动分量随波浪周期的增大逐渐增大,回转运动分量出现动力放大时的波浪周期与对应的船舶回转固有周期基本一致。
     双峰谱波浪(试验谱峰周期:高频(风浪)6s;低频(涌浪)12-24秒)作用下系泊船舶物理模型试验结果表明:
     ●三种不同类型双峰谱波浪作用下,系泊船舶运动随低频谱峰周期增大的变化规律相同;并且这种规律与长周期波浪作用下系泊船舶运动随谱峰周期的变化规律相同。
     ●双峰谱波浪总能量一定时,系泊船舶运动量和缆绳张力都随着低频能量所占总能量比例的增加而增大。
     ●试验范围内(双峰谱波浪的高频谱峰周期6s;低频谱峰周期12-24秒,低频能量比例20%-80%,横浪作用)、波浪总能量相同,双峰谱波浪作用下系泊船舶运动响应远大于单峰谱(风浪)作用下系泊船舶运动响应;双峰谱波浪与风浪作用下系泊船舶运动量的差值随着低频能量占总能量比例的增大而增大。
     ●试验范围内(双峰谱波浪的高频谱峰周期6s;低频谱峰周期12-24秒,低频能量比例20%-80%,横浪作用)、波浪总能量相同时,双峰谱波浪与长周期波浪作用下系泊船舶运动量之间的比值随着低频能量的增大而增大。
     ●混合浪高频波浪条件一定时,(除纵摇运动分量外)系泊船舶运动量和缆绳张力随着双峰谱波低频能量的增大而增大。
     ●混合浪低频波浪条件一定时,(除纵摇运动分量外)系泊船舶运动量和缆绳张力随着双峰谱波浪高频能量的增大而略有增大。脉动风(试验风速:8.5-21.4m/s)对系泊船舶作用物理模型试验结果表明:
     ●低于6级(14m/s)的风,风对系泊船舶无显著作用,风速超过6级后,船舶运动开始逐渐显著。故6级风可作为船舶“启动风速”
     ●8级(17-20m/s)横向吹开风对船舶的作用,对横移运动分量而言,大体相当于有效周期7秒、波高1.5-2m横向风浪的作用。
     ●对载重处于压载状态的系泊船舶,风速大于6级后,随着风速的增加,缆力增大很快。
     数值模拟计算结果表明:
     ●本文建立的系泊船舶运动和动力响应模型计算结果与试验结果吻合较好,可以用于实际计算。
     ●低频能量占总能量为20%时,高频谱峰周期变化对系泊船舶运动(纵摇运动除外)和缆绳张力的影响较大;随着低频能量所占比例的增加,高频谱峰周期的变化对系泊船舶运动和缆绳张力的影响逐渐减小。
The motion of mooring ships has always been regarded as an essential issue in design and use of ports, which is closely related to mooring duration, efficiency and security of uploading and downloading operations, and self-movements of mooring ships. Such motion of mooring ships is caused not only by the coupling effects of a variety of environmental dynamic factors, but also the characteristics of mooring ships own motion responses. At large open piers, such motion responses of mooring ships caused by factors like mixed waves, long-period waves, and fluctuating winds, etc. have become a burning problem that should be solved urgently.
     Mainly based on a series of physical model experiments and combined with the method of numerical simulation, the paper has been engaged in a systematic study on the burning problems mentioned above.
     The results of the physical experiment which was fulfilled wish mooring ship in long-period waves (with testing wave periods ranging from10s to50s) have manifested that, dynamic magnifications of a specific movement of a mooring ship are closely related to the natrual period of the movement (which is inevitably relevant to the loading conditions of the mooring ship). However, such kind of dynamic magnifications have little to do with wave heights.
     Within the experimental range of wave periods,
     ●the movement of surge increases along with the wave period; when a dynamic magnification of surge appears, its corresponding spectral peak period of waves and the natural period of surge are approximate in value.
     ●the movement of sway increases along with the wavec period; meanwhile, the movement of sway has dynamic magnifications for a couple of times (the peak value of the movement of sway appears for several times).
     ●the movement of heave goes upward with the progress of wave period; when the spectral peak period of waves is greater than30s, the value of the movement of heave is basically maintained at a certain level (no more growth), and its motion amplitudes and acting wave height are roughly the same in value.
     ●under the action of transverse waves, the movement of pitch basically does not change with the growth of spectral peak period.
     ●the movement of roll also has dynamic magnifications for many times, but its motion amplitude each time is roughly the same with each other.
     ●the movement of yaw gradually increases with the progress of wave period, when the movement of yaw has a dynamic magnification, the wave period and its corresponding natural period of yaw are basically equal to each other.
     The results of the physical model experiment which was fulfilled with a mooring ship in bimodal spectral waves (the spectral peak period employed in the experiment:high-frequency (wind wave) period at6s; low-frequency (swells) period ranging from12s to24s) have shown that:
     ●with the increase of low-frequency spectral peak period, the laws of a mooring ship's motion changes under the action of three different kinds of bimodal waves are the same. These laws are also the same with the ones of the mooring ship's motion changes with the variation of spectral peak period under the action of long-period waves.
     ●when the total energy of bimodal spectral waves is certain, both of the movements and line tensions of the mooring ship will go up with the increasing contributions of low-frequency energy of the total.
     ●within the experimental range of wave periods (high-frequency spectral peak period of bimodal spectral waves:6s; low-frequency spectral peak period:12-24s; contribution of low-frequency energy:20%~80%; effects of transverse waves), the motion responses of a mooring ship in bimodal spectral waves are far greater than the ones in unimodal spectral waves(wind waves), when they are identical in the total energy of waves.
     ●within the experimental range of wave periods (high-frequency spectral peak period of bimodal spectral waves:6s; low-frequency spectral peak period:12-24s; contribution of low-frequency energy:20%~80%; effects of transverse waves), the ratio of the movements of the mooring ship in bimodal spectral waves and in long-period waves will grow with the increase of low-frequency energy, when the two types of waves are identical in total energy.
     ●when the characteristic parameters of high-frequency part of mixed waves are constant, the mooring ship's movements (except the movement of pitch) and the line tensions will increase with the growth of low-frequency energy of bimodal spectral waves.
     ●when the characteristic parameters of low-frequency part of mixed waves are constant, the mooring ship's movements (except the movement of pitch) and the line tensions will increase slightly with the growth of high-frequency energy of bimodal spectral waves.
     ●when the characteristic parameters of low-frequency part of mixed waves are constant, the mooring ship's movements (except the movement of pitch) and the line tensions will increase slightly with the growth of high-frequency energy of bimodal spectral waves.
     The results of the physical model test which was accomplished upon mooring ships under the effects of fluctuate wind (wind velocity in the test:8.5~21.4m/s) have indicated that:
     ●there is no significant effect wind has on the mooring ships when the wind is on less than6th wind scale (14m/s). Therefore, the6th wind scale has been regarded as the start-up wind speed of a ship.
     ●the effects of transversal offshore wind on the8th scale (17~20m/s) have upon the movement of sway is roughly equivalent to the ones the transversal wind waves with7s of period,1.5~2m of wave height.
     ●when the mooring ship is ballasted, the wind velocity is greater than6th wind scale, as the wind speed increases, line tension increases rapidly.
     The numerical simulation results have shown that:
     ●a numerical simulation model has been established for research in the paper, whose calculation results of the model mooring ships'motions and dynamic responses agree well with the experimental results, which can be used for a real situation.
     ●when the low-frequency energy of bimodal spectral waves accounts for20%of the total, the periodic changes of high-frequency spectral peak have tremendous impact on the motion responses (the movement of pitch excluded) of mooring ships under the action of bimodal spectral waves; with the increasing contributions of low-frequency energy, the periodic changes of high-frequency spectral peak have begun to have smaller impact on the motion responses and line tensions of mooring ships.
引文
[1]交通运输部综合规划司.2011年公路水路交通运输行业发展统计公报[R].2012.04.25.
    [2]上海国际航运研究中心.全球港口发展报告(2011)[R].2012.
    [3]安子祎.船舶大型化趋势下我国港口格局的发展[J].中国港口,2006(12):20-22.
    [4]季则舟,胡世津.海运船舶现状和发展趋势及对我国港口建设的影响[J].港工技术,2007(6):18-23.
    [5]彭振武.世界海运和港口业的发展趋势[J].中国工程咨询,2006(8):6-8.
    [6]王传荣.超大型散货船市场看好—大型矿砂运输船市场分析[J].船舶物资与市场,2005(1):19-21.
    [7]江文铂.国内外运输船舶发展趋势对湛江港的启示[J].中国水运,2011(12):23-24.
    [8]洪承礼,刘济舟.港口规划与布置[M].北京:人民交通出版社,1999.
    [9]任增金.“一”字形码头带缆方式的应用[J].水运工程,2011(6):85-89.
    [10]高鸿.同一泊位接连两船断缆险情的排除及断缆原因的分析[J].天津航海,2011(4):13-14.
    [11]杨宪章.长有效周期波的特性及对系泊船舶动态特性的影响[J].港口工程,1989(6):37—43.
    [12]徐兆全.波流作用下系泊船舶运动及缆绳布局优化[D].大连理工大学硕士论文,2007.
    [13]Schellin T E., Ostergaard C.The VesseL in Port:Mooring Problems[J]. Marine Structure,1995(8):451-479.
    [14]熊志坚.我国VLCC系泊风险分析及预控对策[J].物流工程与管理,2009(6):132-134.
    [15]张亚赞.船舶靠泊期间系缆安全的探讨[J].集美航海学院学报,1997(3):26-30.
    [16]陈谊舟.影响大型集装箱船舶安全系泊的若干因素[J].集装箱化.2008(9):29-33.
    [17]刘洪路,孙密,林金利.马迹山港及VLOC安全系泊注意事项[J].航海技术,2009(6):24-25.
    [18]杨希宏.对海港码头泊稳及作业条件的初步探讨[J].港工技术,1980(6):1-10.
    [19]范自明.系泊船舶在横浪作用下的泊稳条件和撞击能的计算[J].河海大学学报(自然科学版),1983(4):12-25.
    [20]杨希宏.集装箱码头泊稳和操作条件[J].中国港湾建设,1986(6):29-31.
    [21]蒲廷芬.开敞码头的泊稳标准[J].水运工程,1984(1):1-2.
    [22]Bruun P. Breakwater or mooring system?[Z]. The Dock and Harbour Authority,1981(62): 126-129.
    [23]JTJ211-99.海港总平面设计规范[S].北京:人民交通出版社,1999.
    [24]JTJ295-2000.开敞式码头设计与施工技术规程[S].北京:人民交通出版社,2000.
    [25].JTS 165-6-2008.滚装码头设计规范[S].北京:人民交通出版社,2008.
    [26]JTS 165-5-2009.液化天然气码头设计规程[S].北京:人民交通出版社,2009.
    [27]日本港湾协会.港湾设施技术基准[S].2007.
    [28]BS 6349-1:2000 Maritime Structures-Part1:Code of Practice for General Criteria [S]. UK,2000.
    [29]UFC4-159-03. Unified Facilities Criteria(UFC):Mooring Design[S]. USA,2005.
    [30]PIANC. Criteria for Movements of Moored Ships in Harbours:a Practical Guide[R]. Report of Working Group NO.24 of the Permanent Technical Committee Ⅱ. Brussel:PIANC, 1995.
    [31]杨宪章.不同浪向的不规则波作用下系泊船舶动态特性的差异[J].港口工程,1992(2):39-45.
    [32]王琳.船舶运动量在确定某LNG泊位装卸条件中的应用[J].水运工程,2011(9):22-26.
    [33]周丰.离岸深水港码头泊稳条件关键技术研究[J].水运工程,2011(11):117-120.
    [34]Oil Companies International Marine Forum (OCIMF). Mooring Equipment Guidelines[S]. 2008:3rdEdition.
    [35]蒋庆.复杂水动力条件下大型开敞式码头轴线的确定[J].水运工程,2007(9):123-126.
    [36]张宁川,黄国兴,蒋庆,等.复杂水动力条件下大型开敞式码头轴线的确定[C].第十六届全国水动力研讨会文集,中国北京,2002:714-720.
    [37]郭剑锋,高峰,李焱,等.浙江LNG接收站船舶系泊试验研究[J].水道港口,2010(1):7-11.
    [38]吴澎,姜俊杰,张廷辉,等.开敞式蝶形码头墩位平面布置的优化研究[J].水运工程,(10):120-127.
    [39]邱大洪,薛鸿超.工程水文学[M].北京:人民交通出版社,2011.
    [40]Longuet-Higgins M S. On the joint distribution wave periods and amplitudes of sea waves[J]. J. Geophys. Res.1975(80):2688-694.
    [41]Cavine et al. A statistical relationship between individual heights and periods of storm waves[C]. In:Proc. Conf. on Behaviour of Offshore Structures, Trondheim, 1976,345-360.
    [42]Lindgren G. and I.Rychlik Wave characteristic distribution for gaussian waves-wavelenght, amplitude and steepness[J]. Ocean Eng.,1982(9):411-432.
    [43]孙孚.海浪周期与波高的联合分布[J].海洋学报,1988,10(1):10-15.
    [44]Bitnet E M. Non-linera effects of the statistical model of shallow-water wind waves[J]. Applied Ocean Res.,1980,2(2):63-73.
    [45]丁平兴,孙孚,孔亚珍,等.风浪统计性质的实验研究(I波高与周期的统计分布)[J].海洋学报,1995,17(4):1-10.
    [46]丁平兴,孙孚,孔亚珍,等.风浪统计性质的实验研究(II波高与周期的联合统计分布)[J].海洋学报,1995,17(5):1-9.
    [47]Bretschneider C-L. Wave variability and wave spectra for wind-generated fravity waves[Z]. U. S. Army Corps.of Engineers,1959,113.
    [48]尹志军,潘玉萍,沙文钰,等.风浪波高和周期的联合概率密度分布[J].海洋预报,2007(2): 39-46.
    [49]黄培基,陈雪英,胡泽建.双峰谱型海浪的统计性质[J].海洋学报,1995,17(6):1-9.
    [50]黄培基,胡泽建.胶州湾双峰海浪频谱的表示[J].海洋学报.1988.10(5):531-537.
    [51]陈雪英.双峰谱型海浪波高和周期分布[j].黄渤海海洋.1996,14(2):1-8.
    [52]俞聿修.随机波浪及其工程应用[M].大连:大连理工大学出版社,2003.
    [53]吕常五.关于胶州湾内双峰谱波浪的某些统计特征初步分析[j].黄渤海海洋.1990,8(2):1-8.
    [54]管长龙,张大错,关世义.双峰海浪频谱的一种表示[J].海洋与湖沼,1996,27(2):151-156.
    [55]Soares C. G. Representation of double-peaked sea wave spectra [J]. Ocean Engineering, 1984,11(2):188-207.
    [56]陈雪英,黄培基,胡泽建.胶州湾双峰谱型海浪的统计特征[J].黄渤海海洋,1994,12(2):1-9.
    [57]陈雪英.双峰谱型海浪波高和周期分布[j].黄渤海海洋,1996,14(2):1-8.
    [58]冯卫兵,任华堂,洪广文.上海海域风浪谱分析与研究[J].河海大学学报,2002,30(3):28-32.
    [59]潘玉萍,葛苏放,沙文钰,等.由模拟波面分析双峰谱型海浪的统计特征[J].海洋学报,2009,31(4):13-21.
    [60]C.Guedes Soares. On the occurence of double-peaked wave spectra[J]. Ocean Engineering,1991,18(1-2):167-171.
    [61]Alessandro Toffoli, Miguel Onorato, Jaak Monbaliu. Wave statistics in unimodal and bimodal seas from a second-order model[J]. European Journal of Mechanics B/Fluids 2006 (25):649-661.
    [62]Petya G. Petrova, C. Guedes Soares. Wave height distributions in bimodal sea states from offshore basins[j]. Ocean Engineering,2011(38):658-672.
    [63]Petya G. Petrova, C. Guedes Soares. Probability distributions of wave heights in bimodal seas in an offshore basin[J]. Applied Ocean Research,2009,31(2):90-100.
    [64]Felice Arena, C. Guedes Soares. Nonlinear Peak to Trough Distributions in Sea States With Double-Peaked Spectra[C].26th International Conference on Offshore Mechanics and Arctic Engineering,2007, San Diego, California, USA. http://dx.doi.org/10.1115/OMAE2007-29733.
    [65]Arena F., Guedes Soares C. Nonlinear crest, trough and wave height distributions in sea states with double-peaked spectra[J]. Journal of Offshore Mechanics and Arctic Engineering ASME,2009,131(4),041105-1-041105-8.
    [66]蔡烽,石爱国,缪泉明.双峰谱波浪模型及其数值模拟[C].船舶安全管理论文集,哈尔滨,中国,2008:154-157.
    [67]Faltinsen 0 F,著.船舶与海洋工程环境荷载[M].杨建民,肖龙飞,葛春花,译.上海:上海交通大学出版社,2008.
    [68]OCIMF. Reduction of Wind and Current on VLCC's[S]. Second Edition, Witherby & Co. Lid, England,1994.
    [69]沐建飞,潘斌.海洋平台风荷载的分析与计算[J].中国海洋平台,1999(1):7-12.
    [70]耿宝磊.波浪对深海海洋平台作用的时域模拟[D].大连理工大学,2010.
    [71]王兴刚.深海浮式结构物与其系泊缆索的耦合动力分析[D].大连理工大学,2011.
    [72]张宁川.大连港矿石专业码头工程20万吨级船舶模型试验研究[R].大连理工大学,2003.
    [73]张宁川.大连LNG码头工程船舶系靠泊物理模型试验研究报告[R].大连理工大学,2008.
    [74]张宁川.金塘大埔口集装箱码头工程船舶系靠泊及码头轴线优化物理模型试验研究报告[R].大连理工大学,2005.
    [75]孙大鹏.中油珠海物流仓储工程配套30万原油码头船舶模型试验研究[R].大连理工大学,2008.
    [76]张宁川.珠海LNG项目码头工程船舶系靠泊物理模型试验研究报告.大连理工大学,2010.
    [77]张云彩,姚美旺,王敏生,等.阵风及其谱模拟[J].海洋工程,1996(2):1-8.
    [78]Chakrabarti S K. Non-Linear Methods in Offshore Engineering[M]. Elsevier, Amsterdam, 1990.
    [79]夏运强,李华军,唐筱宁.海洋工程物理模型试验中风场模拟方法研究[J].工程力学,2008,25(1):28-33.
    [80]彭涛,杨建民,李俊.海洋工程试验水池中风场模拟[J].海洋工程,2009,27(2):8-13.
    [81]唐友刚,郑俊武,董艳秋.船舶内共振动力学行为的研究[J].中国造船,998,4(38):19-24.
    [82]唐友刚,马网扣,张伟.船舶超谐共振响应运动[J].中国造船,2002,43(4):19-24.
    [83]唐友刚,鲁晓光,郑俊武.船舶运动亚谐共振动力学行为的研究[J].船舶力学,2003,7(1):12-17
    [84]Van Oortmerssen G.The motions of a moored ship in waves[D]. Delft University of Technology, The Netherlands,1976.
    [85]Van der MOLEN W. Behaviour of moored ships in harbours[D]. Delft University of Technology, The Netherlands,2006.
    [86]蒋学炼,李炎保.波浪作用下系泊船舶运动计算[J].水动力学研究与进展,2005(6):793-801.
    [87]信书.码头前系泊船舶运动响应的数值模拟[D].大连理工大学,2005.
    [88]Ausenco Sandwell. Berth Availability Assessment at Lumina Copper S. A. C. Port Eten [R].Ausenco Sandwell, Queensland, Australia,2009.
    [89]刘雪梅.船舶原理[M].哈尔滨工程大学出版社,2005.
    [90]于洋,洪碧光.码头系泊船水动力特性的研究[J].大连海事大学学报,1999(3):36-39.
    [91]滕斌,刘昌凤,张俊生等.码头前系泊船舶的附加水体质量系数[J].水道港口,2011(1):1-6.
    [92]Hu-Hsiao, Yung-Chao WU. The hydrodynamic coefficients for an oscillating rectan-gular structure on a free surface with sidewall[J]. Ocean Engineering,1977, 2(4):177-199.
    [93]Han L, Teng B, Dong GH. Hydrodynamic coefficients of ships in front of a vertical wall[C]. Proc. of Second Int. Workshop on Hydrodynamics.2001:23-29.
    [94]Van der MOLEN W. and Ligteringen H. Influence of Loading Condition on the Behavior of a Moored Liquefied Natural Gas Ship[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering,2005(1):33-36.
    [95]杨宪章.系泊船舶的频率响应特性[J].港口工程,1989(2):14—23.
    [96]Sakakibara Shigeki, Kubo Masayoshi. Effect of mooring system on moored ship motions and harbour tranquility[C]. Int. J.Ocean Systems Management,2008,1(1):84-99.
    [97]ROSA-SANTOS P., VELOSO-GOMES F., TAVEIRA-PINTO F. et al,Physical Model Study of the Behaviour of an Oil Tanker Moored at a Jetty[C]. Proceedings on the Second International Conference on the Application of Physical Modeling to Port and Coastal Protection,2008.
    [98]高峰,郑宝友,陈汉宝,等.不同系缆方式下的系泊条件分析[J].水运工程,2007(3):48-52.
    [99]卢西伟.开敞水域系泊船舶运动及动力响应研究与泊位优化[D].大连理工大学,2009.
    [100]孙大鹏,吴浩,夏志盛,等.开敞式码头泊位长度试验研究[J].水运工程,2011(7):83-87.
    [101]蔡长泗.蝶形短泊位系泊效果[J].水运工程,2009,(4):80-82.
    [102]杨宪章,吴舸.波群引起的二阶长波对系泊船舶运动动力特性的影响[J].港工技术,1990(3):36-42.
    [103]S. K. Lee, H. Choi, Surendran S. Experimental studies on the slowly varying drift motion of a berthed container ship model[J]. Ocean Engineering,2006(33):2454-2465.
    [104]Van der MOLEN W., Ligteringen H. J.,Van der Lem C.,et al. Behavior of a moored LNG ship in swell waves[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE,2003,129(1):15-21.
    [105]邹志利,Bowers E. C港口内靠码头系泊船运动的计算[J].海洋工程,1995(3):25-36.
    [106]Van der MOLEN W. Modeling of Inf ragravity Waves and Moored Ship in Tomakomai Port [Z]. Harbor Long Wave 2004,Yokosuka Japan.
    [107]Van der MOLEN W., MONARDES P., Van DONGEREN A R. Numerical Simulation of Long-Period Waves and Ship Motions in Tomakomai Port Japan [J]. Coastal Engineering Journal,2006, 48(1):59-79.
    [108]Sakakibara Shigeki, Kubo Masayoshi. Characteristics of low-frequency motions of ships moored inside ports and harbors on the basis of field observations [J]. Marine Structures,2008,21:196-223.
    [109]Ken-ichi Uzaki, Nobuhiro Matsunaga, Yasuhiro Nishii, et al. Cause and Countermeasure of Long-Period Oscillations of Moored Ships and the Quantification of Surge and Heave Amplitudes[J]. Ocean Engineering,2010(37):155-163.
    [110]MA Xiao-jian, SUN Zhao-chen, ZHANG Zhi-ming,et al.The Effect of Wave Groupiness on a Moored Ship Studied by Numerical Simulations [J]. Journal of Hydrodynamics,2011, 23 (2):145-153.
    [111]Robert Grant, Monica Holboke, et al. Shallow Water Effects on Low-Frequency Wave Excitation of Moored Ship[C]. Presentation at the Offshore Techology Conference, Houston U.S. A.,2004.
    [112]Sakakibara Shigeki, Kubo Masayoshi.Initial Attack of Large-scaled Tsunami on Ship Motions and Mooring Loads[J]. Ocean Engineering,2009(36):145-157.
    [113]Sakakibara Shigeki, Takeda Shoji, Iwamoto Yuji, Kubo Masayoshi.A Hybrid Potential Theory for Predicting the Motions of a Moored Ship Induced by Large-Scaled tsunami[J]. Ocean Engineering,2010(37):1564-1575.
    [114]王凤龙.在波浪作用下系泊船舶横移、横摇和升沉量的估算[J].港工技术,1993(3):18-22.
    [115]刘必劲.开敞式码头系泊船舶运动量、系缆力和撞击能量研究[D].大连理工大学,2008.
    [116]张志明,周丰,杨国平,等.离岸深水港码头系泊船舶运动量研究[J].中国港湾建设,2010,10(增刊1):49-52.
    [117]Ligteringen H., Moes J. Motions of Moored Ships in Long Waves[C]. International Conference on Port and Maritime and Technology, Singapore,2001.
    [118]杨兴晏.船舶风荷载算法的比较研究[J].港工技术,2005(2):12-13.
    [119]JTJ215-98.港口工程荷载规范[S].北京:人民交通出版社,1998.
    [120]张建侨,孙一艳.渔船风荷载计算方法的比较研究[J].渔业现代化,2011,38(1):55-59.
    [121]李臻,杨启,宗贤华,刘建峰.巨型船舶大风浪中系泊模型试验研究[J].船舶工程,2003(2):5-8.
    [122]张福然,赵军.水流对顺岸码头上系泊船舶作用力的研究[J].水运工程,1995(3):52-55.
    [123]张福然,赵军,张学勤.水流对离岸海港码头泊船舶作用力的研究[J].水道港口,1995(1):1-10.
    [124]陈中一,陈基成,赵颖.在潮汐流作用下 25万吨级油轮系缆力的模型试验研究[J].海洋工程.1998(3):45-53.
    [125]李焱,郑宝友,高峰,孟祥玮.浪流作用下系泊船舶撞击力和系缆力试验研究[J].海洋工程,2007(2):57-63.
    [126]邹志利,张日向,张宁川,等.风浪流作用下系泊船系缆力和碰撞力的数值模拟[J].中国海洋平台,2002(2):22-27.
    [127]张日向,刘忠波,张宁川.系泊船在风浪流作用下系缆力和撞击力的试验研究[J].中国海洋平台,2003(1):28-32.
    [128]向溢,杨建民,谭家华,等.码头系泊船舶模型试验[J].海洋工程,2001(2):45-49.
    [129]Charles Fournier, Dave Anglin. The Use of Moored Ship Response Modelling Coupled with Pianc Vessel Motion Criteria for the Estimate of Port Downtime the Case of Complejo Portuario de Mejillones, Chile[C]. Canadian Coastal Conference,2003.
    [130]李焱,郑宝友,陈汉宝,高峰.大型LNG船舶系泊条件试验研究[J].中国港湾建设,2011(6):21-25.
    [131]Korsmeyer F T, Lee C H, Newman J N, Sclavounos P D. The analysis of wave effects on tension-leg platforms[C]. Proceeding Conference on Offshore Mechanics and Arctic Engineering, ASME,2, Houston. Texas,1988.
    [132]缪国平,刘应中.大直径圆柱上的二阶波浪力[J].中国造船,1987(3):12-24.
    [133]滕斌,李玉成,董国海.双色入射波下二阶波浪力响应函数[J].海洋学报,1996,21(2):115-123.
    [134]Stoker J J. Water Waves, Pure and Applied Mathematics[M]. New York:Interscience Publishers, Inc.,1958.
    [135]Yeung R W. The transient heaving of floating cylinders[J]. Journal of Engineeing Mathematics,1982,116:97-119.
    [136]Isaacson M, Cheung K F. Second order wave diffraction around two-dimensional bodies by time-domain method [J]. Applied Ocean Research,1991,13(4):175-186.
    [137]Cummins W E. The Impulse Response Function and Ship Motions. Schiff stechnik,1962(9): 101-109.
    [138]Bingham H B. A hybrid Boussinesq-panel method for predicting the motion of a moored ship[J]. Coastal Engineering,2000(40):21-38.
    [139]向溢,谭家华.码头系泊船舶缆绳张力的混沌解法[J].武汉理工大学学报(交通科学与工程版),2001(1):48-51.
    [140]向溢,谭家华.码头系泊缆绳张力的蒙特卡洛算法[J].上海交通大学学报,2001(4):548-551.
    [141]齐鹏,王永学,贺五洲.港内靠码头系泊船波浪力时域模型[J].清华大学学报(自然科学版),2003,43(2):262-265.
    [142]王大国,邹志利,谭国焕,唐春安.港口非线性波浪三维耦合计算模型研究[J].中国科学E辑:技术科学,2009(2):351-358.
    [143]Mei C C. The Applied Dynamics of Ocean Surface Wave[J]. John Wiley and Sons, Inc., New York,1983.
    [144]Harlow F H, Welch J E. The MAC method, a computiong technique for solving viscous, Incompressible transient fluid problems involving free surface [M].Los Almos Scientific Lab, Rep. LA-3452,1965.
    [145]邹志利,邱大洪,王永学.VOF法模拟波浪槽中二维非线性波[J].水动力学研究与进展(A辑),1996,11(1):93-103.
    [146]Wang Y X, Su T C. Computation of wave breaking on sloping beach by VOF method[C]. In: Proceedings of the third International Offshore and Polar Engineering Conference, Singapore,1993:6-11.
    [147]Hess J L, Smith A M O. Calculation of nonlifting potential flow about arbitrary three-dimensional bodies[J]. Journal Ship Research,1964(8):22-24.
    [148]Chau F P. The second order velocity potential for diffraction of waves by fixed offshose structure[R].Report OEG/89/1,University College London,1989.
    [149]Monaghan J J. Smoothed Particle Hydrodynamics. Annual Review of Astronomicalan Astrophysics,1992(30):543-574.
    [150]Shashikala A P, Sundaravadivelu R, Ganapathy C. Dynamics of moored barge under regular and random waves[J]. Ocean Engineering,1997(24):401-430.
    [151]Teng B, Eatock Taylor R. New Higher-Order Boundary Element Methods for Wave Diffraction/Radiation[J]. Applied Ocean Research,1995, (17):71-78.
    [152]刘宇,唐国磊.波浪周期对开敞式码头系泊安全影响研究[J].中国水运(下半月刊),2010(8):30-31.
    [153]孟祥伟,高峰,李焱.波浪有效周期对系泊条件影响的数学模型研究[C].第十五届中国海洋(岸)工程学术讨论会论文集,中国山西太原,2011:788-792.
    [154]Van der MOLEN W., Ivo Wenneker. Time-domain calculation of moored ship motions in nonlinear waves[J]. Coastal Engineering,2008(55):409-422.
    [155]Hidefumi IkedaDai, ki Yasuda, Haruo Yoneyama, et al. Development of Mooring System to Reduce Long-period Motions of a Large Ship[C]//Proceedings of the 21st International Offshore and Polar Engineering Conference, Hawaii, USA. ISOPE,2011: 1214-1221.
    [156]Satoru Shiraishi Numerical Simulation of Ship Motions Moored to Quay Walls in Long-Period and Proposal of Allowable Wave Heights for Cargo Handl ing in a Port[C]. International Offshore and Polar Engineering Conference, Osaka, Japan,2009(6): 1109-1116.
    [157]JTJ213-98.港口水文规范[S].北京:人民交通出版社,1999.
    [158]JTJ/T234-2001.波浪模型试验规程[S].北京:人民交通出版社,2001.
    [159]刘丽琴,唐友刚,李红霞.船舶运动的复杂动力特征在我国的研究发展[J].武汉理工大学学报,2006(1):183-186.
    [160]John D. Boon, Malcolm O. Green, Kyung Duck Suh.Bimodal wave spectra in lower Chesapeake Bay,sea bed energetics and sediment transport during winter storms[J]. Continental Shelf Research,1996,16(15):1965-1988.
    [161]李瑞丽.海浪有效周期若干问题研究[D].中国海洋大学,2007.
    [162]邹志利.水波理论及其应用[M].北京:科学出版社,2005.
    [163]OCIMF and Tention Technology International Ltd. OPTIMOOR USERS GUIDE Appendices: WIND COEFFICIENTS AND CALCULATION METHODS USED IN OPTIMOOR[S].2003.
    [164]MOFFATT & NICHOL. Jetty Study for 267,000m3 Carriers at Dapeng LNG Receiving Terminal People's Republic of China[R].2007.
    [165]The World Fleet of LNG Carrier[EB/OL].2012.02.29, http://shipbuildinghistory.com/today/highvalueships/lngfleet. htm.
    [166]API-RP2A. Recommended Practice for Planning Designing and Construction Fixed[Z]. 19th edition 1990.
    [167]唐筱宁,夏运强,杨洪旗,贾友海.波浪物理模型试验中风速比尺确定方法初探[J].海岸工程,2006(1):1-5.
    [168]刘应中,缪国平.船舶在波浪上的运动理论[M].上海,上海交通大学出版社,1987.
    [169]李玉成,滕斌.波浪对海上建筑物的作用[M].北京,海洋出版社,2002.
    [170]Ferrant P. Three-dimensional unsteady wave-body interactions by a Rankine boundary element method[J]. Ship Technology Reseach,1993:165-175.
    [171]王惟诚,顾之浩.任意形状大尺度固定式近海建筑物波浪荷载的数值计算——三维表面布源法[J].海洋工程.1989,7(02):50-61.
    [172]Chau F P. The Second Order Velocity Potential for Diffraction of Waves by Fixed Offshore Structure[R]. Report OEG/89/1, University College London,1989.
    [173]戴世强,梅强中,周显初整理.水波动力学[M].北京:科学出版社,1984.
    [174]Newman J N. Second-order, slowly forces on vessels in irregular waves [C]. London, IME: International Symposium on the Dynamics of Marine Vehicles and Structures in Waves, 1974.
    [175]Newman J N. The exciting forces on fixed bodies in waves [J]. Journal of Ship Research, 1962,6 (3):10-17.
    [176]贺五洲,戴遗山.简单Green函数法求解三维水动力系数[J].中国造船,1986(2):1-15.
    [177]Garret C J R. Wave forces on a circular dock[J]. Journal of Fluid Mechanics,1971, 46(1):129-139.
    [178]滕斌.波浪对三维浮体的二阶作用[J].水动力学研究与进展,1995,10(3):316-327.
    [179]Kim M H, Yue D K P. The complete second-order diffraction solution for an axisymmetric body Part1. Monechromatic incident waves[J]. Journal of Fluid Mechanics,1989(200): 235-264.
    [180]Kim M H, Yue D K P. The complete second-order diffraction solution for an axisymmetric body Part1. Bichromatic incident waves and body motions[J]. Journal of Fluid Mechanics,1990(211):557-593.