高超声速导弹编队动力学与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了一种新式的飞航导弹制导方式:飞航导弹的编队飞行。由此,阐述了近地空间导弹群的概念。论文选取高超声速飞航导弹为被控对象,以多弹编队为目标,进行了导弹群平飞段的弹道和编队飞行的运动学建模。分别针对数学模型实现了制导律的设计。本文的主要研究的内容如下:
     首先,定义了分析中用到的坐标系。根据运动学分析与推导,得到主弹在地面发射坐标系下的运动模型。导弹采用倾斜转弯(BTT Bank-to-Turn)控制技术。建模过程中除考虑了重力、气动力和推力外,还加入了地球自转的影响。对于长时和远程飞行的飞航导弹,地球自转对弹道的影响在精确建模过程中是不容忽视的。
     然后,建立了平飞段的导弹编队动力学模型。考虑到实际飞行过程中各种不确定因素的影响,使用传统制导方法在严格保持相对位置关系时,必然会造成系统振荡。针对这一情况,本文提出了一种双环的制导策略。
     在此基础上,分别对弹道和编队设计的制导律进行了仿真与验证。仿真结果表明,弹道与编队的制导效果较为理想,同时也说明了导弹编队飞行的可行性。
     最后,对编队飞行这种新技术的使用价值和前景进行了分析与总结,并设想了其可能的发展方向。
In this article, a new way of cruise missile guidance: the formation flight of the cruise missiles is investigated. The hypersonic cruise missiles are selected as the control object to achieve multi-missile formation flight, the dynamic models of the ballistic trajectory and the formation flight during level flight are bulit. Afterwards the guidance and control method is designed according to the model. What has mainly investigated in this paper are present as follows:
     First, the coordinates that used in the analysis are defined. According to the analysis and derivation, the dynamic model of the Leader Missile in Launch coordinate is built. The missiles use Bank-to-Turn maneuver method. The dynamic model includes not only the gravity, the aerodynamic forces and the thrust, but also the influence of the earth rotation. The earth rotation effect cannot be neglected in the accurately modeling process of the cruise missiles with long time and distance flight.
     Then, the dynamic model of the formation flight was built. Considering that the influence of the various kinds of uncertainty factors during practical flight, the traditional control methods will cause inevitably the control system oscillation when keep accurate relative position. According to this situation, the article presented a control strategy called Double Boundary Loop strategy.
     Based on these, the numerical simulation of the guidance and control of the ballistic trajectory and the formation flight during level flight are carried out. The simulation results proved that the guidance metheds have a satisfactory effectiveness, meanwhile, it also showed the feasibility of the multi-missile formation flight.
     At last, the article summarized and analyzed the value and prospects of the new technology of the multi-missile formation flight, and prospected its possibly development direction as the major task of the future work.
引文
1姜玉宪等.反舰导弹规避策略.北航研究报告.存北航档案室: 1997, 5:3~5
    2姜玉宪.具有规避能力的末制导方法.国航空控制与应用八届学术年会论文集.北京, 1998: 75~79
    3姜玉宪.弹道导弹末制导段的规避控制.全国空间及运动题控制技术八届学术会议论文集.北京, 1998: 88~93
    4唐雪梅.美国弹道导弹防御新策略.现代防御技术. 1999, 27(5): 17~25
    5迪安.A.维尔克宁.弹道导弹防御及其对抗手段.先进防御技术通讯. 1999, 5: 29~31
    6丛敏.俄罗斯掀起SS-N-19导弹的神秘面纱.飞航导弹. 2001, (12): 1~2
    7刘桐林.库尔斯克核潜艇与花岗岩反舰导弹.飞航导弹. 2002, (3): 34~37
    8林涛,刘水才,关成启等.飞航导弹协同作战使用方法探讨.战术导弹技术. 2005, (2): 8~12
    9胡正东,林涛,张士峰,蔡洪.导弹集群协同作战系统概念研究.飞航导弹. 2008, (10): 13~17
    10张克,刘永才,关世义.体系作战条件下飞航导弹突防与协同攻击问题研究.战术导弹技术. 2005, (2): 7~10
    11颜仲新,杨祖快,刘鼎臣.反舰导弹搜捕方式的变革与发展.飞航导弹, 2002, (9): 48~51
    12 C. T. Leondes, W. R. Osgood. Optimization of Three-Dimensional Reentry Trajectories. IEEE Transactions on Aerospace and Electronic Systems. March 1969, 5(2): 345~346
    13 J. A. Payne. Computational Methods in Optimal Control Problems. Ph.D. dissertation. University of California, Los Angeles, 1965: 56~66
    14 N. X. Vinh, A. Buseman, R. D. Culp. Optimum Three-Dimensional Atmospheric Entry. Acta Astronautica. 1975, 2(7): 593~611
    15 P. Lu. Entry Guidance and Trajectory Control for Reusable Launch Vehicle. Journal of Guidance, Control, and Dynamics. 1997, 20(1):143~149
    16 C. Zimmerman, G. Dukeman, J. Hanson. Automated Method to ComputeOrbital Reentry Trajectories with Heating Constraints. Journal of Guidance, Control, and Dynamics. 2003, 26(4):523~529
    17 A. V. Rao, K. A. Clarke. Performance Optimization of a Maneuvering Re-entry Vehicle Using a Legendre Pseudospectral Method. AIAA. 2002(4885): 1~13
    18赵汉元.再入机动弹道的设计.国防科技大学学报. 1980, 4: 73~105
    19赵汉元.再入飞行器机动弹道的设计.宇航学报. 1985, 1: 1~10
    20赵汉元,谢晓全.载人飞船再入制导方法研究.宇航学报. 1992, 1: 8~14
    21李小龙,陈士橹.航天飞机的最优再入轨迹及制导.宇航学报.1993,1:7~13
    22王志刚,南英,吕学富.载人飞船再入大气层的最优轨迹与制导研究.导弹与航天运载技术. 1996, 1(219): 1~9
    23 J. J. Deyst. Optimal Control of a Reentry Vehicle in the Presence of Measurement Uncertainties. IEEE Transactions on Automatic Control. April 1968, 13(2): 178~181
    24 A. J. Roenneke, K. H. Well. Reentry Control of a Low-Lift Maneuverable Spacecraft. AIAA. 1992, 4455(8): 641-652
    25 A. J. Roenneke, P. J. Cornwell. Trajectory Control for a Low-Lift Re-Entry Vehicle. Journal of Guidance, Control, and Dynamics. 1993, 16(5): 927~933
    26 A. Cavallo, F. Ferrara. Atmospheric Re-Entry Control for a Low Lift/Drag Vehicle. Journal of Guidance, Control, and Dynamics. 1996, 19(1): 47~53
    27 A. Cavallo, G. D. Maria, F. Ferrara. Attitude Control for Low Lift/Drag Re-Entry Vehicle. Journal of Guidance, Control, and Dynamics. 1996, 19(4): 816~822
    28 J. P. Gao, Z. J. Chen. The Attitude Stabilization and Trajectory Tracking of Reentry Vehicle via Variable-Structure Based Control Method. AIAA. 1997, 8(3534):785~321
    29 S. Juliana, Q. P. Chu, et al. Flight Control of Atmospheric Re-Entry Vehicle with Non-Linear Dynamic Inversion. AIAA. 2004, 5330 (16): 568~574
    30 M. A. Virgilio, R.W. Gerald, E.S. Earl. Optimal Guidance for Aerodynamically Controlled Re-entry Vehicles. AIAA Journal. 1974, 12(10): 1331~1337
    31 R. T. Robert, D. S. Rubenstein. Trajectory Optimization for a Fixed-Trim Reentry Vehicle using Direct Collocation and Nonlinear Programming.AIAA Guidance, Navigation, and Control Conference and Exhibit, Denver, CO. 2000,14(8): 14~17
    32 Study on Reentry Guidance and Control Study. 1988.4. ESA-CP(P), 2652(1): 1~4
    33钱杏芳,林瑞雄,赵亚男.导弹飞行力学.北京理工大学出版社. 2000:29
    34贾沛然,陈克俊,何力.远程火箭弹道学.国防科技大学出版社. 1993: 36-42
    35赵汉元.飞行器再入动力学和制导.国防科技大学出版社, 1997
    36章仁为.卫星轨道姿态动力学与控制.北京航空航天大学出版社. 1998
    37金以慧,方崇智.过程控制.清华大学出版社, 1993
    38徐建明. PID控制器及其设计方法研究.浙江工业大学硕士学位论文. 2002: 9~11
    39陶永华. PID控制原理和自整定策略.工业仪表与自动化装置.1997,(4):60~64
    40刘暾,赵均.空间飞行器动力学.哈尔滨工业大学出版社. 2003: 75
    41贾沛然,陈克俊,何力.远程火箭弹道学.国防科技大学出版社, 1993:143
    42熊伟强. TBM拦截器的动力学建模与微分几何制导律设计.哈尔滨工业大学工学硕士学位论文. 2004
    43李瑞康.再入体变质心动力学建模与仿真问题研究.哈尔滨工业大学工学硕士学位论文. 2006
    44高长生.变质心再入飞行器动力学、制导与控制问题研究.哈尔滨工业大学工学博士学位论文. 2007
    45李超勇,荆武兴,齐治国,王辉.空间微分几何制导律应用研究.宇航学报. 2007, 28(5): 1235~1240
    46郑立伟.预测制导理论在飞行器再入与大气层外拦截中的应用.哈尔滨工业大学工学博士学位论文. 2007: 7~8
    47赵红.高超声速飞行器跳跃飞行轨道优化研究.哈尔滨工业大学工学硕士学位论文. 2008
    48 Jinjun Shan,Hong-Tao Liu. Close-Fromation Flght Control With Motion Synchronization. Journal of Gaidance Control and Dayamics. 2005, 28(6): 1316~1320
    49 Pachter.M, D’Azzo.j.j, and Proud.A.W.Tight Formation Flight Control. Journal of Gaidance, Control, and Dayamics.2001, 24(2): 246~254
    50 Paolo.Binetti. Formation Flight Optimization Using Extremum Seeking Feed Back. Journal of Gaidance Control and Dayamics. 2003, 26(1): 132~142
    51 Pachter.M.D, Azzo.j.j, and Proud.A.W. Autimatic Formation Flight Control. AIAA Guidance Navigation and Control Conference. 1994, 17(6): 1380~1383
    52 S.Venkataramanan, A.Dogan. Nonlinear Control For Reconfiguration of UAV Formation. AIAA Guidance Navigation and Control Conference and Exhibit. 2003, 10(2): 179~194
    53 F.Giulietti, L.Pollini, M.Innocenti. Autonomous Formation Flight. IEEE Control Systems Magazine. 2000, 20(6): 34~44
    54 S.Felter, N.E.Wu. A Relative Navigation System For Formation Flight. IEEE Transactions on Aerospace and Electronic Systems. 1997, 33(3): 958~967
    55兰文博.无人机紧密编队飞行技术初步研究.哈尔滨工业大学本科学位论文. 2007
    56 K. Becker. Closed-Form Solution of Pure Proportional Navigation. IEEE Trans. Aerospace and Electronic Systems. 1999, 26(3): 526~533
    57 M. Guelman. The Closed-Form Solution of True Proportional Navigation. IEEE Trans. Aerospace and Electronic Systems. 1976, 12(4): 472~482
    58 C.D. Yang and F.B. Yeh. The Closed-Form Solution of Generalized Proportional Navigation. J. of Guidance, Control and Dynamics. 1987, 10(2): 216~218
    59 F.P. Adler. Missile Guidance by Three-Dimensional Proportional Navigation. J. of Applied Physics. 1986, 2(7): 500~507
    60周慧钟,李忠应,王瑾玫.有翼导弹飞行动力学.北京航空学院内部发行教材,航空专业教材编审组. 1983: 7~41
    61胡寿松.自动控制原理.第四版.科学出版社. 2001: 222~224
    62沈闽锋,李中良,陈盼.导弹航迹规划对编队作战的影响.飞航导弹. 2008, (3): 17~19
    63马向玲,高波,李国林.导弹集群协同作战任务规划系统.飞行力学. 2007, (1): 2~5
    64肖增博,雷虎民,夏训辉.多导弹协同作战关键技术研究与展望.飞航导弹. 2008, (6): 26~27