空化区掺气泡与空泡相互作用及紊动空化特性的试验研究和数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本学位论文分为两部分内容:一部分为空化区掺气泡与空泡相互作用的研究,另一部分为水力空化多孔板空化区紊动空化特性的研究。
     高速水流由于其特殊性不能按一般水力学问题进行分析,它涉及到很多方面问题:水流脉动、掺气、空化空蚀、消能防冲、雾化等等。其中,空化空蚀是国内外水力学专家最为关注的重点和难点之一。当水流速度达到一定程度时,水流压强低于相应的饱和蒸汽压强,水流内部形成空穴,这就是空化现象。空化水流由低压区流到较高压力区时,空泡溃灭便会产生空蚀破坏。空化空蚀由于是流体内部随机的复杂现象,因此从微观上弄清机理才能揭示空化空蚀的规律。一方面,空化空蚀对人们有负面影响,比如破坏泄水建筑物表面,损坏水力机械等等;另一方面,空化空蚀对人们有正面影响,比如处理难降解废水,切割钢板等等。因此对于空化空蚀的研究而言,在特定的情况下减免或加强空化空蚀,更能增加研究的完整性。
     本文第一部分是以减少空化空蚀的负面影响作用为出发点,对空化区掺气泡与空泡相互作用进行了试验研究。随着我国水利建设中高坝建筑日益增多,高速水流带来的空化空蚀不容忽视。研究表明,为减免高速水流空化产生的空蚀破坏,经济且有效的措施是在低压空化区或在易发生空蚀部位上游设置掺气设施强迫掺气。为了合理地利用掺气抑制空化或减免空蚀破坏,必须掌握掺气减蚀的机理。迄今为止,人们主要对空泡与空泡之间的相互作用进行了研究,而对掺气条件下空化区掺气泡与空泡的相互作用的研究甚少。本文在浙江工业大学水力学实验室的直流式水洞中采用三维粒子测速仪(PIV)、高速摄影机、SINOCERA-YE6263压力数据采集系统等先进的量测仪器,对半圆柱与圆柱突体空化区掺气泡与空泡相互作用进行了试验研究。考虑不同掺气浓度、不同流速对空化区掺气泡与空泡相互作用的影响,研究表明:所拍摄的粒子图像和高速摄影图片与Manage系统处理得到的流场速度矢量图基本一致。高速摄影观察表明流速和掺气浓度对空泡与掺气泡互相作用的影响不是独立的。掺气能缩减空化云的范围,所需要的掺气浓度随着流速的增大而不断递减,并给出了有效掺气浓度与流速的经验公式。
     本文第二部分是以利用空化空蚀的正面影响作用为出发点,对水力空化多孔板空化区的紊动空化特性进行了试验研究和数值模拟。随着工业化的发展,含有大量难降解有机物的工业废水逐年增多,对人们的健康构成了严重的威胁。水力空化是近年来发展起来的一种处理难降解废水的新技术,对于解决全球的水污染问题具有重大意义。本文基于计算流体力学软件FLOW-3D,数值模拟了不同孔口形状(矩形、三角形、圆形)多孔板下游的紊动特性,包括紊动能、紊动强度和雷诺应力的变化规律,并考虑不同流速、孔口数量、大小及其布置方式的影响。采用SINOCERA-YE6263压力数据采集系统对每种孔口形状(矩形、三角形、圆形)多孔板下游的压力特性进行了试验研究,分析了孔口数量、大小及其布置方式对多孔板下游压力的时均和频谱特性的影响,对水力空化装置的多孔板进行优化设计并得出了最有利于空化的多孔板。
This thesis has included two main parts:(1) Experimental study on interaction between aeration bubbles and cavitation bubbles of cavitation region;(2) Numerical simulation and experimental study on turbulence cavitation characteristics of hydrodynamic cavitation advice with multi-orifice plates.
     High-velocity flow can not be analyzed according to the general hydraulics problems because of its specificity, involving many aspects such as fluctuation of flow, aeration, cavitation, energy dissipation and atomization etc. Cavitation is the focus and difficulty which concerned by hydraulics experts at home and abroad. When the flow velocity reaches a certain value and flow pressure is lower than the relevant saturated vapor pressure, the hole, hollow or cavity will occur inside of the flow, which is the phenomenon of cavitation. Cavitation erosion arises from the cavity flow from low-pressure to higher pressure. It is necessary to reveal the mechanism law of cavitation on microscopic, because of the complexity phenomenon of the fluid internal. On the one hand, cavitation has a negative impact, such as destruction of the surface of the discharge structures, damage of hydraulic machinery, etc. On the other hand, it has a positive impact, such as treating hard-biodegradable pollutants, cutting steel plates, etc. Therefore, it can be enhance the integrity of the research to study to prevent or strengthen the cavitation in particular situation.
     In the first part, the relation between aeration bubbles and cavitation bubbles are experimental studied based on reducing cavitation erosion as a starting point. With the development of hydropower and hydraulic, the increase of discharge structure from high dams, the cavitation cause by high-velocity flow can not be ignored. In order to prevent the problem of cavitation damage because of high-velocity flow, an economic and effective measure is to set up aerators for generating forced aeration in the low-pressure cavitation regions or upper locations liable to cavitation erosion. It is necessary to study the mechanism of aeration to prevent the cavitation damage. So far, the research only on the interaction between cavitation bubbles mainly, but there is little study of interactions between aeration bubble and cavitation bubble in the cavitation region on the condition of aeration. The interaction between aeration bubbles and cavitation bubbles of cavitation region of the semi-cylindrical and cylindrical irregularities were observed in details by using three-dimensional Particle Image Velocimetry, high speed photography, and the pressure data acquisition system of Sinocera-YE6263in the Hydraulics Laboratory at Zhe Jiang University of Technology. The effects of interaction between aeration bubbles and cavitation bubbles at different gas concentrations and different flow velocities were considered. The experimental results showed that the particle images and high-speed photographs captured were consistent with velocity vector handling by the manage system. The effects of velocity and gas concentration to the interaction between aeration bubbles and cavitation bubbles were not independent through high-speed photographs. The range of cavitation cloud reduced on aeration. The empirical formula of the effective gas concentration and velocity was given, which shown that the effective gas concentration decreasing with increasing of velocity.
     The second part is based on using the positive effects of cavitation as a starting point. Turbulence cavitation characteristics of hydrodynamic cavitation advice with multi-orifice plates were numerical simulated and experimental studied. With the process of industrialization, it is a serious threat to human's health with wastewater which contains large amounts of hard-biodegradable pollutants. Hydrodynamic cavitation is a new method to treat hard-biodegradable pollutants in recent years, which of great significance to solve the global water pollution problem. This paper was based on the hydrodynamic software FLOW-3D, the turbulence characteristics of multi-orifice plates with different shapes (rectangular, triangle, circle) were numerical simulated, such as turbulent kinetic energy, turbulence intensity and Reynolds stress. The effect of different velocities, multi-orifice plates with different size, number and arrangement were considered. The pressure characteristics behind multi-orifice plates were experimental studied by the pressure data acquisition system of SINOCERA-YE6263. The effect of multi-orifice plates with different size, number and arrangement to the time average pressure and frequency spectrum were considered. The multi-orifice plate which is most conducive to cavitation was obtained by optimization.
引文
[1]张林夫.空化与空蚀[M].南京:河海大学出版社,1989
    [2]柯乃普,戴利,哈密脱.水利水电科学研究院译.空化与空蚀[M].北京:水利出版社,1981
    [3]李根生,沈晓明,施立德,陈现华.空化和空蚀机理及其影响因素[J].石油大学学报(自然科学版),1997,21(1):97-102
    [4]Mermel T W. The worlds major dams and hydro plants[J]. International Water Power and Dam Construction,1991,43(6):67-77
    [5]贾金生.新形势下大坝建设与安全管理建设[J].中国水利,2008(20):15-16
    [6]Harrold J C. Experiences of the Cops of Engineers:Cavititation in hydraulic structures[J]. Transactions ASCE,1947,112:16-42
    [7]Warnock J E. Experiences of the Bureau of Relamation:Cavitation in hydraulic Structures [J]. Transactions ASCE,1947,112:43-58
    [8]P C.加尔彼凌登.水工建筑物的空蚀[M].北京:水利出版社,1981
    [9]赵秀文.水工建筑物的空蚀[M].北京:水利出版社,1981
    [10]刘韩生,张勇.论掺气减蚀[J].西北水资源与水工程,1996,7(1):42-47
    [11]李志博,胡国清.空蚀空化现象与液压系统新进展[J].机床与液压,2006,6:6-9
    [12]黄继汤.空化与空蚀的原理及应用[M].北京:清华大学出版社,1991
    [13]刘长庚.泄水建筑物局部突体初生空化数试验研究[A].水利水电科学研究院科学研究论文集[C],北京:北京水利电力出版社,1983.36-56
    [14]尹洪昌.泄水建筑物空蚀破坏及防治[J].泄水工程与高速水流,1995,(4):1-53
    [15]刘梭柏,杜生宗.龙羊峡水电站底孔泄水道冲蚀破坏及其修复处理[J].西北水电,1990(3):31-36
    [16]张丽,解伟,黄小玲.高水头泄水建筑物的掺气减蚀试验[J].华北水利水电学院学报,1998,19(1):6-11
    [17]张建胜.杨凌水电站水轮机空蚀危害及防抗措施[J].水电站机电技术,2006,29(6):25-29
    [18]段生孝.我国水轮机空蚀磨损破坏状况与对策[J].大电机技术,2001,(6):56-64
    [19]Steller K J.Some Means of Protection of Machinery against Cavitation Erosion[A]. Proc. Int. Symp. On Cavitation[C]. Sendai. Japan. Tohoku University.1986,357-362
    [20]Myer E C. Air Emission into Water Shear Layer through Porous Media[J]. Cavitation and Gas-Liquid Flow in Fluid Machinery and devices.1994,233-242
    [21]Peterka A J. The effect of entrained air on cavitation pitting[A]. Proc. IAHR Minnesota Conference[C].1953,507-518
    [22]Rasmussen R E H. Some experiments on cavitation erosion in water mixed with air[A]. Proc. NPL Symposium on Cavitation in Hydrodynamics[C]. HMSO, London,1956, paper 20
    [23]Russell S O, Sheehan G J. Effect of entrained air on cavitation damage[J]. Canadian Journal of Civil Engineering.1974, (1):217-225
    [24]#12 [28] Lord Rayleigh. On the pressure developed in a liquid during the collapse of a spherical
    [25]陈先朴,西汝泽,邵东超等.掺气减蚀保护作用的新概念[J].水利学报,2003(8):70~74
    [26]董志勇,居文杰,吕阳泉等.减免空蚀掺气浓度的试验研究[J].水力发电学报,2006,25(3):106-115
    [27]韩伟,董志勇,郭志萍.空化区有效掺气浓度的试验研究[J].水力发电学报,2013,第3期cavity[J]. Philosophical Magazine,1917, Vol.34, No.200:94-98
    [29] Gilmore F R. The growth and collapse of a spherical bubble in a viscous compressible liquid[J].California Institute of Technology, Hydrodynamics Lab.1952,Report 26-4
    [30] Plesset M S, Prosperetti A. Bubble Dynamics and Cavitation[J]. Ann. Rev. Fluid,1977, Mech:145-185
    [33] Shima A. The behaviour of a spherical bubble in the vicinity of the solid wall [J]. Journal of
    [31] 黄继汤,田立言.液体粘性对空泡收缩及膨胀的影响[J].水利学报,1988,12:15-18
    [32] 黄继汤.液体粘性对空泡生存过程的影响[J].北京建筑工程学院学报,1994,10(2):124-131Basic Engineering,Transactions of the ASME,1968(3):75-89
    [34] Morioka M. Theory of natural frequencies of two pulsating bubbles in infinite liquid[J]. Journal of Nuclear Science and Technology,1974,11(2):554-560
    [35] Fujikawa S. Interaction between two slightly nonspherical bubbles in a compressible liquid,part1:Mathematical formation[A]. The Joint ASCE/ASME Mechanics Conference, Cavitation in Hydraulic Structures and Turbomachinery[C]. Albuquerque, New Mexico,1985, June 24-26, Vol.25,167-172
    [36]Van Wijngaarden, L. On the collective collapse of large number of gas bubbles in water [A], Proceedings of 11th International Congress of Applied Mechanics [C].Germany,1964,854-861
    [37]Garipov R M. Closed equations for the motion of a liquid containing bubbles [J]. Journal of Applied Mechanics and Technical Physics,1973,14(6):737-756
    [38]黄建波,倪汉根.可压缩液体中游移空泡群的溃灭压力[J].水动力学研究与进展,1987,2(3):1-11
    [39]Plesset M S. The dynamics of cavitation bubbles[J]. Journal of Applied Mechanics,1949, Sept: 277-282
    [40]田立言,丁彤,黄继汤,等.挟沙水流中空泡溃灭的实验研究[J].水力发电学报,1999,(1):68-73
    [41]李向宾,王国玉,张敏弟.绕水翼超空化流发展及其旋涡特性的实验研究[J].水动力学研究与进展A辑,2007,22(5):625-632
    [42]董志勇,张旭,朱芳,等.针状突体空化结构的高速摄影观察[J].水利学报,2009,40(11):1363-1368
    [43]韩伟,董志勇,俞小伟,等.掺气条件下空化特性的高速摄影分析[J].水动力学研究与进展A辑,2010,25(3):352-358
    [44]俞小伟,董志勇,韩伟,等.掺气泡对空泡影响的高速摄影分析[J].浙江工业大学学报.2011,39(3):268-272
    [45]郭志萍,董志勇.可压缩液体中空泡与掺气泡相互作用的研究[A].练继建,刘树坤等.2011水力学与水利信息学进展[C].天津:天津大学出版社,2011年10月,90-94
    [46]Hamilton W S. Preventing cavitation damage to hydrulic structures[J]. Water Power & Dam Construction,1983,35(11):40-43
    [47]Wood I R, Ackers P, Loveless J. General method for citical point on spillways[J]. Journal of the Hydraulic Divsion, ASCE,1983,109(2):308-312
    [48]黄建波,李士豪,倪汉根.掺气空泡溃灭压力的影响[J].水利学报,1985,16(4):10-17
    [49]Rutschmann P, Hager W H. Air entrainment by spillway aerators[J]. Journal of the Hydraulic Engineering,1990,116(6):765-782
    [50]王玉国,曹树良.通气对空蚀的影响及高速摄影观察[J].水力发电学报,2001,20(1):48-57
    [51]陈先朴,西汝泽,邵东超,等.掺气减蚀保护研究的新方向[J].水利水电技术,2001,32(10):13-16
    [52]陈先朴,西汝泽,邵东超,等.掺气减蚀保护作用的新概念[J].水利学报,2003,(8):70-74
    [53]张法星,徐建强,徐建军,等.掺气减蚀机理的研究进展及讨论[J].水力发电学报,2010,29(2):7-10
    [54]Joshi J B, Pandit A B. Hydrolysis of fatty oils:effect of cavitation[J]. Chemical Engineering Science,1993,48(19):3440-3442
    [55]Parag R, Gogate. Cavitation:an auxiliary in wastewater treatment schemes[J]. Advance in Environmental Research,2002(6):335-358
    [56]Pandit A B, Kumar P S, Kumar M S. Improve reaction with hydrodynamic cavitation[J]. Chemical Engineering Progress,1999(5):43-50
    [57]Pandit A B, Moholkal V S. Harness Cavitation to Improve Processing[J]. Chemical Engineering Progress,1996(7):57-69
    [58]魏群,肖波.水力空化技术在废水处理中的研究与应用进展[J].中国给水排水,2007,23(2):13-16
    [59]王慧敏.孙三祥.水力空化及其研究现状[J].甘肃科技,2005,21(12):150-151
    [60]陈利军,吴纯德,张洁鑫,等.水力空化技术在饮用水消毒中的应用[J].水处理技术,2007,33(3):45-28
    [61]Gogate P R, Tayal R K, Pandit A B. Cavitation:a technology on the horizon[J]. Current Science,2006,91 (1):35-46
    [62]Batten W M J, Bahaj A S, Molland A F. Hydrodynamics of marine current turbines[J]. Renewable Energy,2006,31(2):249-256
    [63]Gogate P R, Pandit A B. A review and assessment of hydrodynamic cavitationas a technology for the future[J]. Ultrasonics Sonochemistry,2005,12(l):21-27
    [64]魏群,高孟理,曾立云.水力空化技术及其研究进展[J].甘肃水利水电技术,2004,40(4):334-336
    [65]Jyoti K K, Pandit A B. Ozone and cavitation for water disinfection[J]. Biochemical Engineering Journal.2004,(18):9-19
    [66]LI Yongfeng. Study on sonochemical degradation of chorobenzene in wasterwater[J]. Chem Eng of Chinese Univ.2002,16(1):93-96
    [67]Botha C J, Buckley C A. Disinfection of potable water:The role of hydrodynamic cavitation[J]. Journal of Water Supply&Research and technology-Aqua,1994,13(2):219-229
    [68]Suslick K S, Mdleeni M M, Reis T T. Chemistry induced by hydrodynamic cavitation[J]. American Chemistry Society,1997,119(39):9303-9304
    [69]Kalumuck K M, Chahine G L. The use of cavitation jets to oxidize organic compounds in water[J]. Fluids Eng.1998, (03):465-470
    [70]Sivakumar M, Pandit A B. Hydrodynamic cavitation assisted rodamine B degradation:A technologically viable water treatment technique[A]. The Int Conf on Science and technology[C]. New Delhi India,2000
    [71]Vichare N P, Gogate P R, Pandit A B. Optimization of hydrodynamic cavitation using a model reaction[J]. Chemical Engineering&Technology,2000,23(8):683-690
    [72]Jyoti, K.K., Pandit, A.B. Water disinfection by acoustic and hydrodynamic cavitation[J]. Biochemical Engineering Journal,2001,7(3):201-212
    [73]Sivakumar M, Pandit A B. Wastewater treatment:a novel energy efficient hydrodynamic cavitational technique[J]. Ultrasonics Sonochemistry,2002,9(3):123-131
    [74]Chakinala A G, Gogate P R, Burgess A E, Bremner D H. Treatment of industrial wastewater effluents using hydrodynamic cavitation and the advanced Fenton process[J]. Ultrasonics Sonochemistry,2008,15(1):49-54
    [75]Chakinala A G, Gogate P R, Chand R. Intensification of oxidation capacity using chloroalkanes as additives in hydrodynamic and acoustic cavitation reactors[J].. Ultrason. Sonochem.2008, (15):164-170
    [76]才君眉,沈熊.有压泄洪洞孔板消能室紊流特性试验研究[J].水利学报,1987.(4)
    [77]高建生,丁则裕,沈熊.有压管道双孔板水流消能特性试验研究[J].水利学报,1989.(10):19-26
    [78]Zhang Z J, Cai J M, Shen X. A Study of T he Flow Field for the Orif ice Plate Energy Dissipators by Using a 2D-LDV System[A]. International Symposium on Hydraulic Research in Nature and Laboratory[C]. Wuhan,China,1992,Nov.17-20
    [79]才君眉,马俊,张子翼,等.孔板流场的二维激光测速试验研究[J].水力发电学报,1999,67(4):51-59
    [80]Gogate P R. Cavitation:An auxiliary technique in wastewater treatment schemes[J]. Advances in Environmental Research,2002,(6):335-358
    [81]Kumar K S,Moholkar V S. Conceptual design of a novel hydrodynamic cavitation reactor[J]. Chemical EngineeringScience,2007,(62):2698-2711
    [82]Pradhan A A,Gogate P R. Removal of p-nitrophenol using hydrodynamic cavitation and Fenton chemistry at pilotscale operation[J]. Chemical Engineering Journal,2010,156:77-82
    [83]李靖.水力空化多孔孔板流体力学特性研究[D].天津:天津科技大学,2009
    [84]乔慧琼,孙三祥,王慧敏.水力空化的最佳条件研究[J].环境科学与管理,2006,31(8):123-125
    [85]邓洁,许仕荣.水力空化装置空化效果的最佳条件[J].四川建材,2007,(6):301-305
    [86]翟磊,董守平,冯高坡.孔板型空化器羟基自由基产量影响因素分析[J].科技导报,2010,28(3):46-50
    [87]徐美娟,王玉恒,王启山.多孔板水力空化器的优化和应用[J].南开大学学报,2010,43(6):9-13
    [88]刘梓光,卢晓江,李靖,等.开孔率对多孔板水力空化装置影响的实验研究[J].轻工机械,2008,26(6):9-13
    [89]张建锋,卢晓江,余冬梅.孔板为发生器的水力空化装置的实验研究[J].轻工机械,2008,26(2):16-18
    [90]余冬梅,卢晓江,李靖.多孔板水力空化装置的阻力特性研究[J].轻工机械,2010,28(1):17-20
    [91]卢晓江.不同开孔率的多孔孔板水力空化装置的图像分析[J].轻工机械,2010,28(3):30-33
    [92]武金明.多孔板水力空装置最佳水力条件的确定[J].能源与环境,2012,(4):12-15
    [93]Moholkara V S, Pandit A B. Modeling of hydrodynamic cavitation reactors:a unified approach[J]. Chemical Engineering Science,2001,(56):6295-6302
    [94]Moholklar V S, Pandit A B. Numerical investigations in the behaviour of one-dimensional bubbly flow in hydrodynamic cavitation[J]. Chemical Engineering Science.2001, 56(4):1411-1418
    [95]王智勇,张晓冬等.文丘里管中空化流场的数值模拟[J].计算机与应用化学.2006,23(10):939-942
    [96]李彬民,刘海丽等.文丘里管水力空化发生器数值模拟[J].油气田地面工程,2008,27(6):14-16
    [97]章昱,李育敏,计建炳.孔板水力空化装置的数值模拟[J].化工时刊,2010,24(11):20~22
    [98]章昱,李育敏,计建炳.孔板水力空化装置的数值模拟[J].化学反应工程与工艺,2011,27(3):219-223
    [99]朱孟府,苗秀娟,邓橙,等.不同孔分布孔板的水力空化效果的数值模拟[J].轻工机械,2012,30(4):8-11
    [100]朱芳.表面不平整突体跌坎空化特性与水力空化发生元件优化研究[D].杭州:浙江工业大学,2010
    [101]陈圻圻,董志勇,杨永刚等.三角形多孔板水力空化发生器的数值分析[A].练继建,刘树坤等.2011水力学与水利信息学进展[C].天津:天津大学出版社,2011年10月,371-376
    [102]杨永刚,董志勇,陈圻圻等.方形多孔板水力空化反应器的初步研究[A].练继建,刘树坤等.2011水力学与水利信息学进展[C].天津:天津大学出版社,2011年10月,406-411
    [103]环境保护部.2010中国环境状况公报[N].2011年5月
    [104]Westerweel J. Fundamentals of digital particle image velocimetry [J]. Measurement Science and Technology,1997,8(12):1379-1392
    [105]孙鹤泉,康海贵,李广伟.PIV的原理与应用[J].水道港口,2002,23(1):42-45
    [106]王立.偏流作用下海流能转换器的技术研究[D].杭州:浙江工业大学,2011
    [107]李广宁.抽水蓄能电站上水库侧式进/出水口水力特性研究[D].天津:天津大学,2010
    [108]郭楚文,李嘉薇,许娟.叶栅理论[M].徐州:中国矿业大学出版社,2006
    [109]崔莹莹.轴流泵翼型水动力特性数值模拟研究[D].扬州:扬州大学,2009
    [110]许唯临,杨永全等.水力学数学模型[M].北京:科学出版社,2009
    [111]夏震寰.现代水力学(三)紊动力学[M].北京:高等教育出版社,1992
    [112]郭维东,周阳,梁岳等.丁坝对弯道水流紊动强度影响的试验研究[J].水电能源科学,2005,23(5):70-72
    [113]卢金友,徐海涛,姚仕明.天然感潮河道水流紊动特性分析[J].海洋工程,2005,23(3):70-77
    [114]Fiedler H E. Coherent Structures in Turbulent Flows[J]. Progress in Aerospace Science.1988, 25(3):231-269
    [115]窦国仁.紊流力学[M].北京:高等教育出版社,1981
    [116]梁兴蓉.挑流冲刷过程的压力频谱特性的随机分析[J].高速水流,1984,(2):25-33
    [117]姜哲,郭骅.内燃机气缸压力频谱分析[J].内燃机学报,1989,7(3):251-258
    [118]董志勇,吴持恭,杨永全.掺气对射流冲击水垫塘底部脉动压强频谱特性的影响[J].成都科技大学学报,1994,75(1):9-13
    [119]杨志行,洪文鹏,武茂松,等.气-液两相流横掠圆柱表面脉动压力特性的研究[J].水利电力机械,2007,29(2):15-18
    [120]王英锋,胡俊,罗标能,等.上游叶片尾迹对转子叶片非定常表面压力频谱特性影响的研究[J].航空动力学报,2006,21(4):693-699
    [121]宋孔德,胡广书.数字信号处理[M].北京:清华大学出版社,1988