深海系泊系统松弛—张紧过程缆绳的冲击张力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Spar平台是目前深海油气资源开发的主要装备之一,其中的系泊系统是深海平台的定位系统,当系泊的平台浮体发生大幅运动时,系泊系统会出现松弛-张紧状态的改变,引起系缆张力的迅速增大,可能危及深海平台的安全生产。本文针对深海系泊系统松弛-张紧过程的冲击张力进行了研究,主要工作和结论如下:
     (1)在Mohammad Behbahani Negad研究工作的基础上,考虑缆绳内水平张力和位置,用泰勒级数展开,得到缆绳的曲率和张力的表达式,建立包含松弛和张紧两种情况的连续模型,采用应力波理论分析了缆绳内水平张力、波数、缆索坐标等参数对缆绳内应力波传播特性的影响,证明了本文考虑缆绳张力和曲率变化的合理性。
     (2)根据应力波基本理论和非线性动力学基本理论,计算得到缆绳在松弛、松弛-张紧和张紧三种状态下缆绳的运动和张力,比较分析了缆绳三种运动状态的区别,发现三种状态下,缆索结构的运动特点、最大张力和对结构的破坏程度都不相同。在松弛-张紧状态,缆绳的横向运动出现跳跃,张力中出现突变的尖峰和倍频成分。松弛-张紧时产生的冲击张力是松弛情况的5倍,是张紧情况的2.4倍,容易引起缆绳的强度破坏,缩短疲劳寿命。
     (3)根据冲击动力学理论,对系泊平台浮体-缆绳系统进行了耦合分析,给出系统的松弛区域和张紧区域的边界曲线,并对影响因素进行了分析。结果表明,缆绳-浮体本身的系统参数和外部载荷条件的改变,例如无量纲的位移比,或阻尼比发生改变,会引起系统在松弛-张紧区域间的转变,从而引起缆绳内的冲击张力。缆绳内的最大动态张力随波高、波浪频率、预张力的增大而增大,随缆绳长度的增大而减小。
     (4)采用实验方法,对浸没在准静态流体中的绳索的冲击张力问题进行研究,观察到缆绳中的冲击张力,证明了冲击张力的存在性和此问题研究的必要性。同时,还研究了缆绳内最大张力的影响因素。结果表明,在相同的条件下,缆绳的最大张力随端点激励频率和激励幅值、缆绳刚度、缆绳直径、缆绳弹性模量的增大而增大,随缆绳长度的增大而减小。实验验证了理论计算的正确性。
     (5)对空气中的冲击张力实验和水中的冲击张力实验进行比较分析,给出缆绳发生冲击载荷时缆绳内张力的特点:冲击载荷发生在激励端,冲击张力迅速变大,张力中出现高频成分,同时出现负张力。这些可以作为缆索中是否出现冲击载荷的判断依据。另外,冲击载荷发生在激励端,这就要求实际的设计中要加强系缆点附近缆绳的强度,以保证系泊系统的安全。
A Spar is considered as the excellent type for platforms in deep water and the mooring system of Spar is used to maintain the buoy’s position,relating to the security of platform. When the moored platform moves with large amplitude, the mooring line will transfer from taut to slack, going with the tension increasing sharply, which may endanger the security and production. In this paper, the snap tension in mooring line of deep water induced by taut-slack condition is studied, and the main work and conclusions obtained are as following:
     (1) Based on the research of Mohammad Behbahani Negad, considering the arc coordinates and horizontal tension, the expressions of tension and radius of curvature are obtained with Taylor series expansion, and the continuum model including taut and slack state is established. The effects of tension in cable, wave number, coordinates of cable on the freely propagation characters of stress wave in cable are studied by stress wave theory and the rationality for the considered factors is testified.
     (2) Based on the stress wave theory and nonlinear dynamic theory, the motions and tensions of line under three different states of taut, slack and taut-slack are calculated, and the differences between the three states are compared. The results show that, the motion characters of line, the maximum tensions and the threats to structure corresponding to the three states are different. When the system exists in taut-slack state, the motion in normal direction jumps from a steady state to the other, spike and higher frequency components appear in the tension. The maximum tension in taut-slack state is 5 times higher than that in slack, and 2.4 times higher than that in taut. The taut-slack state can easily cause the damage of the structure and shorten fatigue life.
     (3) According to the impact theory, the analysis on Spar platform-mooring line coupled system is taken on, and the boundary curve of taut-slack region is given, and the influencing factors are discussed. The results show that, the alters of system parameters in moored Spar platform-mooring line coupled system, such as the dimensionless radio of displacement and damping, will cause the transition from the taut to slack state and cause the high tension in line. The maximum dynamic tension in line increases with the increasing of the wave height, wave frequency and pretension, decreases with the increasing of the length of line.
     (4) With experimental method, the snap loading of lines immersed in a quiescent fluid medium is carried out and the snap tension is observed, which proved the presence of snap tension and necessity of this studying. The results show that, the maximum tension in line increases with the increasing of the excitation frequency, excitation amplitude, stiffness, diameter and modulus, decrease with the increasing of the length of line. The experimental results prove the validity of the theory study mentioned above.
     (5) Comparative study on the experimental results in air and that in water are carried out, and the tension characters under snap loading are obtained as following: the snap loading appears at the exciting end, the snap tension increases sharply, harmonics of higher frequency components and negative tension appear in the tension. All of these can be regarded as the judgment basis for snap loading. In addition that, the snap tension appears at excitation end, which indicates that the mooring line near attaching point should be strengthen to ensure the security of platform.
引文
[1]李文龙,谭家华,我国战略石油储备船系泊系统安全性评估[J],中国造船,2005,46(2),87-95。
    [2]李润培,舒志,孟祥斌,浮式生产系统的研究现状及发展趋势[A]。第五界船舶力学学术委员会全体会议专集[C],四川绵阳,2002;上海:中国造船编辑部,2002,196-206。
    [3]董艳秋,深海采油平台波浪载荷及响应[M],天津大学出版社,2005.6.
    [4]杜度,张伟康,系泊系统动力学特性的研究进展,海军工程大学学报,2002,14(3):80-84。
    [5]王言英,肖越,深水锚泊的新概念与新技术,船舶工程,2004,26(2):1-3。
    [6]Fermandes, A.C and Del Vecchio, C.J.M. Mechanical properties of polyester mooring cables, Proceedings of the 8th international conference Offshore and Polar Engineering conference. ISOPE. Montreal, Canada, 1998, 2, 248-254.
    [7] A. C. Fernandes, R. R. Rossi, Distorted polyester lines for model testing of offshore moored platforms, Ocean Engineering, 2005, 32:817-825.
    [8]Fiber Tethers 2000(1995) High technology for fibers for deep water tethers and mooring. Final Report L17317/NDE/RWPS, Noble Denton Managed Joint Industry Study.
    [9]Arcandra,Hull/mooring/riser coupled dynamic analysis of a deepwater floating platform with polyester lines, Ph.D. Dissertation, Texas A&M University, 2001.
    [10]余龙,谭家华,深水多成分悬链线锚泊系统优化设计应用研究,华东船舶工业学院学报(自然科学版),2004,18(5):8-13。
    [11] Michael M. Bermitsas and Nikos S. Kekridls, Nonlinear stability analysis of ship towed by elastic rope, Journal of ship research, 1986, 30(2):136-146
    [12]Kenneth R. Bitting, In the 12th Offshore Technology Conference, Houston. Cyclic tests of new and aged nylon and polyester line. OTC 3852, 1980, 3:509-516.
    [13]J. H. V. Leeuwen, Dynamic behavior of synthetic ropes. In 13th Offshore Technology Conference, 1981, 453-463.
    [14]J. F. Flory, In proceedings of MTS Conference 2, Cyclic load testing of high-performance tension members. 1991, 653-660.
    [15]H. Shin, K. Yamakawa and S. Hara 1994 In proceedings of the 13th International Conference on Offshore Mechanics and Arctic Engineering, Vol.Ⅰ,Offshore Technology, 441-448. Laboratory tests on synthetic fiber ropes.
    [16]Reid, Robert O. Dynamics of deep-sea mooring lines. Texas A&M University, Texas A&M Project 204. Reference 68-11F, July 1968.
    [17]Smith T. M, Chen M. C, Radwan A. M. Systematic data for the preliminary design of mooring systems[A]. Proceedings of the 4th international offshore mechanics and arctic engineering symposium[C], 1985, 403-407.
    [18]Russell J. Smith, Colin J. MacFarlane, Statics of a three component mooring line, Ocean Engineering , 2001, 28: 899-914.
    [19]黄祥鹿,陈小红,范菊,锚泊浮式结构波浪上运动的频域算法,上海交通大学学报, 2001, 35(10): 1470-1476。
    [20]XIAO Yue, WANG Yan-ying, Time-domain analysis for 3-D moored systems, China Ocean Engineering, 2004, 18(3):433-444.
    [21]E. Kreuzer and U. Wilke,Mooring systems-a multibody dynamic approach, Multibody System Dynamics, 2002, 8: 279-297.
    [22]W. Raman-Nair and R. E. Baddour,Three-dimensional dynamics of a flexible marine riser undergoing large elastic deformations, Multibody System Dynamics, 2003, 10:393-423.
    [23]向溢,谭家华,码头系泊船舶缆绳张力的混沌解法,武汉理工大学学报(交通科学与工程版),2001,23(1),48-51。
    [24]马汝建,单点系泊装置的非线性动力分析,石油大学学报(自然科学版), 1994,18(5):65-69。
    [25]聂孟喜,王旭升,张琳,单锚腿系泊系统动力响应的时域计算方法,海洋工程,2004,22(2):58-61。
    [26]范菊,纪亨腾,黄祥鹿,浮式塔的动力计算,海洋学报,2001,23(2):117-123。
    [27]陈徐均,吴有生,崔维成,沈庆,海洋浮体二阶非线性水弹性力学分析-基本理论,船舶力学,2002,6(4):33-44。
    [28]陈徐均,吴有生,崔维成,孙芦忠,海洋浮体二阶非线性水弹性力学分析-系泊浮体主坐标响应的频率特征,船舶力学,2002,6(5):44-57。
    [29]陈徐均,吴有生,崔维成,陈云鹤.海洋浮体二阶非线性水弹性力学分析一二阶力对浮体振动时间响应的影响,船舶力学, 2003,7(2):11-20。
    [30]付世晓,范菊,陈徐均,崔维成,考虑浮体弹性变形的锚泊系统分析方法,船舶力学,2004,8(2):47-54。
    [31]O. Yilmaz and A. Incecik, Extreme motion response analysis of moored semi-submersibles, Ocean Engineering 1996,23(6): 497-517.
    [32]Huse, E. 1986. Influence of mooring line damping upon rig motions. Proceedings of 18th Offshore Technology Conference, Houston.
    [33]Huse, E. 1988. Practical estimation of mooring line damping. Proceedings of 20th Offshore Technology conference, Houston.
    [34]V.J.Papazoglou and S.A. Mavrakos,Non-linear cable response and model testing in water, Journal of sound and vibration 1990, 140(1): 103-115.
    [35]S.Ahmad,N.Oslam,A. Ali, Wind-induced response of a tension leg platform, Journal of Wind Engineering and Industrial Aerodynamics 1997, 72: 225-240
    [36]邹志利,张日向,张宁川等,风浪流作用下系泊船系缆力和碰撞力的数值模拟。中国海洋平台,2002,17(2):22-27。
    [37]李晓平,王树新,何漫丽,张海根,水下缆索动力学理论模型,天大学报,2004,37(1)。
    [38]陈德春,范自明,系泊浮体受碰撞时系泊链的冲击力计算,河海大学学报, 2001,29(3):80-83。
    [39]A. Umar, T. K. Datta, Nonlinear response of a moored buoy, Ocean engineering, 2003,30: 1625-2646.
    [40]Muhittin S?ylemez, Non-linear restoring forces of an offshore platform, Ocean Engineering, 1998 , 25(2-3):105-118 .
    [41]孙明光,龙江,二点系泊系统的非线性耦合运动,海洋工程,1998,16(2):15-22。
    [42]王言英,钱昆,朱仁传,辐射问题格林函数的基本解,大连理工大学学报,2000,40(3):338-340。
    [43]聂梦喜,王旭升,王晓明,张琳,风、浪、流联合作用下系统系泊力的时域计算方法,清华大学学报(自然科学版)2004, 44(9):1214-1217。
    [44]聂梦喜,王旭升,王晓明,防风水鼓系泊系统系泊力的计算方法,水运工程,2003,352(5):5-8。
    [45]A. Sarkar, R. Eatock Taylor, Dynamics of mooring cables in random seas. Journal of fluids and structures, 2002, 16(2) 193-212.
    [46]A. Sarkar, R. Eatock Taylor, Two-frequency responses of nonlinearly moored vessels in random waves: coupled surge、pitch and heave motions. Journal of fluids and structures ,2001, 15 :133-150.
    [47]V. Sundar, R. Sundaravadivelu, M. Kalyani, Forces due to oblique waves on a submerged open moored cylinder in deep waters, Ocean Engineering , 2005,32: 651-666.
    [48]D. L. Garrett, Coupled analysis of floating production systems. Ocean Engineering 2005, 32: 802-816.
    [49]Bernitsas M M, Papoulias F A, stability of single point mooring systems[J].Applied Ocean Reaearch,1986,8(1):49-58.
    [50]Yungang Liu, Lars Bergdahl, Extreme mooring cable tensions due to wave-frequency excitations, Applied Ocean Research 1998,20(4): 237-249.
    [51]J.A.P. Aranha, M. O. Pinto, Dynamic tension in risers and mooring lines: an algebraic approximation for harmonic excitation, Applied Ocean Research, 2001, 23(2): 63-81.
    [52]Aranha JAP, Pesce CP, Martins CA, Andrade BLR. Mechanics of submerged cables: asymptotic solution for the dynamic tension. Polar Engineering, ISOPE-93, Singapore, 6-11 June, 1993.
    [53]Jason I Gobat, Mark A. Gro senbaugh. A simple model for heave- induced dynamic tension in catenary moorings[J]. Applied Ocean Research, 2001, 23:159-174.
    [54]Luis O. Garza-Rios and Michael M. Bernitsas, Slow motion dynamics of turret mooring and its approximation as single point mooring, Applied Ocean Research, 21(1) 1999 27-39.
    [55]张智,Spar平台系泊系统计算及波浪载荷研究[D]天津大学硕士论文,天津:天津大学,2005.6。
    [56]李远林,吴家鸣,多锚链系泊浮筒非线性漂移运动的时域模拟,海洋工程,1990,8(1):25-33。
    [57]Shan Huang, Dynamic analysis of three-dimensional marine cables, Ocean Engineering 1994, 21(6): 587-605.
    [58]Garrett, D. L. 1982. Dynamic analysis of slender rods, In Proceedings of the 1st International OMAE Conference, Dallas, 127-132.
    [59]Paulling J. R. and Webster, W. C. 1986. A consistent, large-amplitude analysis of the coupled response of a TLP and tendon system. In Proceedings of the 5th OMAE Conference, Tokyo, Vol.Ⅲ, pp. 126-133.
    [60]Serge Abrate, Robert Dooley,Robert Kaste, Nonlinear dynamic behavior of parachute static lines. Composite Structures 2003, 61:3-12.
    [61]刘应中,缪国平,吴国雄,缆索动力学的基本方程,上海交通大学学报,1997, 31(11):141-144。
    [62]刘应中,缪国平,李谊乐,刘滋源,刘和东,系泊系统动力分析的时域方法,上海交通大学学报,1997,31(11):7-12。
    [63]范菊,陈小红,黄祥鹿,三阶摄动对锚泊线动力分析的影响,船舶力学,2000,4(1):1-9。
    [64]S.Ahmad,N.Oslam,A. Ali, Wind-induced response of a tension leg platform, Journal of Wind Engineering and Industrial Aerodynamics, 1997, 72: 225-240.
    [65]D. C. Cotter and S. K. Chakrabarti,Effect of current and waves on the damping coefficient of a moored tanker, Proceedings of the 21st Annual Offshore Technology Conference, OTC 6138, 149-149, 1989, Vol.4, Houston Texas.
    [66]E. Huse, Marintek A/S and K. Matsumoto, Mooring line damping due to first- and second-order vessel motion, Proceedings of the 21st Annual Offshore Technology Conference, OTC 6137, 135-148, 1989, Vol.4, Houston Texas.
    [67]William C. Webster, Mooring-induced damping, Ocean Engineering1995, 22(6): 571-591.
    [68]A. Sarkar, R. Eatock Taylor, Effects of mooring line drag damping on response statistics of vessels excited by first- and second-order wave forces, Ocean Engineering ,2000,27: 667-686.
    [69]范菊,黄祥鹿,锚泊线的动力分析,中国造船,1999, 1:13-20。
    [70]仝健民,李明义,材料的冲击磨料耐磨损耐磨性及其疲劳磨损机制[J],机械工程材料,1993,17(3):10-12。
    [71]马晓青,冲击动力学,北京理工大学出版社,1992。
    [72] Christopher Michael Hennessey, Analysis and modeling of snap loads on synthetic fiber ropes, master dissertation, Virginia Polytechnic Institute and state university, 2003. Nicholas John Pearson, experimental snap loading of synthetic fiber ropes, master dissertation, Virginia Polytechnic Institute and state university, 2002.
    [73]Timothy Wayne Mays, three-dimensional analysis of moored cylinders used as breakwaters, master dissertation, Virginia Polytechnic Institute and state university, 1997.
    [74]Oded Gottlieb and Solomon C.S. Yim,Nonlinear oscillations, bifurcations and chaos in a multi-point mooring system with a geometric nonlinearity, Applied Ocean Research, 1992,14: 241-257.
    [75]蒋凯辉,防风系船水鼓系列研究[D],天津大学博士论文,天津:天津大学,2005.4。
    [76]J.M. Niedzwecki and S.K. Thampi. Snap loading of marine cable systems. Applied Ocean Research, 1991, 13:2-11.
    [77] Shan Huang and Dracos Vassalos, A numerical method for predicting snap loading of marine cables, Applied Ocean Research, 1993, 15: 235-242.
    [78]D. Vassalos and S. Huang, dynamics of small-sagged taut-slack marine cables, computers and structures, 1996,58(3):557-562.
    [79]S. Huang, Stability analysis of the heave motion of marine cable-body systems, Ocean Engineering,1999,26:531-546.
    [80]R. H. Plaut, J. C. Archilla , Snap loads in mooring lines during large three-dimensional motions of a cylinder, Nonlinear Dynamics,2000, 23: 271-284.
    [81]A. A. Tjavaras, Q. Zhu, Y. Liu, M. S. Triantafyllou, D. K. P. Yue, the mechanics of highly-extensible cables, journal of sound and vibration, 1998, 213(4): 709-737. [82 ]Goeller, J.E. and Laura, P.A., Analytical and experimental study of the dynamic response of segmented cable systems, Journal of sound and vibration, 1971,18:311-329.
    [83]Laura, P.A. and Goeller,J.E. On the dynamic behavior of a cable system in a recovery operation, Journal of the acoustical society of America, 1971, 49: 615-621.
    [84]Plaut, R.H., 2001, Snapping-cable energy dissipater(SCED)for reducing seismic damage to structures, NSF Proposal.
    [85]R.H.Plaut, J.C.Archilla, and T.W.Mays, Snap load in mooring lines during large three-dimensional motions of a cylinder, Nonlinear Dynamics, 2000, 23: 271-284.
    [86]John M.Niedzwecki and Sreekumar K.Thampi, Snap loading of marine cable systems, Applied Ocean Research, 1991, 13(1):2-11.
    [87]Dracos Vassalos and Shan Huang, Experimental investigation of snap loading of marine cables, Proceedings of the 14th International Offshore and Polar Engineering Conference, Toulon, France, 2004.
    [88] Frederick Ralph Driscoll, Dynamics of a vertically tethered marine platform, Ph.D dissertation, University of Victoria, 1994.
    [89]S.Huang and D.Vassalos, Chaotic heave motion of marine cable-body systems, Proceedings of the ISOPE-Ocean Mining Symposium(1995), Tsukuba, Japan, 83-90.
    [90]S.Huang and D.Vassalos, Analysis of taut-slack marine cable dynamics, 1995 OMAE-Volume I-B, Offshore Technology ASME 1995, 401-406.
    [91]Zheng Hong Zhu, M.A.Sc., P.Eng, Nonlinear elastodynamic analysis of low tension cable using a new beam element[D], Ph.D. dissertation, University of Tornto, 2004.
    [92]R. Pascoal, S. Huang, N. Barltrop, C. Guedes Soares, Assessment of the effect of mooring systems on the horizontal motions with an equivalent force to model, Ocean Engineering, 2006,33: 1644-1668.
    [93]F.Rosenthal, vibration of slack cables with discrete masses, Journal of Sound and Vibration, 1981, 78(4): 573-583.
    [94]I.J. Fylling and P.T. Wold, Cable dynamics-comparison of experimental and analytic results, Report R-89.79(3RD ED), The Ship Research Institute of Norway R, 1979.
    [95]Juan Carlos Archilla, three-dimensional nonlinear dynamics of a moored cylinder to be used as a breakwater, master dissertation, Virginia Polytechnic Institute and State University, 1999.
    [96]王礼立,应力波基础,国防工业出版社,2005。
    [97]马宏伟,吴斌,弹性动力学及其数值方法,中国建材工业出版社出版,2000。
    [98]吴斌,韩强,李忱,结构中的应力波,科学出版社,2001。
    [99]H. Max. Irvine, cable structures, The MIT Press, Cambridge, Massachusetts, and London, England, 1981.
    [100] N.C.Perkins and C.D.Mote, JR, Three-dimensional vibration of traveling elastic cables. Journal of Sound and Vibration 1987, 114(2), 325-340.
    [101] M.Behbahani-Nejad, N.C.Perkins, Freely propagating waves in elastic cables, Journal of Sound and Vibration, 1996, 196(2):189-202.
    [102] Karl F.Graff, wave motion in elastic solids, Clarendon Press, Oxford, 1975.
    [103]Mahammad Behbahan, Nejad, Wave propagation in elastic cables with and without fluid interaction, Doctor Degree, the University of Michigan, 1997.
    [104]H.H.Lee and W.-S. Wang, Analytical solution on the dragged surge vibration of tension leg platforms (TLPS) with wave large body and small body multi-interactions. Journal of Sound and Vibration, 2001, 248(3): 533-556.
    [105]S.K.Chakrabarti. Hydrodynamics of Offshore Structures, Springer-Verlag, New York, 1987.
    [106] Richard Haberman,郇中丹,李援南等译,实用偏微分方程,机械工业出版社,2007.2,第二版。
    [107] W.E. Schiesser, the numerical method of lines-integration of partial differential equations, Academic Press, Inc, 1991.
    [108] Weggel,C.&Roesset, J., Vertical Hydrodynamic forces on truncated cylinders [C], Proceedings of the fourth international offshore and polar Engineering Conference, Isope, Osaka, Japan, the international society of Offshore and Polar Engineers, 1994,3: 210-217.
    [109] Petter Andreas Berthelsen,Dynamic Response Analysis Of A Truss Spar In Waves:[Ms Thesis],newcastle;University Of Newcastle,2000.
    [110] John M. Niedzwecki, Sreekumar K. Thampi, snap loading of marine cable systems,Applied Ocean Research,1991,13(1):2-11。
    [111]易从, Spar平台系缆张力及垂荡运动响应分析,硕士论文:[硕士学位论文],天津;天津大学,2006。
    [112]叶春生,孙赞盈,彭红,姜乃迁,机械式造波机的机构设计及其运动性能分析,人民黄河,2007,29(5):56-60。
    [113]陈予恕,非线性振动,高等教育出版社,2002。
    [114]孟宪源,现代机构手册,机械工业出版社,1994。