大跨度桥梁沿跨向主梁涡激振动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文回顾总结了大跨度桥梁主梁涡激振动研究方法,介绍了钝体二维、三维涡脱特性,探讨了钝体主梁涡脱特性及涡激振动主要影响因素,并详细介绍了描述大跨度桥梁主梁涡激振动的一些具有代表性意义的半经验模型。本文利用风洞试验和理论分析相结合的方法,推导了大跨度桥梁主梁一维涡激振动响应及其涡激力描述方法;推导了沿跨向主梁涡激振动响应及其涡激力描述方法;并探讨了利用节段模型试验识别涡激力的方法。本文的主要研究内容有:
     1.回顾总结了涡激振动研究发展历程及现状。
     2.介绍了钝体二维、三维典型涡脱特征,为大跨度桥梁主梁涡激振动响应研究提供理论和试验基础。
     3.探讨了大跨度桥梁主梁涡激振动响应主要影响因素。如雷诺数效应,紊流特性(紊流度和紊流尺度),气动外形(宽高比、风攻角和附加气动装置)以及Scruton数等。
     4.介绍了半经验模型在描述钝体主梁一维或二维涡激振动响应中的应用,并推导了经验线性模型、Scanlan经验非线性模型和Larsen广义非线性经验模型竖向、扭转涡激振动一次近似解析解。
     5.探讨了基于单自由度经验模型的涡激力识别方法。以江津观音岩长江大桥为例,通过节段模型试验识别主梁成桥态、施工态涡激力。
     6.考虑主梁涡激力跨向相关性、振型等因素作用,推导基于单自由度经验模型的沿跨向主梁竖向、扭转涡激振动响应描述方法。
     7.研究节段模型涡激力识别方法,在节段模型涡激力识别过程中考虑相关性效应后,识别得到更准确的涡激力。
     8.设计了箱梁断面拉条模型,通过测试沿跨向主梁涡激振动响应获得涡激力相关性效应函数。
This thesis reviews the method of Vortex-Induced Vibration(VIV) research of long span bridge girder. The characteristics of two- and three- dimensional vortex shedding of bluff bodies are introduced. And the main factors are discussed which influence vortex shedding characteristics and VIV response of bluff girder. Several representative semi-empirical models, which are used to describe VIV of long span bridge girder, are introduced in detail. Based on wind tunnel test and theory analysis, the system is deduced to describe VIV response and vortex shedding force of long span bridge girder. And the methods are discussed to identify vortex shedding force in section model test. The main research contents of this thesis are shown below:
     1. The review and summarize of VIV research developing course and actuality.
     2. Classic vortex shedding characteristics of two- and three- dimensional bluff bodies are introduced to provide theoretical and experimental foundation on VIV response of long span bridge girder.
     3. Discussion is made here to show the effect of several main influence factors of VIV response of long span bridge girder such as Reynolds number effect, turbulent characteristics( turbulence intensity and turbulence scale), aerodynamic shape(ratio of width and height, wind attack angle and affixation aerodynamic device), Scruton number and so on.
     4. The semi-empirical models are introduced to describe one- and two-dimensional VIV response of bluff girder. And the first order approximate theoretical solution is deduced to describe the vertical and torsional VIV response based on empirical linear model, Scanlan's nonlinear model and Larsen's general model.
     5. The methods are discussed to identify Vortex shedding force of single degree of freedom models. I.e. Taking Jiang Jin Guan Yinyan Yangtse river bridge as an example, the vortex shedding force of girder at full bridge state and erection state is identified by section model test.
     6. Considering influence of spanwise vortex shedding force correlation and model shape, the system is deduced to describe spanwise vertical and torsional VIV response of girder by using single degree of freedom models.
     7. The method is researched to identify vortex shedding force by section model test. The more accurate vortex shedding force can be obtained after considering the spanwise vortex shedding force correlation in section model tet.
     8. A taut strip model of box girder is designed to test spanwise VIV response, and get the vortex induced force correlation effect function.
引文
[1]范立础主编.桥梁工程[M].北京:人民交通出版社.1988
    [2]邵旭东主编.桥梁工程(第二版)[M].北京:人民交通出版社.2007
    [3]陈政清.桥梁风工程[M].北京:人民交通出版社.2005
    [4]埃米尔.希缪,罗伯特.H.斯坎伦著(刘尚培、项海帆、谢霁明译).风对结构的作用-风工程导论(第二版)[M].上海:同济大学出版社,1992
    [5]奚绍中主编.大跨度桥梁和高层建筑抗风研究[M].西南交通大学出版社.1995
    [6]项海帆.现代桥梁抗风理论与实践[M].北京:人民交通出版社.2005
    [7]Wagner H.Uber die entstehung des dynamischen auftriebes von tragflu|¨geln[J].Zeitschrift fu|¨er Angewandte Mathematik und Mechanik,1925,5(17):17-35
    [8]Theodorson T.General theory of aerodynamic instability and the mechanism of flutter[A].NACA Report No.496,1935
    [9]伏欣等,沈克扬译.气动弹性力学原理[M].上海:科学出版社,1981
    [10]Theodoraen T,Garrick I E.Mechanism of flutter:a theoretical and expermental investigation of the flutter problem[A].NACA TR 685,1940
    [11]Garrick I E.On some fourier transforms in the theory of non-stationary flows[A].Proc.,5th Int.Congress for Applied Mechanics,Wiley,New York,1939
    [12]Sears W R.Some aspects of non-stationary airfoil theory and its practical application[J].J.Aeronautical Science,1941,8(3):104-108
    [13]Bleich F.Dynamic instability of truss-stiffened suspension bridges under wind action[J].Transactions of ASCE,1949,114:1177-1222
    [14]Ukeguchi N,Sakata H,Nishitani H.An investigation of aeroelastic instability of suspension bridges[A].Proc.Int.symp.on Suspension Bridges,Lisbon,1966:273-284
    [15]Scanlan R H,Sabzevari A.Suspension bridge flutter revisited[A].Preprint No.468.ASCE National Meeting on Structural Engineering,Seattle,May 1967
    [16]Ito M.Suppression of wind-induced vibrations of structures[A].State of the art volume,Proc.of the 9th International Conf.on Wind Engineering,1995,111-123
    [17] Scanlan R H, Tomko J. Airfoil and bridge deck flutter derivatives[A]. Mech., ASCE, 1971, 97(6): 1717-1737
    [18] Davenport A G. The application of statistical concepts to the wind loading of structures[A]. Proc. ICE, 1961, 19(2): 449-472
    [19] Davenport A G. The response of slender line-like structures to a gusty wind[A]. Proc. ICE, 1962, 23(6): 389-408
    [20] Davenport A G. Buffeting of suspension bridge by storm winds[J]. J. Struct. Div., ASCE. 1962, 88(6): 233-264
    [21] Davenport A G. The dependence of wind load upon meteorological parameters [A]. Proc. Int. Res. Seminar on Wind Effects on Build and Struct. University of Toronto Press, Toronto,1968: 19-82
    [22] Scanlan RH, Gade R H. Motion of suspended bridge spans under gusty wind [J]. J. Struct. Div., ASCE. 1977, 103(9): 1867-1883
    [23] Scanlan R H. The action of flexible bridges under wind I: Flutter theory [J]. J. Sound and Vibration. 1978, 60(2): 187-199
    [24] Scanlan R H. The action of flexible bridges under wind II: buffeting theory[J]. J. Sound and Vibration. 1978, 60(2): 201-211
    [25] Scanlan R H. Interpreting aeroelastic models of cable-stayed bridges[J]. J. Engrg. Mech., ASCE. 1987, 113(4): 555-575
    [26] Scanlan R H. Jones N. P. Aeroelastic analysis of cable-stayed bridges [J]. J. Struct. Engrg., ASCE. 1990, 116(2): 279-297
    [27] Sarker P P et al. System identification for estimation of flutter derivatives[J]. J. Wind. Eng. Ind. Aerodyn. 1992, 41-44: 1243-1254
    [28] Lin Y K. Motion of suspension bridges in turbulent wind[J]. J. Engineering Mech. Div., ASCE, 1979,100(4): 921-932
    [29] Lin Y K, Ariaratnam S. T. Stability of bridge motion in turbulent winds[J]. J. Struct. Mech, 1980, 8(1): 1-15
    [30] Lin Y K, Yang J N. Multimode bridge response to wind excitations[J]. J. Engrg. Mech., ASCE. 1983, 109(2): 586-603
    [31] Lin Y K, Bucher C G. Effects of wind turbulence on motion stability of long span bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1990, 36(2): 1355-1364
    [32] Davenport A G. Progress in Wind Engineering[A]. Proceedings of the 8th International Conference on Wind Engineering, 1991
    [33] Walther J H. Discrete Vortex Method for Two-dimensional Flow Past Bodies of Arbitrary Shape Undergoing Prescribed Rotary and Translation Motion[A]. Department of Fluid Mechanic, Technical University of Denmark,1993
    [34] Walther J H, Larsen A. 2D Discrete vortex method for application to bluff body aerodynamics[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 67-68: 183-193
    [35] Wyatt T A, Walshe D E. Bridge aerodynaics 50 years after Tacoma Narrows [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 40: 317-326
    [36] Matsumoto M. Aerodynamics derivatives of coupled/hybrid flutter of fundamental structural sections[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 49: 575-584
    [37] Larsen A, Walther J H. Aeroelastica analysis of bridge girder sections based on discrete vortex simulations[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 67(2): 253-265
    [38] Strouhal V C. On a particular way of tone generation (in German)[A]. Wiedmann' s Annalen der Physik und Chemie, 1878, (new series)5: 216-251
    
    [39] Zdravkovich M M. Modification of vortex shedding in the synchronization range[J]. ASME Journal of Fluids Engineering, 1982, 104: 513-517
    [40] Roshko A. On the development of turbulent wakes from vortex streets[A]. National Advisory Committee for Aeronautics, NACA Tech Report 1191, 1954
    [41] Berger E. The determination of hydrodynamic parameters of a Kármán vortex street from hot-wire measurements at low Reynolds numbers (in German) [A]. Zeitschriftfur Flugwissenschaften, 1964 12: 41-59
    [42] Fujino Y. Wind-induced vibration and control of Tran-Tokyo Bay Crossing Bridge[J]. J. Stru. Eng, 2002, 8: 1012-1025
    [43] Battista R C et al. Global analysis of the structural behaviour of the central spans of Rio-Niter6i bridge[A]. PONTE SA Contract Report, 1993,3
    [44] Upstone J, Reily D. Construction of the navigation spans of the Rio-Niter 6i bridge[A]. Proceedings of the Institution of Civil Engineers, 1979, 66(1): 227-246
    [45] Battista R C, Pfeil M S. Passive damping of vortex-induced oscillations of Rio-Niter6i bridge[A]. Passive Damping Vol. Proceedings of SPIE's Smart Structures & Materials Conference, 1995, 3: 252-263
    [46] Battista R C, Pfeil M S. Active-passive control of vortex-induced oscillations of Rio-Niter6i bridge[A]. Proceedings of the Third European Conference on Structural Dynamics, 1996, 1: 561-567
    [47] Larsen A, Esdahl S, Andresen J E et al. Storebaelt suspension bridge -vortex shedding excitation and mitigation by guide vanes[J]. J. Wind Eng. Ind. Aerodyn, 2000(88): 283-96
    [48] Diana G, Resta F, Zasso A et al. Wind effects on suspension bridges: the case of the Messina Strait Bridge[A]. Fifth International Symposium on Cable Dynamics, Santa Margherita, Italy, 2003
    [49] Diana G, Resta G, Zasso A et al. Forced motion and free motion aeroelastic tests on a new concept dynamometric section model of the Messina suspension bridge[J]. J. Wind Eng. Ind. Aerodyn, 2004(92): 441-462
    [50] So R M C, Wang X Q. Vortex-induced vibrations of two side-by-side Euler -Bernoulli beams[J]. Journal of Sound and Vibration, 2003, 259(3): 677 -700
    [51] Al-Jamal H, Dalton C. Vortexinduced vibrations using large eddy simulation at moderate Reynolds number[J]. Journal of Fluids and Structures, 2004, 19(1): 73-92
    [52] Jadic I, So R M C, Mignolet P. Analysis of fluid-structure interactions using a time-marching technique[J]. Journal of Fluids and Structures, 1998, 12(6): 631-654
    [53] Evangelinos C. Parallel Simulations of Vortex-Induced Vibrations in Turbulent Flow: Linear and Non-Linear Models[D]. Ph.D. Thesis, Brown University, 1999
    [54] Tutar M, Holdo A E. Large eddy simulation of a smooth circular cylinder oscillating normal to a uniform flow[J]. Journal of Fluids Engineering, 2000, 122(4): 694-702
    [55] Gabbai R D, Benaroya H. An overview of modeling and experiments of vortex-induced vibration of circular cylinders[J]. Journal of Sound and Vibration, 2005, 282: 575-616
    [56] Meneghini J R, Bearman P W. Numerical simulation of high amplitude oscillatory flow about a circular cylinder [J]. Journal of Fluids and Structures, 1995, 9(4): 435-455
    [57] Sarpkaya T. Computational methods with vortices[J]. Journal of Fluids Engineering, 1989, 111(1): 5-52
    [58] Sarpkaya T. Vortex element methods for flow simulation[J]. Advances in Applied Mechanics, 1994, 31: 113-247
    [59] Zhou C Y, So R M, Lam K. Vortex-induced vibrations of an elastic circular cylinder[J]. Journal of Fluids and Structures, 1999, 13(2): 165-189
    [60] Evangelinos C, Lucor D, Karniadakis G E. DNS-derived force distribution on flexible cylinders subject to vortex-induced vibration[J]. Journal of Fluids and Structures, 2000, 14(3): 429-440
    [61] Willden R H J, Graham J M R. Numerical prediction of VIV on long flexible circular cylinders[J]. Journal of Fluids and Structures, 2001, 15 (3-4):659-669
    [62] Barhoush H, Namini A H, Skop R A. Vortexshedding analysis by finite elements[J]. Journal of Sound and Vibration, 1995, 184(1): 111-127
    [63] Nomura T. Finite element analysis of vortex-induced vibrations of bluff cylinders[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 46-47: 587-594
    [64] Mittal S, Kumar V. Finite element study of vortex-induced cross-flow and in-line oscillations of a circular cylinder[J], International Journal for Numerical Methods in Fluids, 1999, 31: 1087-1120
    [65] Wang X Q, So R M C, Liu Y. Flow-induced vibration of an Euler-Bernoulli beam[J]. Journal of Sound and Vibration, 2001, 243(2): 241-268
    [66] Parkison G. Phenomena and modelling of flow-induced vibrations of bluff bodies[J]. Progress in Aerospace Sciences, 1989, 26(2): 169-224
    [67] Bishop R E D, Hassan A Y. The lift and drag forces on a circular cylinder in a flowing fluid[A]. Proceedings of the Royal Society Series A, 1963,277: 32-50
    [68] Hartlen R T, Currie I G. Lift-oscillator model of vortexinduced vibration[J]. Journal of the Engineering Mechanics, 1970, 96(5) : 577-591
    [69] Ng L, Rand R H, Wei T et al. An examination of wake oscillator models for vortex-induced vibrations[A]. Technical Report, Naval Undersea Warfare Division, Newport, RI, 2001
    [70] Feng C C. The Measurement of Vortex-induced Effects in Flow Past Stationary and Oscillating Circular and Dsection Cylinders[D]. Master' s Thesis, University of British Columbia, 1968
    [71] Skop R A, Griffin O M. A model for the vortex-excited resonant response of bluff cylinders[J]. Journal of Sound and Vibration, 1973, 27(2):225-233
    [72] Griffin O M, Skop R A, Koopman G H. The vortex-excited resonant vibrations of circular cylinders[J]. Journal of Sound and Vibration, 1973, 31(2):235-249
    [73] Iwan W D, Blevins R D. A model for vortex-induced oscillation of structures[J]. Journal of Applied Mechanics, 1974, 41(3): 581-586
    [74] Landl R. A mathematical model for vortex-excited vibrations of bluff bodies[J]. Journal of Sound and Vibration, 1975, 42(2): 219-234
    [75] Facchinetti M L, Langre E D, Biolley F. Coupling of structure and wake oscillators in vortex-induced vibrations[J]. Journal of Fluids and Structures, 2004, 19(2): 123-140
    [76] Krenk S, Nielsen S R K. Energy balanced double oscillator model for vortex-induced vibrations[J]. Journal of Engineering Mechanics, 1999,125(3): 263-271
    [77] Iwan W D. The vortex-induced oscillation of elastic structures[J].Journal of Engineering for Industry, 1975, 97: 1378-1382
    [78] Skop R A, Griffin O M. On a theory for the vortex-excited oscillations of flexible cylindrical structures[J]. Journal of Sound and Vibration, 1975, 41(3): 263-274
    [79] Iwan W D. The vortex-induced oscillation of non-uniform structural systems[J]. Journal of Sound and Vibration, 1981, 79(2): 291-301
    [80] Dowell E H. Non-linear oscillator models in bluff body aero-elasticity [J]. Journal of Sound and Vibration, 1981, 75(2): 251-264
    [81] Skop R A, Balasubramanian S. A new twist on an old model for vortex-excited vibrations[J]. Journal of Fluids and Structures, 1997, 11(4): 395-412
    [82] Basu R I, Vickery B J. Across-wind vibrations of structures of circular cross-section—part 2: development of a mathematical model for full-scale application[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1983, 12(1): 75-97
    [83] Goswami I, Scanlan R H, Jones N P. Vortex-induced vibration of circular cylinders—part 2: new model [J]. Journal of Engineering Mechanics, 1993,119(11): 2288-2302
    [84] BillahK. A Study of Vortex-Induced Vibration[D], Ph.D. Thesis, Princeton University, 1989
    [85] Goswami I, Scanlan R H, Jones N P. Vortex-induced vibration of circular cylinders—part 1: experimental data[J]. Journal of Engineering Mechanics, 1993, 119(11): 2270-2287
    [86] Bearman P W. Vortex shedding from oscillating bluff bodies[A]. Annual Review of Fluid Mechanics, 1984, 16: 195-222
    [87] Chen S S, Zhu S, Cai Y. An unsteady flow theory for vortex-induced vibration[J]. Journal of Sound and Vibration, 1995, 184(1): 73-92
    [88] SarpkayaT. Fluid forces on oscillating cylinders[J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 1978, 104: 275-291
    [89] Griffin O M, Koopman G H. The vortex-excited lift and reaction forces on resonantly vibrating cylinders[J]. Journal of Sound and Vibration,1977, 54(3): 435-448
    [90] Griffin O M. Vortex-excited cross-flow vibrations of a single cylindrical tube[J]. Journal of Pressure Vessel Technology, 1980, 102: 158-166
    [91] Wang X Q, So R M C, Chan K T. A non-linear fluid force model for vortex-induced vibration of an elastic cylinder [J]. Journal of Sound and Vibration, 2003, 260(2): 287-305
    [92] Sangsan Lee, Jae Seok Lee, Jong Dae Kim. Prediction of vortex-induced wind loading on long-span bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 67-68: 267-268
    [93] Yoshimuraa T, Mizutaa Y, Yamadab F et al. Prediction of vortex-induced oscillations of a bridge girder with span-wise varying geometry[J].Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89:1717-1728
    [94]Wilkinson R H.Fluctuating pressures on an oscillating square prism.Part Ⅱ.Spanwise correlation and loading[J],Aero.Quarterly,1981,32(2):111-125
    [95]Ehsan F,Scanlan R H.Vortex-Induced Vibrations of Flexible Bridges[J].Journal of Engineering Mechanics,1990,116:1392-1410
    [96]Larsen A.A generalized model for assessment of vortex-induced vibrations of flexible structures[J].Journal of Wind Engineering and Industrial Aerodynamics,1995(57):281-294
    [97]朱乐东.桥梁涡激共振试验节段模型质量系统模拟与振幅修正方法.工程力学,2005,22(5):204-208,176.
    [98]Zdravkovich M M.Modification of vortex shedding in the synchronization range[J].Journal of Fluids Engineering,1982,104:513-517
    [99]Zdravkovich M M.A reflection on two modes of eddy shedding at Re=180-300.In Bluff Body Wakes[A],Dynamics and Instabilities(eds H.Eckelmann et al.),1993:271-274
    [100]Rayleigh J W.The Theory of Sound(2nd edition)[M],1986,2:37-372
    [101]Roshko A.On the development of turbulent wakes from vortex streets[A].National Advisory Committee for Aeronautics.NACA Tech Report 1191,1954
    [102]Berger E.The determination of hydrodynamic parameters of a Karman vortex street from hot-wire measurements at low Reynolds numbers(in German)[J].Zeitschrift fu|¨r Flugwissenschaften,1964,12:41-59
    [103]Bearman P W.Near wake flows behind two- and three-dimensional bluff bodies[J].Journal of Wind Engineering and Industrial Aerodynamics,1997,69-71:33-54
    [104]Simiu E,Scanlan R H.Wind Effects on Structures(2nd Ed)[M].New York.John Wiley & Sons,1986.
    [105]Matsumoto M.Vortex Shedding of Bluff Bodies:a Review[J].Journal of Fluids and Structures.1999,13:791-811.
    [106]Nakamura Y,Nakashima M.Vortex excitation of prisms with elongated rectangular Hand(?) cross-sections[J].Journal of Fluid Mechanics,1986,163:149-169.
    [107]Shiraishi N,Matsumoto M.On classifcation of vortex-induced oscillation and its application for bridge structures[J].Journal of Wind Engineering and Industrial Aerodynamics, 1983, 15: 419-430
    [108] Bloor M S. The transition to turbulence in the wake of a circular cylinder[J]. Journal of Fluid Mechanics, 1964, 19: 290-304
    [109] Williamson C H K. The existence of two stages in the transition to three dimensionality of a cylinder wake[J]. Physics of Fluids, 1988, 31:3165-3168
    [110] Roshko A, Fiszdon W. Problems of Hydrodynamics and Continuum Mechanics[A]. SIAM, Phidelphia, 1969, 606-616
    
    [111] Berger E, Wille R. Periodic flow phenomena[A]. Annual Review on Fluid Mechanics, 1972, 4: 313-340
    [112] Hama F R. Three dimensional vortex pattern behind a circular cylinder[J]. Journal of Aeronautical Sciences, 1957, 24: 156-158
    [113] Tritton D J. Experiments on the flow past a circular cylinder at low Reynolds number[J]. Journal of Fluid Mechanics, 1959, 6: 547-567
    [114] Atta C V, Gharib M. Ordered and chaotic vortex streets behind circular cylinders at low Reynolds numbers [J]. Journal of Fluid Mechanics, 1987,174: 113-133
    [115] Karniadakis G E, Triantafyllou G S. Frequency selection and asymptotic states in laminar wakes[J]. Journal of Fluid Mechanics, 1989, 199:441-469
    [116] Gerich D, Eckelmann H. Influence of end plates and free ends on the shedding frequency of circular cylinders [J]. Journal of Fluid Mechanics,1982, 122: 109-121
    [117] Koenig M, Eisenlohr H, Eckelmann H. The fine structure in the Strouhal-Reynolds number relationship[J]. Physics of Fluids, 1990, 2:1607-1614
    [118] Eisenlohr H, Eckelmann H. Vortex splitting and its consequences in the vortex street wake of cylinders at low Reynolds number[J], Physics of Fluids, 1989, 1(2): 189-192
    [119] Hammache M, Gharib M. An experimental study of the parallel and oblique vortex shedding from circular cylinders[J]. Journal of Fluid Mechanics,1991, 232, 567-590
    [120] Miller G D, Williamson C H K. Control of three-dimensional phase dynamics in a cylinder wake[A]. Experiments in Fluids, 1994, 18-26
    [121] Albarede P, Monkewitz P A. A model for the formation of oblique shedding patterns and chevrons in cylinder wakes[J]. Physics of Fluids A, 1992, 4: 744-756
    [122] Wei T, Smith CR. Secondary vortices in the wake of circular cylinders[J]. Journal of Fluid Mechanics, 1986, 1986, 169: 513-533
    [123] Gerrard J H. The wake of cylindrical bluff bodies at low Reynolds numbers[A]. Phil. Trans. Roy. Soc. Lond. A, 1978, 288: 351-382
    [124] Prasad A, Williamson C H K. The instability of the separated shear layer from a bluff body[J]. Phys. Fluids, 1996, 8: 1347-1349
    [125] Prasad A, Williamson C H K. The instability of the shear layer separating from a bluff body[J]. J. Fluid Mech, 1997, 333: 375-402
    [126] Zdravkovich M M. Different Modes of Vortex Shedding: An Overview[J]. Journal of Fluids and Structures, 1996, 10: 427-437
    [127] Toebes G H. The unsteady flow and wake near an oscillating cylinder[J].Journal of Basic Engineering, 1969, 91: 493-505
    [128] Griffin O M, Skop R A, Koopman G H. Measurements of the response of bluff cylinders to flow-induced vortex shedding[A]. Offshore Technology Conference, Dallas, Texas, Paper 0TC1814, 1973
    [129] Griffin O M, Ramberg S E. The vortex street wakes of vibrating cylinders[J]. Journal of Fluid Mechanics, 1974, 66: 553-576
    
    [130] Schewe G, Larsen A. Reynolds number effects in the flow around a bluff bridge deck cross section[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74-76: 829-838
    [131] Schewe G. Nonlinear flow induced resonances of an H-shaped section[J].J. Fluids Struct, 1989, 3: 327-348
    [132] Tamai H, Okuda Y, Katsura J. On relation between Reynolds number and Karman vortex formation on a bluff body in natural wind[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89: 1619-1633
    [133] Kawatani M, Kim H, Uejima H et al. Effects of Turbulent Flows on Vortex-Induced Oscillation of Bridge Girders with Basic Section[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1993, 49:477-486
    [134]Kawatani M,Toda N,Sato M et al.Vortex-induced torsional oscillations of bridge girders with basic sections in turbulent flows[J].Journal of Wind Engineering and Industrial Aerodynamics,1999,83(1):327-336
    [135]Nakamura Y.Vortex shedding from bluff bodies and auniversal strouhal number[J].Journal of Fluids and Structures,1996,10:159-171
    [136]Matsumoto M.Vortex Shedding of Bluff Bodies:a Review[J].Journal of Fluids and Structures,1999,13:791-811
    [137]Matsumoto M,Ihizaki H,Matsuoka C et al.Aerodynamic effects of the angle of attack upon a rectangular prism[J].Journal of Wind Engineering and Industrial Aerodynamics,1988,77-78:531-542
    [138]刘建新.桥梁对风反应中的涡激振动及制振.中国公路学报,1995,8(2):74-79
    [139]藤泽,園部.箱梁涡激振的若干研究.第10回风工学会论文集,1988
    [140]日本土木学会第46回(1991),第47回1992年次学术讲演会概要集
    [141]EI-Gammal M,Hangan H,King P.Control of vortex shedding-induced effects in a sectional bridge model by spanwise perturbation method[J].Journal of Wind Engineering and Industrial Aerodynamics,2007,1:1-16
    [142]Khalak A,Williamson C H K.Motions,forces and mode transitions in votex-induced vibrations at low mass damping[J].Journal of Fluids and Structures,1999,13(7-8):813-851
    [143]Khalak A,Williamson C H K.Dynamics of a hydro elastic cylinder with very low mass and damping[J].Journal of Fluids and Structures,1996,10(5):455-472
    [144]Lucor D,Imas L,Karniadakis G E.Vortex dislocations and force distribution of long flexible cylinders subjected to sheared flows[J].Journal of Fluids and Structures,2001,15:641-650.
    [145]Griffin O M,Skop R A,Ramberg S E.Modeling of the Vortex-Induced Oscillations of Cables and Bluff Structures[A].Paper delivered to society for Experimental Stress Analysis,1976
    [146]Blevins R D.Flow-Induced Vibrations[M].Van Nostrand Reinhold,New York,1990
    [147]Parkinson G.Phenomena and modeling of flow-induced vibrations of bluff bodies[A].Progress in Aerospace Sciences,1989,26:169-224
    [148]Li Mingshui,He Dexin.Parameter Identification of Vortex-Induced Forces on Bluff Bodies[J].空气动力学学报,1995,Vol.13:396-404
    [149]Christensen C F,Roberts J B.Parametric identification of vortex-induced vibration of a circular cylinder from measured data[J].Journal of Sound and Vibration,1998,211(4):617-636
    [150]Olinger J,Sreenivasan K R.Nonlinear dynamics of the wake of an oscillating cylinder[A].Physical Review Letters,1988,60:797-800
    [151]公路桥涵设计通用规范JTGD60-2004[M].2004
    [152]公路桥梁抗风设计规范JTG/T D60-01-2004[M].2004
    [153]公路斜拉桥设计规范TJ027-96[M].1996