风机叶片流固耦合特性分析与故障诊断
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
失速颤振是风机中常见的故障之一,同时叶片裂纹又是风机中普遍存在的一种严重安全隐患,所以探明失速颤振机理及尽早检测出裂纹现象的存在对于风机的安全运行具有重要意义。论文对叶片结构与气流脉动的关系、流固耦合互体现特性、以及根据以上两点进行叶片故障诊断等内容进行系统化研究。详细工作如下:
     为探讨风机失速颤振产生的机理,论文提出从气流脉动和叶片结构之间的关系来寻找失速颤振发生频率的方法。通过对风机叶片的模态分析和叶轮出口气动信号频谱分析发现,一定来流速度范围内气流脉动引起的颤振和某一阶固有频率有关,即气流的脉动频率与叶片固有频率趋于相同,远离失速攻角时气流脉动频率逐步摆脱固有频率的影响,在大攻角下叶片结构仍影响气流脉动频率,但已没有一个明显的频率锁定区域。这为探明叶片失速颤振的机理提供了实验依据,证明叶片结构影响气流脉动频率。
     为研究风机叶轮系统气固耦合振动互体现的特性,论文利用刻画非线性系统的多特征分析方法,从相空间重构、关联维、近似熵、L-Z复杂度等不同角度对多次重复实验采集的不同工况下叶轮轴向振动信号及叶轮出口气动信号进行分析。实验分析结果证明这两种信号在某些量化特征上具有耦合互体现特征。这为利用气动信号进行叶片故障诊断奠定基础。
     基于信号的能量主要集中在低频附近,高频信号的能量随频率的增加而迅速衰减的特点以及耦合振子距离越近,越具互体现特性。论文提出了对叶片不同状态下的气动信号进行多带小波分解,与基于二带小波分解的方法互补,检测叶片裂纹故障的方法。首先对多次实验采集的气动信号进行小波分解;然后计算每个频段的能量,形成多维特征向量集;最后由特征向量集训练分类器,利用设计好的分类器对特征向量进行分类检测,识别故障。多次实验证明,该方法能够快速、有效的检测出早期裂纹现象的存在。
     最后为进一步了解叶片裂纹扩展时气动信号的变化,论文对不同工作状态下的气动信号的小波子带能量进行统计分析。分析结果表明,随着叶片裂纹的扩展,高频带相对于正常叶片的气动信号的同子带能量明显降低,而低频带对应的气动信号同子带能量大幅增强。由此可以说明,叶片的裂纹扩展过程中,低频进一步降低,高频进一步升高,气流脉动频率范围逐步扩大。这为转子叶片裂纹故障的监测与诊断提供了依据。同时裂纹的扩展带来叶片结构刚度逐步降低和气动信号低频部分的逐步降低,进一步说明叶片结构影响气流的脉动频率。
The stall flutter is one of the common faults which exists in fans, at the same time, the blade crack is another hidden danger, fan blade crack is also prevalent in a serious security risk while fans are working. So, it is important for fans’safe operation to prove the theory of stall flutter and detect as early as possible the existence of the crack. The paper systematically researches the relationship between blade natural frequency and flow fluctuation frequency, then studies the fluid-structure coupling feature of embodiment, as well as carries on the fault diagnosis of blade according to above two points. The detailed work is as follows:
     Firstly, for exploring the generation mechanism of fan stall flutter, the method of seeking the stall flutter frequency is put forward according to the relationship between flow fluctuation and blade structure. The method analyses the fan blade’s modal and the spectrum of flow fluctuation signal. The result shows that the flutter caused by flow fluctuation relates with natural frequencies of blade within the scope flow velocity. That is, the frequency of flow fluctuation and the blade natural frequency tend to be the same. The frequency of flow fluctuation will escape the influence of natural frequency when flow field is far way from stall attack angle. The natural frequency of the blade still affects the frequency of separation flow in the large attack angle, but there is not an obvious frequency lock region. The result provides the experimental basis for exploring the theory of fan stall flutter, and proves that the blade structure influent the flow fluctuation frequency.
     Secondly, a multi-feature analysis method is proposed to study embodiment feature of the fluid-solid coupling. This method analyses the vibration signals of axial impeller and flow fluctuation collected in different working condition using the phase-space reconstruction, correlation dimension, approximate entropy and L-Z complexity. Experimental results prove that two kinds of signals have coupled characteristics of embodiment; it is the fundamental of diagnosing the blades’crack fault using by the flow fluctuation signals.
     Thirdly, the research is performed to detect the existence of the blade crack. The signal energy mainly concentrates in low-frequency and decreases with the increasing of frequency. Coupling vibrations are more nearer more embodied each other. For detecting the blade crack fault, the method which combines M-band wavelet and 2-band wavelet analysis is proposed.
     Aerodynamic signals collected on different working conditions are decomposed and reconstructed. Then the energies of every frequency band are calculated as the character vectors. Finally, the classifier is trained to class the character vectors and recognize the fault. The experimental results indicate that this method can recognize the fault of early blade crack effectively.
     Finally, for finding out the changes of the flow fluctuation signal with the blade crack spreading, the statistical analysis on the wavelet sub-band energy of the flow fluctuation signal collected on the different working condition is carried out. Analysis results show that high frequency band energy reduces and the low frequency band energy increases with the spread of blade cracks. So, the flow fluctuation frequency range gradually expands because of the spread of blade cracks. The results provide the basis for blade crack fault monitoring and diagnosis. At the same time, the reducing of blade stiffness and the low-frequency of flow fluctuation signal with the spread of crack indicate that the separated flow pulse frequency will be consistent with blade natural frequency.
引文
[1]郑志刚.耦合非线性系统的时空动力学与合作行为[M].北京:高等教育出版社.2004年3月.
    [2]闻邦椿,武新华,丁千等.故障旋转机械非线性动力学的理论与试验[M].北京:科学出版社, 2004年8月.
    [3]任世美.基于小波包分解的转子叶片裂纹故障特征分析[J].冶金设备.2005年12月.39-41
    [4]刘晓波,孙康.转子叶片裂纹故障特征提取研究[J].江西理工大学学报.2006年1月.1-3
    [5] Ostachowiez W M, Krawezuk M. Analysis of the Effect of Cracks on the Natural Frequencies of a Cantilever Beam [J]. Journal of sound and Vibration, 1991, 150(2):191-201.
    [6] Wauer J. Vibration of Cracked Rotating Blades [J]. Machine Vibration, 1992, (1):126-131
    [7]何正嘉,赵纪元,孟庆丰等.机械设备非平稳信号的故障诊断原理及应用[M].北京:高等教育出版社.2001.
    [8]钟秉林,黄仁.机械故障诊断学[M].北京:机械工业出版社.2002.
    [9]赵众.小波变换在过程监测中的应用[D].上海:华东理工大学博士学位论文,1998
    [10]唐向宏,李齐良.时频分析与小波变换[M] .北京:科学出版社.2008
    [11]刘秉正,彭建华.非线性动力学[M].高等教育出版社,2004.1.
    [12] Fraser A M, Swinney H L. Independent coordinates from mutual information [J]. Phys Rev A, 1986, 33:1134~1140
    [13]刘小波,孙康.转子叶片裂纹故障特征提取研究[J].江西理工大学学报.
    [14]郑小波,罗兴琦,邬海军.轴流式叶片的流固耦合振动特性分析[J].西安理工大学学报(2005)Vol.21 No.4.
    [15] Simmons, H. R. Measuring of Rotor and Blade Dynamic Using an Optical blade tip Sensor [J]. ASME paper. 1990 , No.902GT291:5812584.
    [16]杨光海.汽轮机叶片安全防护[M].北京:机械工业出版社.1992.
    [17] Yoon, W.C., Hammer, J.M .,Deep一reasoning fault diagnosis一An aid and model [J], IE EE Trans. Man,Cyber.,1998,18(4):659一67
    [18] Panoe N, Rossi GL. Large2Bandwidth Reflection Fiber Optic Sensors for Turbo-machinery Rotor Blade Diagnosis [J]. Sensors and Actuators. A. 1992, 32:5392542.
    [19]杨光海.汽轮机叶片安全防护[M].北京:机械工业出版社,1992.
    [20] Kawashima. T. Turbine Blade Vibration Monitoring System [J]. ASME Paper. 1992, No. 922GT2159: 3722376.
    [21] Simmons, H. R. Measuring of Rotor and Blade Dynamic Using an Optical blade tip Sensor [J]. ASME paper. 1990, No. 902GT291: 5812584.
    [22] Panoe N, Rossi GL. Large2Bandwidth Reflection Fiber2Optic Sensors for Turbo-machinery Rotor Blade Diagnosis [J]. Sensors and Actuators.A.1992,vol 32 :5392542.
    [23] Barschdorf D, Korthauer R. Aspects of Failure Diagnosis Rotating Parts of Turbo-machines Using Computer Simulation and Pattern Recognition Methods[J]. Paper No. H1. Presented at the International conference of Condition Monitoring, Brighton, United Kingdom. May 1987: 21223.
    [24]吴士祥,等译.涡轮机叶片振动的非接触测量[英][M] .北京:国防工业出版社.1986 :19 - 29.
    [25] P. Nava, N. Paone. Design and Experimental Characterization of a Non-intrusive Measurement System of Rotating Blade Vibration [J]. Journal of Engineering for Gas Turbines and Power. July , 1994. Vol 116 :6572662
    [26]谢志江.叶轮机械故障的叶间状态诊断法研究与应用[D].重庆:重庆大学.2000.
    [27]唐一科,柯研,谢志江叶轮机械叶片状态监测与故障诊断的现状与发展[J] .噪声与振动控制.2003年12月.
    [28]党小建,梁武科,陈千文.水轮机流固耦合振动研究的发展趋势[J].西北水力发电.2004年3月.
    [29]肖若富,韦采新,韩风琴.流固耦合对水轮机的固定导叶振频振型的影响[J] .华中科技大学学报.2001,(4).
    [30] T. , Koivo H . , Application of artificial neural networks in process fault diagnosis[J], Automatica,1993,29(4):
    [31]陈左一,霍福鹏,刘红.转子叶片在非均匀来流条件下的流体激振特性[J] .发电设备,2002,(2)
    [32]覃大清,赵洪田,赵杨.关于混流式水轮机稳定性的几点新认识[J] .大电机技术,1998,(3).
    [33]瞿伦富,王正伟,周凌九.轴流转浆机组浆叶液固耦合振动特性仿真计算[J].清华大学学报,1998,38(1):15-18.
    [34] Watson, M .,Wavelet techniques in the compression of process data[J], Proceedings of the 1995 American Control Conference, Seattle, USA, pp1265一1269
    [35] Watson, M .,Tham P, Succeed at on一line compression and reconstruction of data[J]. Proc. Comp. Aided Proc.Oper.CACHE,1995: 313一318
    [36]赵众,蒋慰孙,顾幸生,基于自适应小波包变换的生产过程低信噪比突变故障检测[J],浙江大学学报,1998,增刊:431-43
    [37] Zhang Q,Early warning of slight changes in systems and plant with application to condition based maintenance[J], Automatic,1994, 300):95-11
    [38]陶星明,刘光宁.关于混流式水轮机稳定性的几点建议[J].大电机技术,2002,(2).
    [39]叶昊.小波变换在系统辨识和故障诊断中的应用[D].清华大学博士学位论文,北京,1996
    [40]王仲博.665毫米叶片无线电遥测[J].汽轮机技术. No.5, PP56~58
    [41]李方泽,王正等.工程振动测试与分析[M].高等教育出版社. 1992pp178-185
    [42]郑兆昌,复杂结构振动研究的模态综合技术[J].振动与冲击.第一卷第一期,1982
    [43]帅汉民,谌刚等.机械振动系统[M].华中理工大学出版社.1992 pp48-64
    [44]苏秀革,邵惠鹤.基于小波奇异性的过程数据显著误差测量[J],浙江大学学报,1998,增刊:638-64
    [45]张萍,王桂增,周东华,叶昊.基于扩展Kalman滤波器和小波变换的非线性随机系统的故障检测,信息与控制[J],1999,增刊(28) :510-515
    [46] Bashi B.R.,Stephanopoulos G.,Representation of process trends:Ⅲmulti-scale extraction of trends form process data[J],Comput. chetn. Engng.1994,18(4): 267-283
    [47] Ji Z, Zu J W. Method of multiple scales for vibration analysis of rotor-shaft systems with non-linear bearing pedestal model. Journal of Sound and Vibration [J], 1998, 218(2):293-305
    [48] Wen B C, Wang D, Yuan Y. Study on nonlinear characteristics of changing stiffness active control of rotor system [J], Proceeding of World Congress on Machine Theory and Mechanisms, Milan, Italy,1995, 1243-1247
    [49] Imam I, Azzaro S H, Bankert R J. Development of an on-line rotor crack detection and monitoring system [J]. Journal of Vibration, Acoustics, Stress, and Reliability in Design,1989, 111:241-250
    [50]金琰,叶轮机械中若干气流激振问题的流固耦合数值研究[D].博士学位论文.二零零二年四月.
    [51] SRINVASAN A V. Flutter and Resonate Vibration Characteristics of Engine Blades[J]. ASME Journal of Engineering for Gas Turbines and Power ,1997 (119) ,7422774.
    [52] THOMAX D L. Dynamics of Rotationally Periodic Structures [J]. Int J Num Meth Engng,1979 (14, 812102.
    [53]李德葆.试验模态分析及其应用[M].北京:科学出版社,2001.
    [54]周传荣,赵淳生.机械振动参数识别及其应用[M].北京:科学出版社,1989.
    [55]孙衍全,龚竟成,门玉贵.矿用风机叶片的故障分析及模态参数的测试方法[J].矿山机械,1994 (11),16-18.
    [56]王泽威,郭军.高效节能矿用防爆对旋主通风机叶片模态分析[J].电气防爆,2004(2),16-17.
    [57]邹进和.振动系统的模态分析实验设计[J].物理实验,2004(11),46-47.
    [58] Williamson D R Implementation of a Fluid - Structure Interaction Formulation Using MSC/ NASTRAN [J]. TRW Space System, Redondo Beach, California 90277.
    [59] Kotake S. Random Vortex Shedding Noise of Airfoils [J] .Journal of Sound and Vibration, 1975 , 40 :87299.
    [60] Lee C , Chung M K, Kim Y K. A Prediction Model for the Vortex Shedding Noise from the Wake of an Airfoil or Axial Flow Fan Blades [J]. Journal of Sound and Vibration, 1993, 164(2):3272336.
    [61] Irons BM. Role of part-inversion in fluid-structure problems with mixed variables [J]. AIAAJL,8(1970):568.
    [62]邢京堂.考虑自由面线性波的流固耦合动力分析的两个变分公式[J].航空学报,1988(9): A568-A571.
    [63] XingJ T, PriceWG. A mixed finite element method for the dynamic analysis of coupled fluid-solid interaction problems [J]. Proc.R.Soc.Lond.A433(1991):331-344.
    [64] Xing J T, Price WG, Du Q H. Mixed finite element substructure-sub domain methods for the dynamical analysis of coupled fluid-solid interaction problems [J]. Trans. R. Soc. Lond.A354(1995):259-295.
    [65] Akkas, NAkayHY, YilmazC. Applicability of general purpose init element programs in solid fluid interaction problems [J]. Computer Structures, 10(1979):773-783.
    [66]邢京堂,郑兆昌.基于弹性动力学变分原理的模态综合法研究[J].固体力学学报,1983(2):248-257.
    [67] MorandHJ-P, OhayonR. Fluid-Structure Interaction [J]. John Wiley and Sons, Chichester.1995.
    [68] HirtCW, AmsdenAA, CookJL. An arbitrary Lagrangian-Eulerian computing method for all flow speeds [J]. J.of Comp.Phys.,14(1974):227-253.
    [69] Paidoussis MP, NamachchivayaNS. Stability and Control of Pipes Conveying Fluid-Proceedings, ASME Winter Annual Meeting[J], Nov.1992,Anaheim, CA.,ASME, New York(1992).
    [70] Chiba M. Nonlinear hydro elastic vibration of acanthi lever cylindrical tank, I: Experiment-empty case [J]. Int. J. Non-linear Mech, 28,5 (1993):591-599.
    [71] Chiba M. Nonlinear hydro elastic vibration of a cantilever cylindrical tank, II: Experiment-liquid-filled case [J]. Int.V. Non-linear Mech, 28, 5(1993):601-602.
    [72] KwonYW, FoxPK. Under water shook response of a cylinder subjected to aside on explosion [J]. Comput. Struct., 48, 4(1993):637—646.
    [73] Rai M M. Three Dimensional Navier-Stokes Simulation of Turbine Rotor-Stator Interaction [J]. Journal of Propulsion and Power. 1989, 5(3):307-319.
    [74]王军.矿用对旋风机的设计、内流模拟及试验研究[D].西北工业大学博士论文.西北工业大学图书馆,1999.
    [75]陈佐一,叶大均.叶轮机械内部真实流动研究的某些进展[J] .中国科学基金,1994,10(2):121-123.
    [76]梁锡智,吴海.轴流对旋风机的设计和实验研究[J].煤炭学报.1999,24(1) :94-97.
    [77]王振羽.0.66m直径对旋式轴流风机的设计和性能估算[J].流体力学试验与测量,2001,12(2) :8-83.
    [78]刘火星,陈矛章等.扩压叶栅出口近壁区域流动结构和紊流特性[J].工程热物理学报,2000,21(4) :420-424.
    [79] Hunter I. H. End wall Boundary Layer Flows and Losses in an Axial Turbine Stage [J]. ASME Journal of Engineering for Power. 1982, 104(2), 84-193.
    [80] Joslyn H.D., Dring R.P. and Sharma O.P.. Unsteady Three-Dimensional Turbine Aerodynamics [J]. ASME Journal of Engineering for Power. 1983,105(2), 322-331.
    [81] Joslyn H. D., Dring R. P., Three-Dimensional Flow in An Axial Turbine: Part l-Aerodynamic Mechanisms;Part2-Profile Attenuation [J]. ASME Journal of Turbo-machinery, 1992,114 (1), 61-78.
    [82]杨景义,王信义.试验模态分析[M].北京理上大学出版社,1990.
    [83] Feng Peien,Qian Zhongyan ,Pan Shuangxia,etal. Research on Agent Based Structural Static and Dynamic Collaborative Optimization [J]. Science in China ( Series E) ,2001(44 -5),463 - 472.
    [84]傅志方.振动模态分析与参数辨识[M].机械工业出版社,1990.
    [85]管迪华.模态分析技术[M].清华大学出版社,1996.
    [86] A. Baoumhauer, C. koning. On the Stability of Oscillations of an Aero plane Wing [J], 1923, NACA TM 223
    [87]伏欣.气动弹性力学原理[M].上海科学技术文献出版社1980
    [88]周盛.叶轮机气动弹性力学引论[M].国防工业出版社1988
    [89] Theodorsen, TH. General Theory of Aerodynamic Instability and the Mechanism of Flutter [J]. 1935, NACA Rep.496
    [90] Semler C, Li G X, PaidoussisMP. The nonlinear equations of motion of pipes conveying fluid [J]. Journal of fluid and structures, 1994, 169(5):577-599.
    [91]管德.气动弹性试验[M].北京航空学院出版社1986
    [92]钟万勰,黄文虎等编.振动、波与辛数学、一般力学(动力学、振动与控制)最新进展[M].京科学出版社.1994,75-90.
    [93]张力翔,黄文虎.输流管道非线性流固耦合振动的数学建模[J].水动力学研究与进展. 2000, 15(1): 116-128·
    [94]郭术义,陈举华.流固耦合应用研究进展[J].济南大学学报.2004年6月.
    [95] Paidoussis M P. Flow-induced instabilities of cylindrical structures [J]. Applied Mechanics Reviews. 1987, 40:163-175
    [96] OBERHOLSTERAJ,HEYNS,PS. On-line fan blade Damage detection using neural networks [J]. Mechanical System and Signal Processing,2006,20:78-93
    [97] MECHEFSKE C K. Objective machinery fault diagnosis Using fuzzy logic [J]. Mechanical System and Signal Processing,1998,12: 855-862.
    [98]张敬芬,孟光,赵德有.基于模糊神经网络的薄板不同指标裂纹诊断[J].机械工程学报,2004,42(3):145-149
    [99]窦唯,刘树林,孙明,等.生物免疫机理在往复压缩机在线监测中的应用[J].流体机械,2004,32(5):16-20
    [100]董平川,郎兆新.油井开采过程中油层变形的流固耦合分析[J].地质力学学报,2000,6(2):6-10
    [101]薛世峰,仝兴华.地下流固耦合理论的研究进展及应用[J].石油大学学报(自然科学版),2002,24(2):109-114.
    [102]陈佐一,霍福鹏,刘红.转子叶片在非均匀来流条件下的流体激振特性[J].发电设备2002No.2.
    [103]陈佐一.流体激振[M].清华大学出版社,1998.
    [104]邢景棠,周盛,崔尔杰.流固耦合力学概述[J].力学进展.1997. Feb.25,
    [105]刘占生,窦唯,王东华.基于遗传算法的旋转机械故障诊断方法融合[J].机械工程学报2007年10月..
    [106]翁刚,闻邦椿,高金吉.高速汽轮机叶片断裂原因分析及对策[J].东北大学学报, 2001,22.
    [107]刘长利.故障转子系统的动力学特性与稳定性研究[D].沈阳,东北大学,2004.
    [108]李振平.多故障转子系统若干非线性问题的研究[D].沈阳,东北大学,2002.
    [109]韩清凯,俞建成,宫照民等.大型旋转机械振动现场测试与故障特征分析[J].振动、测试与诊断.2003,23(1)