基于一致性理论的多UAV分布式协同控制与状态估计方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多无人机(Unmanned Aerial Vehicle, UAV)协同作战是未来战场上UAV的主要作战样式和发展趋势。随着网络技术的发展成熟与广泛应用,网络环境下的多UAV协同作战将极大地提高了作战效能,但也给多机控制和决策技术带来了重大挑战,需要考虑网络时延、网络拓扑变化和不确定性扰动等通信条件带来的影响。受限网络条件下的多机协同作战是研究多UAV协同控制和决策技术的直接推动力,同时也是提升UAV系统自主能力的重要体现。论文在网络约束条件下的多智能体一致性理论方面作了一些探索性工作,并以此为基础讨论了多UAV协同对地打击过程中的任务区集结和目标观测两个问题,主要工作及创新点如下:
     (1)在网络时延和时变拓扑约束下,提出并理论证明了多智能体实现平均一致性的时延相关收敛判据。应用状态分解和空间变换思想,将平均一致性的收敛性等价为相应子系统的稳定性问题。进而,采用构造公共Lyapunov-Krasovskii泛函的方式来分析稳定性问题。为确保收敛判据具有较小的保守性(即偏离理论值的程度,保守性越低,越接近理论值),在Lyapunov-Krasovskii泛函导数负定性的判定过程中引入了自由权矩阵。进一步,获得关于线性矩阵不等式(Linear Matrix Inequalities, LMI)可行解的存在性判据。在此基础上,假定一致性控制协议的系数项满足多项式Hurwitzs稳定,可得到具有l阶链式积分器型多智能体平均一致性的收敛判据。新判据能够克服频域方法在构造公共或多个Lyapunov泛函所表现出的难度,易借助数学软件包获得多智能体实现平均一致性所允许的最大网络时延上界。数值实例和仿真结果验证了判据的有效性,且在保守性方面较已有文献结果有较大改善。
     (2)在网络时延、扰动和时变拓扑结构不确定性等复杂约束下,提出并理论证明了多智能体实现鲁棒一致性的时延相关收敛判据。应用状态分解和空间变换思想,将鲁棒一致性的收敛性等价为相应子系统的鲁棒稳定性问题,即零扰动稳定性和非零扰动稳定性。进而,采用构造公共Lyapunov-Krasovskii泛函的方式来分析鲁棒稳定性问题,利用自由权矩阵方法获得关于非线性矩阵不等式(Nonlinear Matrix Inequalities, NLMI)可行解的存在性判据;在此基础之上,借鉴求解锥补问题的思想,对NLMI判据作非线性最小化处理,提出了LMI迭代求解算法,进而可获得多智能体实现鲁棒一致性所允许的最大网络时延上界。进一步,所得结论扩展至离散多智能体鲁棒一致性问题。新判据揭示了网络时延、时延变化率、鲁棒一致性控制协议系数以及给定H∞性能之间的相互关系。这为复杂网络约束条件下,满足给定H∞性能的鲁棒一致性控制协议设计提供了理论依据。数值实例和仿真结果验证了判据的有效性,且保守性优于已有文献结果。
     (3)应用时延相关平均一致性理论,提出了面向网络化多UAV系统任务区集结问题的分布式协同控制方法。建立了集结问题的数学模型,提出了基于协调变量和协调函数的分布式求解框架。在减少冗余信息传递的同时,最大限度地降低了受限网络条件对集结任务的影响。从任务特征出发,改进了多智能体时延相关平均一致性算法:针对“自私型”多UAV系统,提出了满足个体代价最小的非合作优化一致性(Non-cooperative Optimal Consensus, NCOC)算法。利用Hamilton-Jacobi-Bellman方程及其边界条件,从理论上给出了NCOC控制协议的表达形式;在此基础上,针对“合作型”多UAV系统,提出了满足整体代价最小的合作博弈优化一致性(Cooperative Game based Optimal Consensus, CGOC)算法。根据合作博弈理论和灵敏度参数方法,从理论上给出了CGOC的控制协议的表达形式。进一步,提出了求解集结问题的两种分布式协同控制方法,即NCOC方法和CGOC方法。新方法更强调平台的轨迹控制,弱化了UAV对路径规划算法的要求。不仅能够降低集结问题的求解难度,且使多UAV系统具有较强的动态响应能力。仿真结果表明两种分布式协同控制方法均可用于求解网络化多UAV系统任务区集结问题,CGOC方法在最优性和动态响应性方面要优于NCOC方法。
     (4)应用时延相关鲁棒一致性理论,提出了面向网络化多UAV系统协同目标观测问题的分布式状态估计方法。考虑到多UAV系统的松散通信结构和网络约束条件的复杂性,设计了“双时间窗”递推迭代机制,即预测/更新时间窗和一致性融合时间窗。进而,基于离散时间域下的鲁棒一致性算法,提出了分布式无色信息滤波(Robust Consensus based Distributed Unscented Information Filter, RC_DUIF)方法。从理论上分析了一致性融合算法收敛性对估计精度的影响,揭示了RC_DUIF方法的协方差大于集中式无色信息滤波方法的根本原因。RC_DUIF方法适用于网络时延、扰动和时变拓扑结构不确定性等复杂网络条件下的协同目标观测,算法计算复杂度和通信复杂度低,可实现性强。蒙特卡洛仿真实验表明,FRC_DUIF方法对复杂网络条件具有较强的鲁棒性,在平均估计误差、平均一致性误差以及平均协方差矩阵迹等方面表现出色,能够满足复杂网络条件下多UAV系统对非线性目标模型状态实时估算的要求。
Cooperative operation for multiple unmanned aerial vehicles(UAVs) is the main en-gagement manner and the trend of development in the future. With the rapid development and wide employment of the network technology, cooperative manner in networks may improve the operational efficiency greatly. There are also some significant challenges for distributed control and decision problems, such as the influence of the constraints condi-tions, i.e., network delays, time-varying network topologies and uncertain disturbances. It is not only the original impetus to cooperative control and decision of multi-UAV, but also it is an important manifestation of enhancing the autonomy of the UAV. This paper investigates some exploratory work on the multi-agent system consensus theory under the network constraints, and as a means to discuss the rendezvous in mission area and cooper-ative target observation during multi-UAV cooperative engagement. The main work and contributions are as follows:
     (1) Under the constraint conditions including network delays and time-varying net-work topologies, the delay dependent convergence criteria are given and proved to achieve average consensus for multi-agent systems. By the idea of state decomposition and space transformation, the convergence property of average consensus is equivalent to the stabil-ity of the corresponding subsystem. Then, the common Lyapunov-Krasovskii functional is employed to analyze the stability. In order to get the criteria with lower conservativeness (that means the degree of deviation from the theoretical value, the lower the conservative-ness, the more close to the theoretical value), Free-weighting Matrices are used to verify the negative definite of the Lyapunov-Krasovskii functional. Further, the criteria are ob-tained through solving the corresponding feasible linear matrix inequality(LMI). Lastly, the convergence criteria for multi-agent systems with/th-order chain integrator dynamics are presented with the assumption that the coefficient parameters in the consensus protocol satisfying the Hurwitzs stable. The proposed criteria can overcome the difficulty of con-structing public or multiple Lyapunov functional by frequency-domain method, and the max tolerant upper bounds on network delays can be obtained conveniently using math-ematical package. Numerical examples and simulation results show the effectiveness of the proposed criteria, and the conservativeness is lower than the existing results.
     (2) Under the constraint conditions including network delays, disturbances and time-varying network topologies, the delay dependent convergence criteria are given and proved to achieve robust consensus for multi-agent systems. By using the idea of state decompo-sition and space transformation, the condition for guaranteeing robust consensus is equiv-alent to the robust stability of the corresponding subsystem, i.e., stability with zero dis-turbance and nonzero disturbance. Then, the common Lyapunov-Krasovskii functional is built to analyze the robust stability, and the Free-weighting Matrices method is used to get the criteria which can be obtained through solving the corresponding feasible nonlin-ear matrix inequality(NLMI). Nonlinear minimization is employed to deal with the NLMI criteria like solving cone complementarity problem. Then, the iterative LMI algorithm is obtained, and the max tolerant upper bounds on network delays can be obtained. Further, the conclusions are expanded to the robust consensus for multi-agent systems with discrete dynamics. Convergence criteria reveal the relationship between the network delays, de-lay differential rate, control protocol for robust consensus and the index H∞performance. It is the theoretical basis to design the control protocol for robust consensus meeting the given H∞robust performance under complex network constraints. Numerical examples and simulation results show the effectiveness of the proposed criteria, and the conserva-tiveness is lower than the existing results.
     (3) By delay dependent average consensus theory, distributed cooperative control methods are proposed to solve the rendezvous problem in mission area for multi-UAV system in network. The mathematical description of rendezvous problem is established, and the framework to be solved in distributed manner is provided based on the method of coordination variables and coordination function. It can be used to decrease the trans-mission of the redundant information, and reduce the influence of the limited network conditions on rendezvous task to some degree. Considering the characteristics of the task, delay dependent average consensus for multi-agent system is improved as follows: The non-cooperative optimal consensus(NCOC) algorithm, which can minimize the cost func-tion of each platform, is presented for the "selfish" UAVs. The expression of NCOC con-trol protocol is given theoretically by Hamilton-Jacobi-Bellman equation and its boundary condition; On the other hand, the cooperative game based optimal consensus(CGOC) al-gorithm, minimize the cost function of the whole multi-UAV system, is presented for the "cooperative" UAVs. The expression of CGOC control protocol is given theoretically by cooperative game and sensitivity parameter method. Moreover, two distributed coopera-tive control methods for rendezvous problem are proposed, i.e., NCOC method and CGOC method. The proposed methods emphasis on the trajectory control of the platform, thus weaken the requirements of the path planning algorithm for UAV. It can reduce the diffi-culty of solving rendezvous problem, and strengthen the dynamic response capabilities of the multi-UAV system. Simulation results show that the proposed two distributed cooper-ative control methods are valid for solving the rendezvous problem for multi-UAV system in network, and the CGOC method is better than NCOC method in terms of optimal and dynamic response.
     (4) By delay dependent robust consensus, distributed state estimation method is pre-sented to solve the cooperative target observation for multi-UAV system in network. Con-sidering the loose communication structure of multi-UAV system and the complexity of the networks constraints, the iteration mechanism with double time-window is designed including local prediction/update window and consensus fusion window. The distributed unscented information filter (RC_DUIF) method is given base on the robust consensus un-der discrete time domain. The influence of the convergence property of consensus to the estimation precision is theoretically analyzed. That reveals the fundamental reason for the covariance error of RC_DUIF method is greater than the centralized information filtering method. RC_DUIF method is valid for cooperative target observation under the complex network constraints including network delay, disturbances and time-varying topologies uncertainty. It has the characteristics of lower computational complexity and communi-cation complexity. So it can be implemented easily. Lastly, the Monte Carlo simulation experiments indicate that RC_DUIF algorithm is robust to complex network constraints, and has the outstanding performance on average estimation error, average consistency er-ror and average trace of the covariance matrix, which can meet the requirement of the real time estimate of non-linear target for multi-UAV system under complex network.
引文
[1]Mitchell J W, Schumacher C J, Chandler P R,et al. Communication Delays in the Cooperative Control of Wide Area Search Munitions Via Iterative Network Flow[C].Proceedings of the AIAA Guidance, Navigation, and Control Conference. Texas,USA: AIAA,2003:5665--5674.
    [2]Mitchell J W, Sparks A G. Communication Issues in the Cooperative Control of Unmanned Aerial Vehicles[C].Proceedings of the 41 st Annual Allerton Conference on Communication Control and Computing. Illinois,USA: Allerton,2003.
    [3]Mitchell J W, Rasmussen S J. Synchronous and Asynchronous Communication Effects on the Cooperative Control of Unmanned Aerial Vehicles[C].Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit. Rhode Isl,USA: AIAA,2004.
    [4]Wise K. X-45 Program Overview and Flight Test Status[R].2nd AIAA "Unmanned Unlimited" Systems, Technologies, and Operations-Aerospace, Land, and Sea Con-ference, Workshop and Exhibition,2003:15--18.
    [5]Unmanned Aerial Vehicle (UAV) Roadmap 2005-2030[R].Office of the Secretary of Defense,2005.
    [6]Defense Science Board Study on Unmanned Aerial Vehicles and Uninhabited Com-bat Aerial Vehicles[R].Office of the Secretary of Defense,2004.
    [7]空中机器人[Online]. http://baike.baidu.com/view/263609.htm.
    [8]龙涛.多UCAV协同任务控制中分布式任务分配与任务协调技术研究[D].长沙,中国:国防科学技术大学,2006.
    [9]Siva B, John D, Richard M. Research Needs in Dynamics and Control for Un-inhabited Aerial Vehicles[Online]. http://www.cds.caltech.edu/murray/notes/uav-nov97.html.
    [10]Shima T, Rasmussen S J, Chandler P R. UAV Team Decision and Control Using Efficient Collaborative Estimation[C].Proceedings of the American Control Con-ference. Portland,USA,2005:4107--4112.
    [11]Clough B T. Unmanned Aerial Vehicles:Autonomous Control Challenges, A Re-searcher's Perspective[J]. Journal of Aerospace Computing, Information and Com- munication,2003,2:327--347.
    [12]Michael O. Mixed Initiative Control of Automa-teams (MICA)-A Progress Re-port[C].AIAA 3rd 'Unmanned Unlimited' Technical Conference. Chicago, USA: AIAA,2004.
    [13]MICA project official web page[Online]. http://www.darpa.mil/ixo/programs.asp.
    [14]Ryan A, Zennaro M, Howell A,et al. An overview of emerging results in coopera-tive UAV control[C].Proceedings of the IEEE Conference on Decision and Control. Paradise Isl,Bahama: IEEE,2004:602--607.
    [15]Butenko S, Murphey R, Pardalos P. Cooperative Control: Models, Applications and Algorithms[M].Kluwer Press,2006.
    [16]Cooperative Control of Distributed Autonomous Vehicles in Adversarial Environ-ments[Online]. http://www.seas.ucla.edu/coopcontrol/.
    [17]UAV SWARM Health Management Project Website[Online]. http://vertol.mit.edu/.
    [18]Wong E M, Bourgault F, Furukawa T. Multi-vehicle Bayesian Search for Mul-tiple Lost Targets[C].Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona,Spain: IEEE,2005:3169--3174.
    [19]Bryson M, Sukkarieh S. Decentralised Trajectory Control for Multi-UAV SLAM[C].Proceeding of the 4th International Symposium on Mechatronics and its Applications. Sharjah,Uited Arab Emirates: IEEE,2007:1--6.
    [20]Chandler P R, Pachter M, Rasmussen S. UAV Cooperative Control[C].Proceedings of American Control Conference. Virginia,USA: IEEE,2001:50--55.
    [21]Rasmussen S J, Chandler P R. MultiUAV: A Multiple UAV Simulation for In-vestigation of Cooperative Control[C].Proceedings of the 2002 Winter Simulation Conference. San diego,USA: IEEE,2002:869--877.
    [22]Schumacher C, Chandler P R, Pachter M,et al. UAV Task Assignment with Tim-ing Constraints via Mixed-integer Linear Programming[C].Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit. Texas,USA: AIAA, 2003:238--252.
    [23]Ollero A, Lacroix S, Merino L,et al. Architecture and Perception Issues in the Comets Multiuav Project[J]. IEEE Robotics and Automation Magazine, special issue on R & A in Europe: Projects funded by the Comm. of the E.U.,2004.
    [24]COMETS project official web page[Online]. http://www.comets-uavs.org/.
    [25]彭辉.分布式多无人机协同区域搜索中的关键问题研究[D].长沙,中国:国防科学技术大学,2009.
    [26]霍霄华.多UCAV动态协同任务规划建模与滚动优化方法研究[D].长沙,中国:国防科学技术大学,2007.
    [27]Schumacher C, Chandler P R, Rasmussen S J. Task Allocation for Wide Area Search Munitions via Iterative Networkflow[C].Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit.2002.
    [28]Secrest B R. Traveling Salesman Problem for Surveillance Mission Using Particle Swarm Optimization[D]. Ohio, USA: Air Force Institute of Technology,2001.
    [29]Brown D T. Routing Unmanned Aerial Vehicles while Considering General Re-stricted Operating Zones [D]. Ohio, USA: Air Force Institute of Technology,2001.
    [30]Alighanbari M. Task Assignment Algorithms for Teams of UAVs in Dynamic En-vironments [D]. MA, USA:Massachusetts Institute of Technology,2004.
    [31]Darrah M A, Niland W M, Stolarik B M. Multiple UAV Dynamic Task Alloca-tion using Mixed Integer Linear Programming in a SEAD Mission[C].the AIAA Infotech & Aerospace Conference.2005.
    [32]Resmussen S, Chandler P R. Optimal vs. Heuristic Assignment of Cooperative Autonomous Unmanned Aerial Vehicles[C].Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit.2003.
    [33]Shima T, Rasmussen S J, Sparks A G,et al. Multiple Task Assignments for Coop-erating Uninhabited Aerial Vehicles Using Genetic Algorithms[J]. Computers and Operations Research,2006,33(11):3252--3269.
    [34]Joel L R, Bailey T G, James T M,et al. Reactive Tabu Search in Unmanned Aerial Reconnaissance Simulations[C].Winter Simulation Conference.1998:873--879.
    [35]Bary R S. Traveling Salesman Problem for Surveillance Mission Using Particel Swarm Optimization[D]. Wright-Patterson Air Force Base, Ohio, USA: Air Force Institute of Technology,2001.
    [36]Porto V W. Using Evolutionary Programming to Optimize the Allocation of Surveillance Assets[C].SEAL'98, LNCS 1585.1999:215--222.
    [37]Eun Y, Bang H. Cooperative Control of Multiple UCAVs for Suppression of Enemy Air Defense[C].Proceeding of the AIAA 3rd "Unmanned Unlimited" Technical Conference.2004.
    [38]Alighanbari M, How J P. Cooperative Task Assignment of Unmanned Aerial Ve-hicles in Adversarial Environments[C].Proceedings of the American Control Con-ference.2005.
    [39]Alighanbari M, How J P. Decentralized Task Assignment for Unmanned Aerial Vehicles [C].Proceedings of the 44th IEEE Conference on Decision and Control. Seville,Spain: IEEE,2005.
    [40]Atkinson M L. Contract Nets for Control of Distributed Agents in Unmanned Air Vehicles[C].Proceedings of the 2nd AIAA "Unmanned Unlimited" Systems, Technologies, and Operations.2003.
    [41]Distributed Constraint-Based Algorithm for Dynamic Task Allocation Among UAVs[Online]. http://www.seas.upenn.edu/chpeng/icra08workshop/BinYu.pdf.
    [42]Latombe J C. Robot Motion Planning[M].Kluwer Boston,1991.
    [43]Frazzoli E, Dahleh M A, Feron E. Real-time Motion Planning for Agile Au-tonomous Vehicles[J]. AIAA Journal of Guidance, Control, and Dynamics,2002, 25(1):116--129.
    [44]LaValle S M. Planning Algorithms[M].University of Illinois,2004.
    [45]Bellingham J, Tillerson M, Richards A,et al. Multi-task Allocation and Path Plan-ning for Cooperative UAVs[M].Springer,2003.
    [46]McLain T W, Chandler P R. Cooperative Control of UAV Ren-dezvous[C].Proceedings of American Control Conference.2001.
    [47]Beard R W, McLain T W, Goodrish M,et al. Coordinated Target Assignment and Intercept for Unmanned Air Vehicles[J]. IEEE Transactions on Robotics and Au-tomation,2002,18(3):911--922.
    [48]Kavraki L, Sevestka P, Latombe J C,et al. Probabilistic Roadmaps for Path Planning in High Dimensional Configuration Space[J]. IEEE Transactions on Robotics and Automation,1996,12(4):566--580.
    [49]Canny J F. The Complexity of Robot Motion Planning[M].MIT Press,1988.
    [50]高国华.大范围多路径规划问题研究[D].长沙,中国:国防科学技术大学,1999.
    [51]Jarle A, Leif H B. Flight Path Planning System for Autonomous Unmanned Aerial Vehicles[R]. Norway: Norwegian University of Science and Technology,2004.
    [52]Nikolos IK. Evolutionary Algorithm Based Offline/Online Path Planner for UAV Navigation[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B:Cy-bernetics,2003,33(6):898--912.
    [53]Foo J L, Knutzon J S, Oliver J H,et al. Three-dimensional Multi-Objective Path Planning of Unmanned Aerial Vehicles Using Particle Swarm Optimiza-tion[C].Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Struc-tural Dynamics, and Materials Conference. Hawaii,USA: AIAA,2007.
    [54]Schouwenaars T. Safe Trajectory Planning of Autonomous Vehicles[D]. MA, USA: Massachusetts Institute of Technology,2005.
    [55]Chandler P R, Rasmussen S J, Pachter M. UAV Cooperative Path Plan-ning[C].Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit. Denver,USA: AIAA,2000.
    [56]Alighanbari M, Kuwata Y, How J P. Coordination and Control of Multiple UAVs with Timing Constraints and Loitering[C].Proceedings of the American Control Conference. Denver,USA: IEEE,2003.
    [57]McLain T W, Beard R W. Trajectory Planning For Coordinated Rendevous of Un-manned Air Vehicles[C].Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit. Montreal,Canada: AIAA,2001.
    [58]McLain T W, Beard R W. Cooperative Path Planning for Timing-Critical Mis-sions[C].Proceedings of the American Control Conference. Denver,USA:IEEE, 2003.
    [59]Richards A, How J P. Aircraft Trajectory Planning With Collision Avoidance Using Mixed Integer Linear Programming[C].Proceedings of the American Control Conference. Anchorage,USA:IEEE,2002.
    [60]Schouwenaars T, How J P, Feron E. Decentralized Cooperative Trajectory Plan-ning of Multiple Aircraft with Hard Safety Guarantees[C].Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit. Rode Isl,USA: AIAA, 2004.
    [61]Fasano G, Accardo D, Moccia A,et al. Multisensor based Fully Autonomous Non-Cooperative Collision Avoidance System for UAVs[C].Proceedings of the AIAA Infotech@Aerospace Conference and Exhibit. Rohnert Part,USA:AIAA,2007.
    [62]Keviczky T, Borrelli F, Fregene K,et al. Decentralized Receding Horizon Control and Coordination of Autonomous Vehicle Formations [J]. IEEE Transactions on Control Systems Technology,2007.
    [63]Kuwata Y, How J P. Robust Cooperative Decentralized Trajectory Optimization using Receding Horizon MILP[C].Proceedings of the 2007 American Control Con-ference. New York,USA: IEEE,2007.
    [64]Wang P K C. Navigation strategies for multiple autonomous mobile robots moving in formation[J]. Journal Robotics System,1991,8(2):177--195.
    [65]Campa G, Napolitano M R, Brad S,et al. Design of Control Laws for Ma-neuvered Formation Flight[C].Proceedings of the American Control Conference. Boston,USA: IEEE,2004:2344--2349.
    [66]Brad S, Campa G, Gu Y,et al. Formation Flight Test Results for UAV Re-search Aircraft Models[C].AIAA 1st Intelligent Systems Technical Conference. Chicago,USA: AIAA,2004:1--14.
    [67]Brad S, Gu Y, Marcello R N,et al.3-Aircraft Formation Flight Experiment[C].14th Mediterranean Conference on Control and Automation. Ancona,Italy: IEEE, 2006:1--6.
    [68]Gu Y, Brad S, Giampiero C. Design and Flight Testing Evaluation of Forma-tion Control Laws[J]. IEEE Transactions on Control Systems Technology,2006, 14(6):1105--1112.
    [69]Yun X, Alptekin G, Albayrak O. Line and Circle Formation of Distributed Physical Mobile Robots[J]. Journal of Robotic Systems,1997,14(2):63--76.
    [70]Chen Q, Luh J Y S. Coordination and Control of a Group of Small Mobile Robots[C].Proceedings of IEEE International Conference on Robotics and Automa-tion. San Diego,USA:IEEE,1994:2315--2320.
    [71]Giulietti F, Pollini L, Innocenti M. Formation Flight Control:A Behav-ioral Approach[C].AIAA Guidance, Navigation and Control Conference. Mon-treal,Canada: AIAA,2001.
    [72]Theraulaz G, Bonbeau E. A Brief History of Stigmergy[J]. Artificial Life,1999, 5(2):97--116.
    [73]Bonbeau E, Dorigo M, Theraulaz G. Swarm Intelligence from Natural to Artifical Systems[M]. New York,USA:Oxford University Press,1999.
    [74]Clough B T. UAV Swarming? So What are Those Swarms, What are the Impli-cations, and How Do We Handle Them[C].Proceedings of the AUVSI Unmanned System Conference.2002.
    [75]Bordeaux J. Self-Organized Air Tasking: Examining a Non-Hierarchical Model for Joint Air Operations[R]. VA,UK: SRA International Inc,2004.
    [76]Parunak H V D, Purcell M, Connell P O. Digital Pheromones for Autonomous Coordination of Swarming UAVs[C].Proceedings of the 1st AIAA Unmanned Aerospace Vehicles, Systems, Technologies, and Operations Conference. Vir-ginia,USA:AIAA,2002.
    [77]Price IC. Evolving Self-Organized Behavior for Homogeneous and Heterogeneous UAV or UCAV Swarms[D]. Ohio, USA: Air Force Institute of Technology,2006.
    [78]英国狂风完成控制4架无人机的模拟试飞[Online]. http://www.aeroinfo.com.cn.
    [79]Spanos D P, Olfati S R. Distributed Kalman Filtering in Sensor Networks with Quantifiable Performance[C].Proceedings of the 4th International Symposium on Information Processing in Sensor Networks. Los Angeles,USA: IEEE/ACM, 2005:133--139.
    [80]Saber R O. Distributed Kalman Filter with Embedded Consensus Fil-ters[C].Proceedings of the 44th IEEE Conference on Decision and Control & Eu-ropean Control Conference. Seville,Spain:IEEE,2005:8179--8184.
    [81]Saber R O, Shamma J S. Consensus Filters for Sensor Networks and Distributed Sensor Fusion[C].Proceedings of the 44th IEEE Conference on Decision and Con-trol & European Control Conference. Seville,Spain:IEEE,2005:6698--6703.
    [82]Casbeer D W, Beard R. Distributed Information Filtering using Consensus Fil-ters[C].American Control Conference. St. Louis,USA:IEEE,2009:1882--1887.
    [83]Stankovic S S, Stankovic M, Stipanovic D M. Consensus based Overlapping De-centralized Estimation with Missing Observations and Communication Faults [J]. Automatica,2009,45:1397--1406.
    [84]Dionne D, Rabbath C A. Multi-UAV Decentralized Task Allocation with Intermit-tent Communications: the DTC algorithm[C].Proceedings of the 2007 American Control Conference. New York,USA:IEEE,2007:5406--5411.
    [85]Shima T, Rasmussen S J, Chandler P R. UAV Team Decision and Control Using Efficient Collaborative Estimation[J]. Journal of Dynamic Systems, Measurement, and Control,2007,129:609--619.
    [86]Shima T, Rasmussen S. UAV Cooperative Decision and Control:Challenges and Practical Approaches[M]. Philadelphia,USA:SIAM,2009.
    [87]Godwin M F, Spry S, Hedrick J K. Distributed Collaboration with Limited Com-munication using Mission State Estimates[C].Proceedings of the American Control Conference. Minneapolis,USA:IEEE,2006:2040--2046.
    [88]Lawton J R, Beard R W. Synchronized Multiple Spacecraft Rotations[J]. Auto-matica,2002,38(8):1359--1364.
    [89]Bauso D, Giarre L, Pesenti R. Attitude Alignment of a Team of UAVs under Decentralized Information Structure[C].Proceedings of 2003 IEEE Conference on Control Applications. Istanbul,Turkey:IEEE,2003:486--491.
    [90]Glavaski S, Chaves M, Day R,et al. Vehicle Networks: Achieving Regular For-mation[C].Proceedings of the American Control Conference. Denver,USA:IEEE, 2003:4095--4100.
    [91]Gupta V, Hassibi B, Murray R M. Stability Analysis of Stochastically Varying Formations of Dynamic Agents [C].Proceedings of the 42nd IEEE Conference on Decision and Control. Maui,USA: IEEE,2003:504--509.
    [92]Lin Z Y, Francis B, Maggiore M. Necessary and Sufficient Graphical Conditions for Formation Control of Unicycles[J]. IEEE Transactions on Automatic Control, 2005,50(1):121--127.
    [93]Saber R O. Flocking for Multi-agent Dynamic Systems:Algorithms and Theory[J]. IEEE Transactions on Automatic Control,2006,51(3):401--420.
    [94]Tanner H G, Jadbabaie A, Pappas G J. Stable Flocking of Mobile Agents, Part Ⅰ: Fixed Topology[C].Proceedings of the 42nd IEEE Conference on Decision and Control. Maui,USA: IEEE,2003:2010--2015.
    [95]Tanner H G, Jadbabaie A, Pappas G J. Stable Flocking of Mobile Agents-Part Ⅱ: Dynamic Topology [C].Proceedings of the 42nd IEEE Conference on Decision and Control. Maui,USA: IEEE,2003:2016--2021.
    [96]Tanner H G, Jadbabaie A, Pappas G J. Flocking in Fixed and Switching Net-works[J]. IEEE Transactions on Automatic Control,2007,52(5):863--868.
    [97]Lin J, Morse A S, Anderson B D O. The Multi-agent Rendezvous Problem[C].Proceedings of 42nd IEEE Conference on Decision and Control. Maui,USA: IEEE,2003:1508--1513.
    [98]Lin J, Morse A S, Anderson B D O. The Multi-agent Rendezvous Problem. Part 1:the Synchronous Case[J]. SIAM Journal on Control and Optimization,2007, 46(6):2096--2119.
    [99]Lin J, Morse A S, Anderson B D O. The Multi-agent Rendezvous Problem. Part 2:the Asynchronous Case[J]. SIAM Journal on Control and Optimization,2007, 46(6):2120--2147.
    [100]Cortes J, Martinez S, Bullo F. Robust Rendezvous for Mobile Autonomous Agents via Proximity Graphs in Arbitrary Dimensions [J]. IEEE Transactions on Automatic Control,2006,51(8):1289--1298.
    [101]Kingston D B, Ren W, Beard R W. Consensus algorithms are input-to-state stable[C].Proceedings of the 2005 American Control Conference. Portland,USA: IEEE,2005:1686--1690.
    [102]Wei R, Beard W, Timothy M. Coordination Variables and Consensus Building in Multiple Vehicle Systems[C].Proceedings of the Block Island Workshop on Coop-erative Control, Springer-Verlag Series:Lecture Notes in Control and Information Sciences. Block Isl,England: Springer-Verlag,2004:171--188.
    [103]严平.无人飞行器航迹规划与任务分配方法研究[D].武汉,中国:华中科技大学,2006.
    [104]余舟毅,陈宗基,周锐.基于遗传算法的动态资源调度问题研究[J].控制与决策,2004,19(11):1308--1311.
    [105]段海滨,丁全心,常俊杰等.基于并行蚁群优化的多无人作战飞机任务分配仿真平台[J].航空学报,2008,5(s1):192--197.
    [106]唐强,车军,杨晖.多无人机多目标任务分配方法研究[C].第一届中国导航制导与控制学术会议论文集.2007:569--571.
    [107]潘峰,陈杰,任智平等.基于计算智能方法的无人机任务指派约束优化模型研究[J].兵工学报,2009,30(12):140--147.
    [108]郭文强,高晓光,任佳等.基于图模型自主优化的多无人机多目标攻击[J].系统工程与电子技术,2010,32(3):574--578.
    [109]郑昌文,丁明跃,周成平等.多飞行器协调航迹规划方法[J].宇航学报,2003,24(2):115--120.
    [110]高晓光,符小卫,宋绍梅.多UCAV航迹规划研究[J].系统工程理论与实践,2004,24(5):140--143.
    [111]丁琳,高晓光.针对突发威胁的无人机多机协同路径规划方法[J].火力与指挥控制,2005,30(7):5--8.
    [112]柳长安,王和平,李为吉.攻击无人机的协同航路规划[J].西北工业大学学报,2003,21(6):707--710.
    [113]曾佳,申功璋,杨凌宇.无人机在线协同航迹规划时序问题[J].南京航空航天大学学报,2009,31(3):52--56.
    [114]Yan P, Ding M, Zheng C. Coordinated Route Planning via Nash Equilibrium and Evolutionary Computation[J]. Chinese Journal of Aeronautics,2006,19(1):18--23.
    [115]王正,朱兴动,张六韬.无人机三维空间近距编队控制模型研究[J].系统仿真学报,2008,20(23):6473--6476.
    [116]王正,朱兴动.无人机全局渐近稳定自动编队飞行控制研究[J].系统仿真学报,2009,21(7):2014--2017.
    [117]熊伟,陈宗基,周锐.运用混合遗传算法的多机编队重构优化方法[J].航空学报,2008,29(B05):209--214.
    [118]何真,陆宇平.无人机编队队形保持控制器的分散设计方法[J].航空学报,2008,29(B05):55--60.
    [119]胡云安,左斌,李静.退火算法及其在无人机紧密编队飞行控制中的应用[J].控制理论与应用,2008,25(5):879--882.
    [120]赵刚,黄席樾.障碍空间中的飞行器编队与集群控制研究[J].系统仿真学报,2009,21(S2):92--96.
    [121]樊琼剑.多无人机协同编队仿生飞行控制关键技术研究[D].南京,中国:南京航空航天大学,2008.
    [122]袁利平,陈宗基,周锐等.多无人机同时到达的分散化控制方法[J].航空学报,2010,31(4):797--805.
    [123]孙海波,周锐,邹丽等.通讯和测量受限条件下异构多UAV分布式协同目标跟踪方法[J].航空学报,2011,32(2):299--310.
    [124]周锐,吴雯漫,罗广文.自主多无人机的分散化协同控制[J].航空学报,2008,29(S1):26--32.
    [125]叶媛媛.多UCAV协同任务规划方法研究[D].长沙,中国:国防科学技术大学,2005.
    [126]田菁.多无人机协同侦察任务问题建模与优化技术研究[D].长沙,中国:国防科学技术大学,2007.
    [127]李远.多UAV协同任务资源分配与编队轨迹优化方法研究[D].长沙,中国:国防科学技术大学,2011.
    [128]陈岩.蚁群优化理论在无人机战术控制中的应用研究[D].长沙,中国:国防科学技术大学,2007.
    [129]郑毓蕃,束玲琳,林志赞.群体行为的一致性问题及研究[J].系统工程理论与实践,2008,28(s):27--34.
    [130]Saber R O, Murray R M. Consensus Problems in Networks of Agents with Switch-ing Topology and Time-delays[J]. IEEE Transactions on Automatic Control,2004, 49(9):1520--1533.
    [131]Lin P, Jia Y M, Du J P,et al. Average Consensus for Networks of Continuous-time Agents with Delayed Information and Jointly-connected Topolo-gies [C].Proceedings of the American Control Conference. St. Louis,USA: IEEE, 2009:3884--3889.
    [132]Lin P, Jia Y M. Average Consensus in Networks of Multi-agents with both Switch-ing Topology and Coupling Time-delay [J]. Physica A-Statistical Mechanics and its Applications,2008,387(1):303--313.
    [133]Ren W, Beard R W. Consensus of Information under Dynamically Chang-ing Interaction Topologies[C].Proceedings of the American Control Conference. Boston,USA: IEEE,2004:4939--4944.
    [134]Jadbabaie A, Lin J, Morse A S. Coordination of Groups of Mobile Autonomous Agents using Nearest Neighbor Rules[J]. IEEE Transactions on Automatic Control, 2003,48(6):988--1001.
    [135]Bertsekas D P, Tsitsiklis J N. Erratum to "Comments on'Coordination of Groups of Mobile Autonomous Agents using Nearest Neighbor Rules'" [J]. IEEE Transactions on Automatic Control,2007,52(7):1356.
    [136]Moreau L. Stability of Continuous-time Distributed Consensus Algo-rithms[C].Proceedings of the 43rd IEEE Conference on Decision and Control. Bar-adise Isl,Bahamas: IEEE,2004:3998--4003.
    [137]Moreau L. Stability of Multiagent Systems with Time-dependent Communication Links[J]. IEEE Transactions on Automatic Control,2005,50(2):169--182.
    [138]Saber R O. Ultrafast Consensus in Small-world Networks[C].Proceedings of the American Control Conference. Portland, USA: IEEE,2005:2371--2378.
    [139]Bliman P A, Ferrari T G. Average Consensus Problems in Networks of Agents with Delayed Communications[J]. Automatica,2008,44(8):1985--1995.
    [140]Tian Y P, Liu C L. Robust Consensus of Multi-agent Systems with Diverse In-put Delays and Asymmetric Interconnection Perturbations [J]. Automatica,2009, 45(5):1347--1353.
    [141]Wang W, Slotine J J E. Contraction Analysis of Time-delayed Communications and Group Cooperation[J]. IEEE Transactions on Automatic Control,2006,51(4):712--717.
    [142]Sun Y G, Wang L, Xie G M. Average Consensus in Networks of Dynamic Agents with Switching Topologies and Multiple Time-varying Delays[J]. Systems & Con-trol Letters,2008,57(2):175--183.
    [143]Lin P, Jia Y M, Du J P,et al. Distributed Control of Multi-agent Systems with Second-order Agent Dynamics and Delay-dependent Communications[J]. Asian Journal of Control,2008,10(2):254--259.
    [144]Hu J P, Hong Y G. Leader-following Coordination of Multi-agent Systems with Coupling Time Delays[J]. Physica A: Statistical Mechanics and its Applications, 2007,374(2):853--863.
    [145]Yang W, Bertozzi A L, Wang X F. Stability of a Second Order Consensus Algorithm with Time Delay [C].Proceedings of the 47th IEEE Conference on Decision and Control. Cancun, Mexico:IEEE,2008:2926--2931.
    [146]Ren W, Beard R W. Agreement with Non-uniform Information De-lays [C].Proceedings of American Control Conference. Minneapolis,USA: IEEE, 2006:756--761.
    [147]Kawamura S, Svinin M. In Advances in Robot Control: from Everyday Physics to Human-like Movements[M]. New York:Springer-Verlag,2006.
    [148]Xiao F, Wang L. Consensus Protocols for Discrete-time Multi-agent Systems with Time-varying Delays[J]. Automatica,2008,44:2577--2582.
    [149]Lin P, Jia Y M. Consensus of a Class of Second-order Multi-agent Systems with Time-delays and Jointly-connected Topologies [J]. IEEE Transactions on Auto-matic Control,2010,55:778--784.
    [150]Muenz U, Papachristodoulou A, Allgower F. Nonlinear Multi-agent System Con-sensus with Time-varying Delays[C].Proceeding of the 17th World congress In- ternational Federation of Automatic Control. Seoul,Korea: Elsevier,2008:1522--1527.
    [151]Ren W, Beard R W, Kingston D B. Multi-agent kalman consensus with relative uncertainty [C].Proceedings of the American Control Conference. Portland, USA: IEEE,2005:1865--1870.
    [152]Kar S, Moura J M F. Distributed Consensus Algorithms in Sensor Networks With Imperfect Communication:Link Failures and Channel Noise[J]. IEEE Transactions on Signal Processing,2009,57(1):355--369.
    [153]Sun Y, Ruan J. Consensus Problems of Multi-agent Systems with Noise Perturba-tion[J]. Chinese Physics B,2008,17(11):4137--4141.
    [154]Wang L, Liu Z. Robust Consensus of Multi-agent Systems with Noise[J]. Sci China Ser F-Inf Sci,2009,52(5):824--834.
    [155]Lin P, Jia Y M, Li L. Distributed Robust H∞ Consensus Control in Directed Net-works of Agents with Time-Delay [J]. Systems & control letters,2008,57(8):643--653.
    [156]Lin P, Jia Y M. Robust H∞ Consensus Analysis of a Class of Second-order Multi-agent Systems with Uncertainty [J]. IET Control Theory Appl,2010,4(3):487--498.
    [157]Hu J. On Robust Consensus of Multi-agent Systems with Communication De-lays[J]. Kybernetika,2009,45(5):768--784.
    [158]Fang L, Antsaklis P J, Tzimas A. Asynchronous Consensus Protocols: Preliminary Results, Simulations and Open Questions[C].Proceedings of the 44th IEEE Con-ference on Decision and Control & European Control Conference. Seville,Spain: IEEE,2005:2194--2199.
    [159]Fang L, Antsaklis P J. Information Consensus of Asynchronous Discrete-time Multi-agent Systems[C].Proceedings of the American Control Conference. Port-land,USA: IEEE,2005:1883--1888.
    [160]Fang L, Antsaklis P J. Asynchronous Consensus Protocols Using Nonlinear Paracontractions Theory [J]. IEEE Transactions on Automatic Control,2008, 53(10):2351--2355.
    [161]Mehyar M, Spanos D, Pongsajapan J,et al. Distributed Averaging on Asyn-chronous Communication Networks[C].Proceedings of the 44th IEEE Conference on Decision and Control & European Control Conference. Seville,Spain: IEEE, 2005:7446--7451.
    [162]Mehyar M, Spanos D, Pongsajapan J,et al. Asynchronous Distributed Averaging on Communication Networks[J]. IEEE-ACM Transactions on Networking,2007, 15(3):512--520.
    [163]Cao M, Morse A S, Anderson B D O. Reaching a Consensus in a Dynamically Changing Environment: Convergence Rates, Measurement Delays, and Asyn-chronous Events[J]. SIAM Journal on Control and Optimization,2008,47(2):601--623.
    [164]俞辉.多智能体机器人协调控制研究及稳定性分析[D].武汉,中国:华中科技大学,2007.
    [165]何健.基于多智能体的群集运动控制方法研究[D].南京,中国:南京理工大学,2009.
    [166]杨洪勇,徐群叁.具有单向时延的多智能体系统的一致性分析[J].复杂系统与复杂性科学,2008,5(3):62--67.
    [167]肖峰.多智能体网络系统的一致性[D].北京,中国:北京大学,2008.
    [168]程龙.具有复杂动力学的多智能体系统一致性控制及其应用[D].北京,中国:中科院自动化研究所,2009.
    [169]杨文.多智能体系统一致性问题研究[D].上海,中国:上海交通大学,2009.
    [170]陈飞.网络化系统建模与一致性分析若干问题研究[D].天津,中国:南开大学,2009.
    [171]谭拂晓.非平衡拓扑结构的多智能体网络系统一致性协议[J].控制理论与应用,2009,26(10):1087--1092.
    [172]彭科.带领导者的多智能体系统中的一致性问题研究[D].上海,中国:上海交通大学,2009.
    [173]陈彩莲,刘会雪,李华等.多智能体有向固定网络一致性H∞滤波器设计[J].信息与控制,2009,38(4):385-392.
    [174]Wang L, Zhang Q, Zhu H,et al. Adaptive consensus fusion estimation for MSN with communication delays and switching network topologies[C].Proceedings of the 47th IEEE Conference on Decision and Control. Atlanta,USA: IEEE,2010:2087--2092.
    [175]Jiang F C, Wang L, Xie G M. Consensus of High-order Dynamic Multi-agent Systems with Switching Topology and Time-varying Delays[J]. Journal of Control Theory Appl,2010,8(1):52--60.
    [176]He Y, Wu M, She J H,et al. Parameter-dependent Lyapunov Functional for Sta-bility of Time-delay Systems with Polytopic-type Uncertainties [J]. IEEE Trans on Automatic Control,2004,49(5):828--832.
    [177]贾英民.鲁棒H∞控制[M].北京:科学出版社,2007.
    [178]Wu M, He Y, She J H,et al. Delay-dependent Criteria for Robust Stability of Time-varying Delay Systems[J]. Automatica,2004,40(8):1435--1439.
    [179]He Y, Wu M, She J H,et al. Delay-dependent Robust Stability Criteria for Uncertain Neutral Systems with Mixed Delays[J]. Systems & Control Letters,2004,51(1):57--65.
    [180]Gu K. A Further Refinement of Discretized Lyapunov Functional Method for the Stability of Time-delay Systems[J]. International Journal of Control,2001, 74(10):967--976.
    [181]Petersen I R, Hollot C V. A Riccati Equation Approach to the Stabilization of Uncertain Linear System[J]. Automatica,1986,22(4):397--411.
    [182]Ghaoui E L, Oustry F, AitRami M. A Cone Complementarity Linearization Algo-rithms for Static Output Feedback and Related Problems[J]. IEEE Trans on Auto-matic Control,1997,42(8):1171--1176.
    [183]Nelson D R, McLain T W, Christiansen R S,et al. Initial experiments in cooperative control of unmanned air vehicles[C].Collection of Technical Papers-AIAA 3rd "Unmanned-Unlimited" Technical Conference, Workshop, and Exhibit. Chicago, USA: IEEE,2004:666--674.
    [184]McLain T W, Beard R W. Coordination Variables, Coordination Functions, and Cooperative-timing Missions [J]. Journal of Guidance, Control, and Dynamics, 2005,28(1):150--161.
    [185]Nelson D R, McLain T W, Beard R W. Experiments in cooperative timing for miniature air vehicles[J]. Journal of Aerospace Computing, Information and Com-munication,2007,4(8):956--967.
    [186]Zhao S Y, Zhou R. Cooperative guidance for multimissile salvo attack[J]. Chinese Journal of Aeronautics,2008,21(6):533--539.
    [187]Ghabcheloo, Reza, Kaminer,et al. A general framework for multiple vehicle time-coordinated path following control[C].Proceedings of the American Control Con- ference. St. Louis,USA: IEEE,2009:3071--3076.
    [188]Beard R W, Mclain T W, Nelson D B,et al. Decentralized Cooperative Aerial Surveillance Using Fixed-Wing Miniature UAVs[J]. Proceedings of the IEEE, 2006,94(7):1306--1324.
    [189]陈岩,苏菲,沈林成.概率地图UAV航线规划的改进型蚁群算法[J].系统仿真学报,2009,21(6):1658--1666.
    [190]Jacob E. LQ Dynamic Optimization and Differential Games[M]. USA:John Wiley & Sons,2005.
    [191]Tang G Y, Luo Z W. Suboptimal Control of Linear Systems with State Time Delay[C].IEEE International Conference on Systems, Man, and Cybernetics. Tokyo,Jpn: IEEE,1999:104--109.
    [192]李洪波,孙增圻,孙富春.网络控制系统的发展现状及展望[J].控制理论与应用,2010,27(2):238--243.
    [193]Deok J L. Nonlinear Estimation and Multiple Sensor Fusion Using Unscented In-formation Filtering[J]. IEEE Signal Processing Letters,2008,15:861--864.