开敞式码头系泊船运动响应及缆绳张力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶在码头前的运动响应及缆绳张力是港口设计和运营过程中的关键问题,直接关系到码头结构和货物装卸作业的安全。准确的预报码头前系泊船的运动响应及缆绳张力,对保证船舶的装卸货物、港口运营安全是至关重要的。本文通过数值模拟针对不同泊位长度、不同横缆墩墩位布置下风、流、规则波、不规则波包括波群作用下的系泊船的运动响应及缆绳张力进行了深入的研究,旨在加深对系泊船运动响应的理解,预报复杂海洋环境条件下,船舶在系缆状态时的运动响应和缆绳张力,为港口设计部门和运营部门提供科学依据。
     首先,本文建立了风和流联合作用下系泊船缆力和位移的数值模型,旨在为工程设计方提供快速、有效的计算手段。风与流对船舶的作用力由经验性公式计算得到,采用考虑了缆绳非线性变形的Wilson公式计算缆绳张力和考虑非线性影响的变形与撞击力关系计算护弦撞击力及撞击能量,对多缆绳和多护弦的超静定系泊系统作静力平衡计算,最后得到缆绳张力和系泊船的位移。模型的模拟结果与己方实验结果、商业软件Optimoor计算结果、第三方实验值分别进行了对比验证,证明了本模型模拟结果的正确性及有效性。应用本模型对风流作用下不同泊位长度和横缆墩墩位布置的码头系泊船的缆绳张力进行了对比计算,并分析了泊位长度与横缆墩墩位位置和系缆力分布的变化规律。
     其次,基于势流理论,应用三维源汇分布法,采用Cummins的理论,通过快速傅里叶变换将频域内采用边界元方法计算得到的船舶附加质量、阻尼、一阶波浪力和二阶平均波浪力的结果转变到时域内,建立了时域系泊船的运动响应模型。通过与漂浮半球、大尺度漂浮驳船和物理模型试验结果对比验证了本章时域模型。应用时域模型研究了初张力、缆绳材料、流、风等影响因素对船舶运动响应和缆绳张力的影响,并对风、流、规则波、不规则波浪作用下四种泊位长度、三种横缆长度、三种系缆方式下的缆绳张力及系船墩的布置进行了对比研究,分析了上述因素对缆绳张力和运动响应的影响,以减小船舶运动量,提高装卸效率与均衡缆绳张力分布,减少断缆事件为优化原则,针对本文的码头布置,提出了码头泊位长度及横缆系缆墩位置的优化方案。
     波群是海洋波浪场中一重要特性,其对海上系泊浮体、防波堤的动力反应有直接影响。进一步,本文采用模拟波浪频谱和波包谱的方法,模拟出具有同一有效波高、有效周期但不同群性的随机波列,研究了群高参数GFH、群长参数GLF、不同波浪入射角下波群波列作用下系泊船的运动响应、缆绳张力和护弦撞击力。数值结果表明波群对系泊船的运动响应和缆绳张力的影响不可忽略,对系泊系统有很大的破坏作用,会引起系泊系统在自身频率附近的共振,并研究了引起系缆状态下船舶共振的相关原因。
     最后,详细分析了谱峰因子γ、群高因子GFH、群长因子GLF与波浪特征波高之间的关系,并在考虑二阶差频波浪力的基础上分析了谱峰因子γ对船舶运动响应的影响。
It is the key problem for the port designer and operation manger that moored ship's motion response and mooring line force. Considering of the stability of wharf structure, vessel and cargo handing, it is important to determine accurately the motion of a moored ship exposed to the action of waves. Numerical simulations is performed to improve the understanding of the moored ship's motions and predict the response and the mooring line force in an offshore environment condition in order to provide the scientific basis for manger and designer.
     In order to provide a quick and valid calculating approach, a numerical simulation program is developed, with mooring line force and displacements under the wind and current action. The program for calculating mooring line forces and movements of a moored ship under combined action of wind and current is presented based on static force equilibrium principle. The wind and current load is calculated by experimental formulate according to the ship type and tonnage. The non-linear effect of mooring lines and fenders is taken into account. Compared with the results of the experiment, Optimoor results and other experiment results, numerical model is proved to be correct and effectively. By using the program, the mooring line load of a moored ship under the wind and current action in different berth length and various arrangement cleats are calculated and optimized. In all, the computed results have been analyzed.
     Based on the potential theory, with three-dimensional source distribution approach, a time domain numerical simulation model of a moored ship is established by the approach of Cummins, transforming the added mass, damping and first-order wave force and second order mean wave force in frequency domain to time domain. By comparing to the floating semi-sphere, floating barge and experiment results, the time domain model is prove correctly and effectively. By the time domain model, the mooring line force and motion response are simulated under different initial tension, mooring line and current and wind speed. The mooing line forces and motion behaviors of moored ship are calculated under the combined action of wind, current and wave in different berth lengths, kinds of breast line lengths and three mooring line types. Based on the optimal principle of balancing the mooring line forces and minimizing the motion responses of moored ship, the more suitable case is pointed out about berth length and breast line pier arrangement.
     Groupiness is an important features of ocean wave field, and waves in quick succession are regarded as wave groups, which is greatly affect the floating body motion responses and breakwater safety. Basing on the previous research work, regard the wave spectrum and envelope spectrum as target, a mathematical model of a moored ship under the action of wave groups is presented in this thesis.
     Waves with the same parameters, such as significant wave height and period, but with different wave groupiness factors are simulated, to study the motion behavior of a moored ship under the action of wave groups with different groupiness factors height (GFH) and group length factors (GLF). The numerical results indicate that compared with the same significant wave height and period, same spectrum energy, the motion behavior of moored ship is greatly influenced by the wave groups. When GFH increases, the wave grouping becomes more and more pronounced. The sway motion increases with the increase of GFH. In contrast, the sway motion marginally increases with the increase of GLF. At the same time, the heave motion increases with the increase of GFH, while decreases marginally with the increase of GLF. The spectrum peak frequency of the surge motion under the wave groups action moves to the low frequency area, the surge motion spectrum peak frequency so close to the natural frequency of surge that it may lead to the moored ship resonant responses.
     Last, it is analyzed that the relationship of groupiness and statistic wave heights in detail. In all, taking account of the second order difference frequency wave force based on the second order mean wave force, the motion responses of tanker has been simulated.
引文
[1]Hess J L.Calculation of non-lifting potential flow about arbitrary three-dimensional bodies[R].1962.
    [2]Garrison C J.Hydrodynamic loading of large offshore structures:three-dimensional source distribution methods[J]. In:Numerical methods in offshore engineering.,1978.
    [3]Lee C H,Newman J N,Kim M H,et al.The computation of second-order wave loads[C]. Proc 10th Int Conf on Offshore Mechanics and Arctic Engineering, New York:ASME.1991:113-123.
    [4]Teng B,Taylor R E.New higher-order boundary element methods for wave diffraction/radiation[J]. Applied Ocean Research,1995,17(2):71-77.
    [5]Ma Q W,Wu G X,Eatock Taylor R.Finite element simulation of fully non-linear interaction between vertical cylinders and steep waves. Part 1:methodology and numerical procedure[J]. International journal for numerical methods in fluids,2001,36(3):265-285.
    [6]Ma Q W,Wu G X,Eatock Taylor R.Finite element simulations of fully non-linear interaction between vertical cylinders and steep waves. Part 2:numerical results and validation[J]. International journal for numerical methods in fluids,2001,36(3):287-308.
    [7]王赤忠,叶恒奎,石仲堃.三维二阶水波绕射问题的有限元时域计算[J].海洋工程,2000,18(1):13-19.
    [8]邹志利,邱大洪.VOF方法模拟波浪槽中二维非线性波[J].水动力学研究与进展:A辑,1996,11(001):93-103.
    [9]WANG Y,SU T C.Computation of wave breaking on sloping beach by VOF method[C]. The Proceedings of the International Offshore and Polar Engineering Conference.1993,3:96-101.
    [10]Welch J E,Harlow F H,Shannon J P,et al.The MAC (Marker-and-Cell) Method:A computing technique for solving viscous, incompressible, transient fluid-flow problems involving free surfaces[J]. Low Alamos Scientific Laboratory Report LA-3425, University of California, Los Alamos, NM,1966.
    [11]Monaghan J J.Smoothed particle hydrodynamics[J]. Annual review of astronomy and astrophysics, 1992,30:543-574.
    [12]Miiller M,Charypar D,Gross M.Particle-based fluid simulation for interactive applications[C]. Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation.2003: 154-159.
    [13]李玉成,滕斌.波浪对海上建筑物的作用[J].海洋出版社,2002.
    [14]杨德全,赵忠生.边界元理论及应用[M].北京理工大学出版社,2002.
    [15]Cheung K F, others.Time-Domain Second-Order Wave Diffraction in Three Dimensions[J]. Journal of Waterway, Port, Coastal and Ocean Engineering,1992,118:496.
    [16]Beck R F.Time-domain computations for floating bodies[J]. Applied ocean research,1994,16(5): 267-282.
    [17]Lin W M,Yue D K P.Numerical solutions for large amplitude ship motions in the time-domain[C]. Proc. 18th Symp. on Naval Hydrodynamics, Ann Arbor, MI.1990:41-65.
    [18]刘应中,缪国平.船舶在波浪上的运动理论[M].上海交通大学出版社,1987.
    [19]Cummins W E.The impulse response function and ship motions[R].1962.
    [20]Van Oortmerssen GThe motions of a moored ship in waves[M]. Netherlands Ship Model Basin,1976.
    [21]Wichers J E W.A simulation model for a single point moored tanker[D]. Technische Universiteit Delft, 1988.
    [22]向溢,谭家华.码头系泊缆绳张力的蒙特卡洛算法[J].上海交通大学学报,2001,35(4):548-551.
    [23]向溢,谭家华.码头系泊缆绳张力的计算[J].船舶力学,2002,6(3):20-27.
    [24]Yi X.码头系泊船舶缆绳张力的混沌解法[J].武汉理工大学学报(交通科学与工程版),2001(1).
    [25]邹志利.港口内靠码头系泊船运动的计算[J].海洋工程,1995,13(3):25-36.
    [26]邹志利,曹慧军.风浪流作用下系泊船系缆力和碰撞力的数值模拟[J].中国海洋平台,2002,17(2):22-27.
    [27]黄明汉,邹志利.波浪中多船多墩柱受力和运动的快速计算方法[J].船舶力学,2010,14(11):1227-1240.
    [28]信书,滕斌,董国海,等.烟大铁路轮渡工程船舶系泊的数值模拟[J].港工技术,2005(1):5-7.
    [29]聂孟喜,王旭升,王晓明.防风水鼓系泊系统系泊力的计算方法[J].水运工程,2003(5):5-8.
    [30]聂孟喜,王旭升,王晓明,等.风,浪,流联合作用下系统系泊力的时域计算方法[J].清华大学学报(自然科学版),2004,44(9):1214-1217.
    [31]聂孟喜,张琳.单锚腿系泊系统动力计算的新方法[J].海洋技术,2007,26(2).
    [32]聂孟喜,王旭升,张琳.单锚腿系泊系统动力响应的时域计算方法[J].海洋工程,2004,22(2):58-61.
    [33]张琳.单锚腿系泊系统数值模拟[D].清华大学,2005.
    [34]李欣,王磊,杨建民.浅水浮式生产储油系统二阶波浪慢漂力数值计算[J].上海交通大学学报,2006,40(6):997-999.
    [35]王磊,李欣,杨建民.浅水浮式生产储油系统(FPSO)二阶定常力数值仿真研究[J].海洋工程,2006,24(1):9-13.
    [36]王磊,彭涛,王敏声.浅水浮式生产储油系统(FPSO)二阶波浪力数值仿真研究[J].第十八届全国水动力学研讨会文集,2004.
    [37]孟祥玮,高学平,张文忠,等.波浪作用下船舶系缆力的计算方法[J].天津大学学报,2011,44(7):593-596.
    [38]XIAO L,YANG J,LI X.PENG Tao.The effects of shallow water depth on the hydrodynamic coefficients of a 160kDWT FPSO [J]. Journal of Hydrodynamics,2004,3.
    [39]肖龙飞,杨建民,胡志强.极浅水单点系泊FPSO氏频响应分析[J].船舶力学,2010(4):372-378.
    [40]Long-fei X,Jian-min Y,Xin L I.Shallow Water Effects on Surge Motion and Load of Soft Yoke Moored FPSO[J]. Ocean engineering,2007,21(2).
    [41]Sakakibara S,Kubo M.Characteristics of low-frequency motions of ships moored inside ports and harbors on the basis of field observations[J]. Marine Structures,2008,21:196-223.
    [42]Sakakibara S,Takeda S.Iwamoto Y,et al.A hybrid potential theory for predicting the motions of a moored ship induced by large-scaled tsunami[J]. Ocean Engineering, Elsevier,2010,37(17):1564-1575.
    [43]Sakakibara S,Kubo M.Characteristics of low-frequency motions of ships moored inside ports and harbors on the basis of field observations[J]. Marine Structures, Elsevier,2008,21(2):196-223.
    [44]MacCamy R C, Fuchs R A. Wave forces on piles:A diffraction theory.[R].1954.
    [45]Chakrabarti S K. Wave forces on multiple vertical cylinders[J]. Journal of the Waterway Port Coastal and Ocean Division, ASCE,1978,104(2):147-161.
    [46]邱大洪,朱大同.圆柱墩群上的波浪力[J].海洋学报(中文版),1985,1:9.
    [47]缪国平,余志兴,缪泉明,et a1.流体动力干扰对单排圆柱桩列波浪力的影响[J].力学学报,1998,30(5):513-520.
    [48]Linton C M, Evans D V. The interaction of waves with arrays of vertical circular cylinders[J]. J. Fluid Mech, Cambridge Univ Press,1990,215:549-569.
    [49]高永祥,宋苏平,何荔.多圆柱墩群上波浪力的精确解及计算分析[J].水动力学研究与进展A辑,1987,2:3.
    [50]Van Oortmerssen G. Hydrodynamic interaction between two structures, floating in waves[C]. Proceedings of the 2nd Int Conf of Behavior of Offshore Structures.1979:339-356.
    [51]Duncan J H, Barr R A, Liu Y Z. Computations of the coupled response of two bodies in a seaway[C]. International workshop on ship and platform motions.1983:491-511.
    [52]Fang M C, Kim C H. Hydrodynamically coupled motions of two ships advancing in oblique waves[J]. Journal of ship research, Society of Naval Architects and Marine Engineers,1986,30(3):159-171.
    [53]Williams A N, Rangappa T. Approximate hydrodynamic analysis of multi-column ocean structures [J]. Ocean engineering, Elsevier,1994,21(6):519-573.
    [54]Yeung R W. Applications of slender body theory to ships moving in restricted shallow water[J].1978.
    [55]Chen G R, Fang M C. Three-dimensional solutions of exciting forces between two ships in waves[J]. International shipbuilding progress, IOS Press,2000,47(452):397-420.
    [56]諷楠,郜焕秋.波浪中两个浮体水动力相互作用的数值计算[J].船舶力学,1999,3(2):7-15.
    [57]Li L. Numerical seakeeping predictions of shallow water effect on two ship interactions in waves[D]. Dalhousie University,2001.
    [58]Mei C C,Stiassnie M,Dick K P Y.Theory and applications of ocean surface waves:nonlinear aspects[M]. World Scientific,2005,2.
    [59]Takagi K,Naito S,Hirota K.Hydrodynamic forces acting on a floating body in a harbor of arbitrary geometry[J]. International Journal of Offshore and Polar Engineering,1994,4(2):97-104.
    [60]JIANG X,LI Y.The calculation of wave-induced motions of berthed ship [J]. Journal of Hydrodynamics,2005,6.
    [61]齐鹏,王永学.非线性波浪时域计算的三维耦合模型[J].海洋学报,2000,22(6):102-109.
    [48]Van der Molen W,Wenneker I.Time-domain calculation of moored ship motions in nonlinear waves[J]. Coastal Engineering, Elsevier,2008,55(5):409-422.
    [62]Der Molen W.Behaviour of moored ships in harbours[J].2006.
    [63]Lander J F,Whiteside L S,Lockridge P A. Two Decades of Global Tsunamis[J]. Science of Tsunami Hazards,2003,21(1):3.
    [64]王大国,邹志利,唐春安.波浪对箱形船作用的三维耦合计算模型[J].船舶力学,2007,11(4):533-544.
    [65]王大国,邹志利.系泊船非线性波浪力时域计算:二维模型[J].海洋学报,2004,26(2):104-117.
    [66]王大国,邹志利,唐春安.直立码头前船波浪力耦合计算模型[J].力学学报,2006,38(6):767-775.
    [67]王大国,邹志利,唐春安.波浪对箱形船作用的三维耦合计算模型[J].船舶力学,2007,11(4):533-544.
    [68]王大国,邹志利,谭国焕,等.港口非线性波浪三维耦合计算模型研究[J].中国科学:E辑,2009(002):351-358.
    [69]Naciri M,Buchner B,Bunnik T,et al.Low frequency motions of LNG carriers moored in shallow water[C]. Proc. of the 23rd Int. Conf. on Offshore Mechanics and Arctic Engineering.2004,3:995-1006.
    [70]Voogt A,Bunnik T,Huijsmans R. Validation of an Analytical Method to Calculate Wave Setdown on Current[J]. transfer,2005,500(4):1.
    [71]Buchner B.The Motions of a Ship on a Sloped Seabed[C]. OMAE2006-92321, OMAE Conference. 2006.
    [72]Borsboom M,Doorn N,Groeneweg J,et al.A Boussinesq-Type Wave Model That Conserves Both Mass and Momentum[C].2000.
    [73]Madsen P A,Bingham H B,Liu H.A new Boussinesq method for fully nonlinear waves from shallow to deep water[J]. Journal of Fluid Mechanics, Cambridge Univ Press,2002,462(1):1-30.
    [74]Bingham H B.A hybrid Boussinesq-panel method for predicting the motion of a moored ship[J]. Coastal Engineering, Elsevier,2000,40(1):21-38.
    [75]Nolte K, Hsu F.Statistics of ocean wave groups[C]. Offshore Technology Conference.1972.
    [76]俞幸修.随机波浪及其工程应用[J].大连:大连理工大学出版社,2003.
    [77]文圣常.海浪理论与计算原理[M].科学出版社,1984.
    [78]徐德伦,于定勇.随机海浪理论[M].高等教育出版社,2001.
    [79]Rye H.Ocean wave groups[D]. Division of Marine Hydrodynamics, University of Trondeim, Norwegian Institute of Technology,1982.
    [80]Xu D,Hou W,Zhao M,et al. Statistical simulation of wave groups[J]. Applied ocean research, Elsevier, 1993,15(4):217-226.
    [81]俞幸修,桂满海.波群的数值模拟和物理模拟[J].大连理工大学学报,1998,38(1):86-91.
    [82]刘思,柳淑学,俞聿修.改进的海浪波包谱[J].水道港口,2010,31(4):229-235.
    [83]Johnson R R,Mansard E P D,Ploeg J. Effects of wave grouping on breakwater stability[C]. Proc.16th Coastal Eng. Conf.1978,3:2228.
    [84]Sawaragi T,Aoki S,Masayuki T.Effects of Wave Grouping on the Low Frequency Motion of a Moored Rectangular Vessel and the Characteristics of Nonlinear Hydrodynamic Forces[J]. Coastal Engineering in Japan,1988,31(1):167-182.
    [85]Balaji R,Sannasiraj S A,Sundar V.Detection of wave groups from the motion behaviour of a discus buoy[J]. Journal of Hydro-environment Research, Elsevier,2008,1(3-4):195-205.
    [86]Balaji R,Sannasiraj S A,Sundar V.Laboratory Simulation and Analysis of Wave Groups[C].2006.
    [87]谢世楞,贾绍德李萌.波群的统计特性及其海上水工建筑物的作用[J].港工技术,1984(1):11-16.
    [88]Bruun P.Design and construction of mounds for breakwaters and coastal protection [J]. Elsevier Science Pub. Co., Inc., New York, NY,1985.
    [89]Burcharth H F.The effect of wave grouping on on-shore structures [J]. Coastal Engineering, Elsevier, 1978,2:189-199.
    [90]杨正已,左其华.不规则波波群对桩力的影响[J].海洋工程,1993,2.
    [91]陈中一,陈基成,赵颖.在潮汐流作用下25万吨级油轮系缆力的模型试验研究[J].海洋工程,1998,16(3):45-53.
    [92]向溢,杨建民.码头系泊船舶模型试验[J].海洋工程,2001,19(002):45-49.
    [93]张日向,刘忠波.系泊船在风浪流作用下系缆力和撞击力的试验研究[J].中国海洋平台,2003,18(1):28-32.
    [94]吴澎,姜俊杰,张廷辉,等.开敞式蝶形码头墩位平面布置的优化研究[J].水运工程,2006(10):120-127.
    [95]李焱,郑宝友,高峰,等.浪流作用下系泊船舶撞击力和系缆力试验研究[J].海洋工程,2007,25(2):57-63.
    [96]罗伟,何炎平,余龙,等.码头双船系泊模型试验研究[J].船舶工程,2007,29(6):1-4.
    [97]Natarajan R,Ganapathy C.Analysis of moorings of a berthed ship[J]. Marine structures, Elsevier,1995, 8(5):481-499.
    [98]OCIMF.Prediction of Wind and Current Loads On VLCCs[S][J].,1994.
    [99]Blendermann W.Wind loads on moored and manoeuvring vessels[J].1993.
    [100]Blendermann W.Parameter identification of wind loads on ships[J]. Journal of Wind Engineering and Industrial Aerodynamics, Elsevier,1994,51(3):339-351.
    [101]Blendermann W.Estimation of wind loads on ships in wind with a strong gradient[J].1995.
    [102]Gould R W F.The estimation of wind loads on ship superstructures[J].1982.
    [103]Isherwood R M.Wind resistance of merchant ships[J]. RINA Supplementary Papers,1973,115.
    [104]高峰,郑宝友,陈汉宝,等.不同系缆方式下的系泊条件分析[J].水运工程,2007(3):48-52.
    [105]史宪莹,张宁川.混合浪作用下系泊船舶运动响应规律试验研究[J].水动力学研究与进展A辑,2011,5.
    [106]李焱,郑宝友,高峰,等.浪流作用下系泊船舶撞击力和系缆力试验研究[J].海洋工程,2007,25(2):57-63.
    [107]于洋,刘锦程,王左.船舶系缆张力分析[J].大连海事大学学报,2001,27(3):18-21.
    [108]吉庆丰.蒙特卡罗方法及其在水力学中的应用[M].东南大学出版社,2004.
    [109]港口工程荷载规范[S].98J T J.
    [110]开敞式码头设计与施工技术规程[S].2000J T J.
    [111]Barltrop N D P.Floating Structures:a guide for design and analysis[M]. Oilfield Publications, Incorporated,1998,1.
    [112]Chakrabarti S.Empirical calculation of roll damping for ships and barges[J]. Ocean Engineering, Elmsford, NY:Pergamon Press,2001,28(7):915-932.
    [113]Newman J N.Marine hydrodynamics[M]. The MIT Press,1977.
    [114]Abramowitz M, Stegun I A.Handbook of mathematical functions with formulas, graphs, and mathematical tables[M]. Dover publications,1964,55(1972).
    [115]滕斌.波浪对三维浮体的二阶作用[J].水动力学研究与进展:A辑,1995(3):316-327.
    [116]Pinkster J A.Low frequency second order wave exciting forces on floating structures[J].1980.
    [117]Murray J J,Wilkie B P,Muggeridge D B.An experimental and analytical study of the effects of wave grouping on the slowly varying drift oscillation of a floating rectangular barge[J]. Ocean engineering, Elsevier,1987,14(4):255-274.
    [118]俞聿修,桂满海.海浪的群性及其主要特征参数[J].海洋工程,1998,16(3):9-13.
    [119]刘思,柳淑学,俞聿修.改进的海浪波包谱[J].水道港口,2010,31(4):229-235.