两种泥鳅SoxE亚族和DMRT1基因的结构与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用RACE方法克隆得到了两种泥鳅SoxE亚族全部成员基因和大鳞副泥鳅DMRT1基因,并利用半定量RT-PCR和荧光定量RT-PCR对各个基因的表达模式进行了研究,为了更进一步确定目的基因的表达部位,我们利用RNA原位杂交法分别对两种泥鳅的性腺和不同发育时期的胚胎进行了杂交,主要研究结果包括下面三个方面:
     1.泥鳅SoxE亚族基因的克隆和表达模式分析
     本研究根据其它物种Sox8和Sox10基因HMG保守区序列,设计两对简并引物,并在此基础上采用RACE方法从泥鳅脑中分离得到了SoxE亚族各成员cDNA全序列:MaSox8a基因cDNA全长为2555bp,包括53bp5'非翻译区,1212bp3'非翻译区(含polyA)和编码429个氨基酸的开放阅读框(基因注册号为GU166139);MaSox8b基因cDNA全长为1725bp,包括85bp5'非翻译区,395bp3'非翻译区(含polyA)和编码414个氨基酸的开放阅读框(基因注册号为GU166140);MaSox9a基因cDNA全长为3192bp,包括326bp5'非翻译区,1408bp3'非翻译区(含polyA)和编码485个氨基酸的开放阅读框;MaSox9b基因的cDNA全长为1782bp,包括217bp5'非翻译区,179bp3'非翻译区(含polyA)和编码462个氨基酸的开放阅读框;MaSox10基因的cDNA全长为2096bp,包括311bp5'非翻译区,312bp3'非翻译区(含polyA)和编码490个氨基酸的开放阅读框。
     半定量RT-PCR和荧光定量RT-PCR结果显示:在泥鳅胚胎发育的各个时期,MaSox8a和MaSox8b的表达趋势相反但是都从原肠胚开始一直持续到卵黄吸尽期,MaSox9a和MaSox9b的表达量都逐渐升高,在孵出期期表达量最高,MaSox10的表达量逐渐增加,孵出期达到最高;在泥鳅成体的不同组织中,SoxE亚族各个基因都广泛存在,MaSox8a和MaSox8b在脑中的表达量较高,MaSox9a和MaSox9b在性腺中表达量最高,Sox10在心脏中表达量最高。
     原位杂交试验结果显示:SoxE亚族的五个成员都在泥鳅未成熟的生殖细胞(卵巢的卵原细胞、初级卵母细胞,精巢中的精原细胞和精母细胞)中表达,因此推测SoxE亚族的五个成员可能调控泥鳅性腺的发育和分化;整体胚胎杂交发现,SoxE亚族的五个成员均在体节形成期的体节中大量表达,之后一直到尾芽期的胚胎脊柱中都有很强的阳性杂交信号,孵出期以后SoxE亚族的五个成员的表达主要集中在泥鳅的脊柱、体节和头部。
     2.大鳞副泥鳅SoxE亚族基因的克隆和表达模式分析
     本研究根据其它物种Sox8和Sox10基因HMG保守区序列,设计两对简并引物,并在此基础上采用RACE方法从泥鳅脑中分离得到了SoxE亚族各成员cDNA全序列:PdSox8a基因cDNA全长为2467bp,包括53bp5'非翻译区,1127bp3'非翻译区(含polyA)和编码428个氨基酸的开放阅读框;PdSox8b基因cDNA全长为2166bp,包括201bp5'非翻译区,720bp3'非翻译区(含polyA)和编码414个氨基酸的开放阅读框;PdSox9a基因cDNA全长为3232bp,包括329bp5'非翻译区,1439bp3'非翻译区(含polyA)和编码487个氨基酸的开放阅读框;PdSox9b基因的cDNA全长为1946bp,包括219bp5'非翻译区,341bp3'非翻译区(含polyA)和编码461个氨基酸的开放阅读框;PdSox10基因的cDNA全长为2053bp,包括312bp5'非翻译区,262bp3'非翻译区(含polyA)和编码492个氨基酸的开放阅读框。
     半定量RT-PCR和荧光定量RT-PCR结果显示:在大鳞副泥鳅胚胎发育的各个时期,PdSox8a、PdSox8b、PdSox9b和PdSox10的表达量都逐渐下降,PdSox9a的表达量则相反呈现上升趋势;在大鳞副泥鳅成体的不同组织中,SoxE亚族各个基因中广泛存在,并且都在性腺中大量表达,除此之外PdSox8a在脑中的表达量也很高,PdSox8b、PdSox9a和PdSox9b在肝中的表达量均较高,PdSox10在心脏中表达量高。
     SoxE亚族的五个成员在大鳞副泥鳅性腺和胚胎中的原位杂交试验结果与泥鳅的一致。
     3.大鳞副泥鳅DMRT1基因的选择性剪接和时空表达模式分析
     本研究根据其它物种DMRT1基因DM保守区序列,设计一对简并引物,并在此基础上采用RACE方法获得了大鳞副泥鳅DMRT1基因的cDNA全长。结果表明:在大鳞副泥鳅中DMRT1基因存在选择性剪接。大鳞副泥鳅中得到五条DMRT1基因,分别命名为PdDMRT1al(1903bp)、PdDMRT1a2(1714bp), PdDMRT1a3(S81bp)、PdDMRT1b(724bp)和PdDMRT1c(946bp),它们也都含有DM基序和polyA尾。其中PdDMRT1a1-3具有相同的开放阅读框,包含5个完整的外显子,编码267个氨基酸,其差异主要在于3'非翻译区长度和序列不同;PdDMRT1b缺失了第四个外显子3'末端的9bp和第五个外显子,编码220个氨基酸;PdDMRT1c则同时缺失了第四和第五个外显子,并利用一段长63bp的额外序列在其编码框末端充当第五个外显子,编码196个氨基酸。
     半定量RT-PCR/荧光定量RT-PCR和原位杂交技术用于检测大鳞副泥鳅DMRTl基因在成体不同组织和胚胎发育不同时期的表达谱。结果表明:大鳞副泥鳅DMRT1基因只在精巢中强烈表达,而在卵巢中不表达或只有极微弱表达,这与其它物种中的研究结果相一致;在胚胎发育的各个时期大鳞副泥鳅DMRT1基因均有表达,但表达强度又各不相同,呈现先上升后下降的表达趋势。由此,推断大鳞副泥鳅的DMRT1与雄性性腺分化和发育具有明显的相关性。这些结果为阐述DMRT1在脊椎动物体内对性别决定和性别分化的作用奠定了基础。
     综上所述本研究结果证明:1.两种泥鳅SoxE亚族至少由五个成员组成:Sox8a、Sox8b、Sox9a、Sox9b和Sox10;2.本实验首次发现在两种泥鳅中Sox8基因都具有两个亚型Sox8a和Sox8b,目前仅发现河豚Sox8基因具有以上两种亚型,其它物种中未见到相关报道;3.两种泥鳅中Sox9基因也都具有两个拷贝Sox9a和Sox9b,而Sox10基因只存在一个拷贝,这与部分已报道的物种一致;4.我们发现大鳞副泥鳅的DMRT1基因存在选择性剪接;5.本实验首次利用多种检测方法对各个目的基因的表达模式进行了系统研究。SoxE亚族各成员之间存在功能冗余,它们对两种泥鳅神经系统和生殖系统的分化具有重要作用;DMRT1基因可能是一个与精巢的形成和精巢的功能维持有关的性别分化基因。
We obtained the full length cDNA of SoxE from two loaches and DMRT1 of Paramisgurnus dabryanus by RACE. Semi-quantitative RT-PCR and fluorescent real-time RT-PCR were conducted to determine the expression profiles. We also examined the expression patterns of the corresponding genes in gonad and early embryonic gonads of two loaches by in situ hybridization. The major research results of this study are as follow:
     1. Isolation and Expression of SoxE Genes in Misgurnus anguillicaudatus
     In this article, to amplify genomic DNA of Misgurnus anguillicaudatus, degenerate primers were designed according to the conservative sequences in HMG-box of Sox% and Sox10 genes. Based on these results, the full-length cDNA of above five fragments were isolated from the brain of Misgurnus anguillicaudatus by using 5'-and 3'-rapid amplification of cDNA ends (RACE). The full-length cDNA of MaSox8a was 2555bp (GenBank accession no. GU166139), containing the 53bp 5'-untranslated region, 1212bp 3'-untranslated region [including poly(A)] and encoding a putative protein of 429 amino acids with a characteristic HMG-box DNA-binding domain of 79 amino acids (aa:86-164);The full-length cDNA of MaSox8b was 1725 bp (GenBank acc. no. GU166140), containing the 85bp 5'-untranslated region,395bp 3'-untranslated region [including poly(A)] and encoding a putative protein of 414 amino acids with a characteristic HMG-box DNA-binding domain of 79 amino acids (aa:89-167); The full-length cDNA of MaSox9a was 3192bp, containing the 326bp 5'-untranslated region,1408bp 3'-untranslated region [including poly(A)] and encoding a putative protein of 485 amino acids with a characteristic HMG-box DNA-binding domain of 79 amino acids (aa:105-183);The full-length cDNA of MaSox9b was 1782bp, containing the 217bp 5'-untranslated region,179bp 3'-untranslated region [including poly(A)] and encoding a putative protein of 462 amino acids with a characteristic HMG-box DNA-binding domain of 79 amino acids (aa:97-175); The full-length cDNA of MaSox10 was 2096bp, containing the 311bp 5'-untranslated region,312bp 3'-untranslated region [including poly(A)] and encoding a putative protein of 490 amino acids with a characteristic HMG-box DNA-binding domain of 79 amino acids (aa:105-183).
     Semi-quantitative RT-PCR and fluorescent real-time RT-PCR reactions were performed to analyze expression profiles using the glyceraldehyde-3-phosphate dehydrogenase(GAPDH) gene as the reference. During early embryonic development, the expression of MaSox8a and MaSox8b were opposite, and both begain from the gastrulae to the yolk-sac absorption phase. MaSox9a、MaSox9b and MaSox10 all showed a notable up-regulation and highest expression in hatched stage; In adult tissues, the expression level of SoxE varied among tissues, MaSox8a and MaSox8b with stronger expression detected in brain, MaSox9a and MaSox9b with stronger expression detected in testis, MaSox10 with stronger expression detected in heart.
     In site hybridization results demonstrated that SoxE genes express in premature germ cells (ogania, primary oocytes in ovaries, spermatogonias and spermatocytes in testes) of gonads during gonadal development, suggesting roles of SoxE in Misgurnus anguillicaudatu gonads development and differentiation; The zygotic expression of SoxE all occure in the middle of segmentation, and persists throughout tail-bud formed, strong positive hybrid signals could be detected in the spine. Till hatched larva, the major tissues expressing SoxE include notochord, somites and eyes.
     2. Isolation and Expression of SoxE Genes in Paramisgurnus dabryanus
     In this article, to amplify genomic DNA of Paramisgurnus dabryanus, degenerate primers were designed according to the conservative sequences in HMG-box of Sox8 and Sox10 genes. Based on these results, the full-length cDNA of SoxE were isolated from the brain of Paramisgurnus dabryanus by RACE. The full-length cDNA of PdSox8a was 2467bp, containing the 53bp 5'-untranslated region,1127bp 3'-untranslated region [including poly(A)] and encoding a putative protein of 428 amino acids with a characteristic HMG-box DNA-binding domain of 79 amino acids (aa:86-164); The full-length cDNA of PdSox8b was 2166bp, containing the 201bp 5'-untranslated region,720bp 3'-untranslated region [including poly(A)] and encoding a putative protein of 414 amino acids with a characteristic HMG-box DNA-binding domain of 79 amino acids (aa:89-167); The full-length cDNA of PdSox9a was 3232bp, containing the 329bp 5'-untranslated region,1439bp 3'-untranslated region [including poly(A)] and encoding a putative protein of 487 amino acids with a characteristic HMG-box DNA-binding domain of 79 amino acids (aa: 105-183); The full-length cDNA of PdSox9b was 1946bp, containing the 219bp 5'-untranslated region, 341bp 3'-untranslated region [including poly(A)] and encoding a putative protein of 461 amino acids with a characteristic HMG-box DNA-binding domain of 79 amino acids (aa:97-175); The full-length cDNA of PdSox10 was 2053bp, containing the 312bp 5'-untranslated region,262bp 3'-untranslated region [including poly(A)] and encoding a putative protein of 492 amino acids with a characteristic HMG-box DNA-binding domain of 79 amino acids (aa:106-184).
     Semi-quantitative RT-PCR and fluorescent real-time RT-PCR reactions were performed to analyze expression profiles using the glyceraldehyde-3-phosphate dehydrogenase(GAPDH) gene as the reference. During early embryonic development, the expression of PdSox8a、PdSox8b、PdSox9b and PdSox10 showed a downward trend from the gastrulae to the yolk-sac absorption phase, PdSox9a was opposite, with a notable up-regulation; In adult tissues, the expression level of SoxE varied among tissues, and all with strong expression detected in gonad. Moreover, PdSox8a with stronger expression detected in brain, PdSox8b、PdSox9a and PdSox9b with stronger expression detected in liver, PdSox10 with stronger expression detected in heart.
     The results of in site hybridization in Paramisgurnus dabryanus were same as Misgurnus anguillicaudatus.
     3. mRNA Spatio-temporal expression analysis and multiple alternative splicing of DMRT1 in Paramisgurnus dabryanus
     To isolate DMRT1 gene, we amplified the DM-domain by PCR, using degenerate primers designed on the basis of the conserved region amino acid sequence of the DMRT1 genes registered in Genbank. Based on these results, the full-length cDNA of DMRT1 were cloned from Paramisgurnus dabryanus using 5'-and 3'-RACE. Five isoforms generated by alternative splicing were cloned from Paramisgurnus dabryanus, which all have the DM domain and 3'polyA tail yet.They were named PdDMRT1a1 (1903bp, encode 267aa), PdDMRT1a2(1714bp, encode 267aa), PdDMRT1a3(887bp, encode 267aa), PdDMRT1b(724bp, encode 220aa) and PdDMRT1c(946bp, encode 196aa) respectively. PdDMRT1a1,2 and 3 all have five exons, by the difference between them was only in 3'UTR. PdDMRT1b lacks 9bp of exon4 in its 3'end and the whole exon5. PdDMRT1c lacks both exon4 and exon5 but uses a 63bp region of intron sequence as its exon 4 at the 3'ends.
     Several technologies, such as Semi-quantitive PCR, fluorescent quantitative RT-PCR and in situ hybridization, were used to analyse the expression pattern of DMRT1. The result revealed that the expression of PdDMRT1 was testis-specific in adults, with no or very week expression in ovary. This pattern is in line with that of other species's DMRT1. Contrary to expectations, all the DMRT1 transcripts were detectable in all embryos tested. However, take the result by and large, each isoform's expression trend was risie at first and then decline. Taken together, these results provided the basic data for elucidating DMRT1 role(s) for sex-determination and gonadal differentiation in vertebrates. The differential expression of these transcripts provides new insight into roles of alternative splicing of DMRT1 in governing sex differentiation and development of Paramisgurnus dabryanus. These results provided the basic data for elucidating DMRT1 role(s) for sex-determination and gonadal differentiation in vertebrates.
     In conclusion, my study established that 1) Subgroup E, at least including five members in two loaches; 2) In this study, two distinct Sox8 genes were identified in two loaches, so far only one case reported that two duplicates of Sox8 were identified in Takifugu rubripes; 3)We also obtained two distinct Sox9 genes and one copy of Sox10 from two loaches; 4) We identified that alternative splicing have been occured in Paramisgurnus dabryanus; 5) This experiment first used a variety of methods to detect the expression patterns of each objective gene. Results indicated that SoxE have a possible functional redundancy in some domains and they are essential for the differentiation of nervous and reproductive system. DMRT1gene was relevant to the formation and function maintainance of testis.
引文
[1]Amores A, Force A, Yan Y L, et al. Zebra fish hox clusters and vertebrate genome evolution [J]. Science, 1998,282:1711-1714.
    [2]刘祖洞.遗传学(第二版)[M].北京:高等教育出版社,1990:135-136.
    [3]Kirpichnikov V S. Genetic bases of fish selection [M]. Belin:Springer-Verlag,1981:143-200.
    [4]Spotila J R, Spotila L, Kaufer N F. Molecular mechanisms of TSD in Reptiles:a search for the magic bullet [J]. J Exp Zoo,1994,270(1):117-127.
    [5]McEwen BS, Alves SE. Estrogen actions in the central nervous system [J]. Endocrine Rev,1999, 20(3):279-307.
    [6]Khosla S, Bilezikian JP. The role of estrogens in men and androgens in women [J]. Endocrinol Metab Clin North Am,2003,32(1):195-218.
    [7]楼允东.鱼类育种学[M].北京:中国农业出版社,1999:203.
    [8]洪云汉,周暾.短颌鲚的核型及其ZZ-ZO性染色体[J].遗传,1984,6(4):12-14.
    [9]Baroiller J F, Cotta H D. Environment and sex determination in farmed fish [J]. Comparative Biochem and Physiology Part C,2001,130(4):339-409.
    [10]郭一清.斑马鱼DMRT1和Dmrt5基因克隆和表达分析[D].武汉:武汉大学,2004.
    [11]Morrish B C and Sinclair A H. Vertebrate sex determination:many means to an end [J]. Reproduction, 2002,124:447-457.
    [12]Zanaria E, Muscatelli F, Bardoni B. A novel and unusual member of the nuclear hormone receptor superfamily is responsible for X-linked adrenal hypoplasia congenital [J]. Nature,1994,372:635-641.
    [13]Fujii T J G, Pichel M, Taira R, et al. Expression patterns of the murine LIM class homeobox gene liml in the developing brain and excretory system [J]. Dev Dyn,1994:73-83.
    [14]Haqq C M, King C Y, Donahoe P K, et al. SRY recognizes conserved DNA sites in sex-specific promoters [J]. Proc Natl Acad Sci USA,1993,90:1097-1101.
    [15]Colvin J E, Green R P, Schmahi J, et al. Male-to-female sex reversal in mice lacking fibroblast growth factor 9 [J]. Cell,2001,104:875-889.
    [16]Brennan J, Tilmann C, Capel B. Pdgfr-α mediates testis cord organization and fetal Leydig cell development in the fetal gonad [J]. Genes,2003, Dev.17:800-810.
    [17]Nef S, Verma-Kurvari S, Merenmies J, et al. Testis determination requires insulin receptor family function in mice [J]. Nature,2003,426:291-295.
    [18]Sinclair A H, Berta P, Palmer M S, et al. A gene from the human sex determining region encodes a protein with homology to a conserved DNA binding motif [J]. Nature,1990,346:240-244.
    [19]Affara N A, Chalmers I J, Ferguson-Smith M A. Analysis of the SRY gene in 22 sex-reversed XY females identifies four new point mutations in the conserved DNA binding domain [J]. Hum Mol Genet,1993,2:785-789.
    [20]Gubbay J, Collignon J, Koopman P, et al. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes [J]. Nature,1990, 346:245-250.
    [21]Koopman P, Gubbay J, Vivian N, et al. Male development of chromosmally female mice transgenic for Sry[J]. Nature,1991,351:117-121.
    [22]Foster J W, Brennan F E, Hampikian G K, et al. Evolution of sex detrmination and the Y chromosome: SRY-related sequences in marsupials [J]. Nature.,1992,359:531-532.
    [23]Ishii M, Tachiwana T, Hoshino A, et al. Potency of testicular somatic environment to support spermatogenesis in XX/Sry transgenic male mice [J]. Development,2007,134(3):449-54.
    [24]Hua Su, Chris Lau Y F. Identification of the transcriptional unit, structural origanization, and promoter sequence of the human sex-detemining region Y (SRY) gene using reverse genetic approach [J]. Am J Hum Genet,1993,52:24-30.
    [25]Clarkson M J, Harley V R. Sex with two Sox on:SRY and Sox9 in testis development [J].TRENDS in Endocrnology and Metabolism,2002,13:3.
    [26]McElreavey K, Barbus S, Ion A. Expression of the Sox10 gene during human sex detemination:a revies [J]. FEBS Lett,1998,432:168-72.
    [27]Poulat F, Barbara P S, Desclozeaux M, et al. The human testis determining factor SRY binds a nuclear factor containing PDZ protein interaction domains [J]. J Biol Chem,1997,272 (11):7167-72.
    [28]Sudbeck P, Scherer G. Two independent nuclear localization signals are present in the DNA-binding high-mobility group domains of SRY and SOX9 [J]. J Biol Chem,1997,272(44):27848-52.
    [29]Sweitzer T D, Hanover J A. Calmodulin activates nuclear protein import:a link between signal transduction and nuclear transport [J]. Proc Natl Acad Sci,1996,93:1457-1459.
    [30]Taules M. Calmodulin binds to p21(Cipl) and is involved in the regulation of its nuclear localization [J]. J Biol Chem,1999,274:24445-24448.
    [31]Jans D A. Nuclear targeting signal recognition:a key control point in nuclear transport? [J]. BioEssays, 2000,22:532-544.
    [32]Harley V R, Layfield S, Mitchell C L, et al. Defective importin beta recognition and nuclear import of the sex-determining factor SRY are associated with XY sex-reversing mutations [J]. Proc Natl Acad Sci USA,2003,100(12):7045-50.
    [33]Malik S. A dynamic model for PC4 coactivator function in RNA polymerase Ⅱ transcription. Proc. Natl.Acad [J]. Sci.USA,1998,95:2192-2197.
    [34]Koopman P. Sry and Sax9:mammalian testis-determining genes [J].Cell Mol Life Sci,1999,55: 839-856.
    [35]Dubin R, Ostrer H. Sry is a transcriptional activator [J]. Mol Endocrinol,1994,8:1182-1192.
    [36]Bowles J. Sry requires a CAG repeat domain for male sex determination [J]. Nat Genet,1999,22: 405-408.
    [37]Rossi P, Dolci S, Albanesi C, et al. Direct evidence that the mouse sex-determining gene Sry is expressed in the somatic cells of male fetal gonads and in the germ cell line in the adult testis [J]. Mol Reprod Dev,1993,34(4):369-73.
    [38]Pontiggia A. Sex-reversing mutations affect the architecture of of SRY-DNA complexes [J]. EMBO J, 1994,13:6115-6124.
    [39]Hacker A, Capel B, Goodfellow P, et al. Expression of Sry, the mouse sex determining gene [J]. Development,1995,121 (6):1603-14.
    [40]Jeske Y W, Mishina Y, Cohen D R, et al. Analysis of the role of Amh and Fra1 in the Sry regulatory pathway [J]. Mol Reprod Dev,1996,44(2):153-8.
    [41]Koopman P, Munsterberg A, Capel B, et al. Expression of a candidate sex-determining gene during mouse testis differentiation [J]. Nature,1990,348(6300):450-2.
    [42]Bowles J, Schepers G, Koopman P. Phylogeny of the Sox family of developmental transcription factors based on sequence and structural indicators [J]. Dev. Bio,2000,227:239-255.
    [43]Collignon J. Study of a new family of genes related to the Mammalian Testis Determining gene [PhD Thesis] [D]. London:Council for National Academic Awards,1992.
    [44]Wegner M. From head to toes:The multiple facets of Sox proteins [J]. Nucleic Acids Res,1999,27: 1409-1420.
    [45]Wright E M, Snopek B, Koopman P. Seven new members of the Sox gene family expressed during mouse development [J]. Nucleic Acids Res,1993,21:744.
    [46]Ner S S. HMGs everywhere [J]. Curr Biol,1992,2:208-210.
    [47]Soullier S, Jay P, Poulat F, et al. Diversification pattern of the HMG and SOX family members during evolution [J]. J.Mol. Evol,1999,48:517-527.
    [48]Nagai K. Molecular evolution of Sry and Sox gene [J]. Gene,2001,270(1-2):161-169.
    [49]Denny P, Swift S, Connor F, et al. An SRY related gene expressed during spennatogenesis in the mouse encodes a sequence specific DNA binding protein [J]. EMBO,1992,11:3705-3712.
    [50]Sugimoto A, lino Y, Maeda T, et al. Schizosaccharomyces pombe stellencodes a transciption Factor with an HMG motif that is a critical regulator of sexual development [J]. Genes Dev,1990,5: 1990-1999.
    [51]Giese K, Cox J, Grosschedl R. The HMG domain of lymphoid enhancer factor 1 bends DNA and facilitates assembly of functional nucleoprotein structures [J]. Cell,1992,69:185-195.
    [52]Bowles J, Schepers G, Koopman P. Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators [J]. Dev Biol,2000,227:239-255.
    [53]Osaki E, Nishina Y, Inazawa J, et al. Identification of a novel Sry-related gene and its germ cell-specific expression [J].1999, Nucleic Acids Res,27:2503-2510.
    [54]Harley V R, Lovell-Badge R, Goodfellow P N. Definition of a consensus DNA binding site for SRY [J]. Nucleic Acids Res,1994,22:1500-1501.
    [55]Ng L-J, Wheatley S, Muscat G E O, et al. Sox9 binds DNA, activates transcription and co-expresses with type Ⅱ collagen during chondrogenesis in the mouse [J]. Dev Biol,1997,183:108-121.
    [56]Brennan J, Tilmann C, Capel B. Pdgfr-α mediates testis cord organization and fetal Leydig cell development in the fetal gonad [J]. GenesDev,2003,17:800-810.
    [57]Ohno S. The one-to-four rule and paralogues of sex-determining genes. Exe,2001,91:1-10.
    [58]Force A, Lynch M, Pickett F B, et al. Preservation of duplicate genes by complementary degenerative mutations [J]. Genetics,1999,151:1531-1545.
    [59]Pevny L H, Lovell-Badge R. Sox genes find their feet [J]. Curr Opin Cenet Dev,1997,7:338-344.
    [60]Morais da Silva S, Hacker A, Harley V. et al. Sox9 expression during gonadal development implies a conserved role for the gene in Sertoli cell differentiation in mammals and birds [J]. Nature Genet, 1996,14:62-68.
    [61]Wright E, Hargrave M R, Christiansen J, et al. The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos [J]. Nature Genet,1995,9:15-20.
    [62]Kent J, Wheatley SC, Andrews JE, et al. A male-specific role for Sox9 in vertebrate sex determination [J]. Development,1996,122:2813-2822.
    [63]江玲霞,李纪委,贺或等.Sox基因家族功能的研究进展[J].生物技术通报,2008,6:44-48.
    [64]Chabo Issier M C, Koba Ya Shia, Schedl A, et al.Functional analysis of Sox8 and Sox9 during sex determination in the mouse [J].Development,2004,131(9):1891-1901.
    [65]Schmidt K, Glaser G, Wernig A, et al. Sox8 is a specific marker for muscle satellite cells and inhibits myogenesis [J]. J BiolChem,2003,278(32):29769-29775.
    [66]Bell KM, Western PS, Sinclair AH. Sox8 expression during chick embryogenesis. Mech Dev,2000,94: 257-260.
    [67]Pfeifer D, Poulat F, Holinski-Feder E, et al. The Sox8 gene is located within 700 kb of the tip of chromosome 16p and is deleted in a patient with ATR-16 syndrome. Genomics,2000,63:108-116.
    [68]Schepers G E. Cloning and characterisation of the Sry-related transcription factor gene Sox8 [J]. Nucleic Acids Res,2000.28,1473-1480.
    [69]Katrina M, Sinclair. Sox8 expression during chick embryogenesis [J]. Mech Dev,2000,94,257-260.
    [70]Schepers G E. Twenty pairs of sox:extent, homology, and nomenclature of the mouse and human sox transcription factor gene families [J]. Dev Cell,2002,3:167-170.
    [71]Schepers G E. SOX8 is expressed during testis differentiation in mice and synergizes with SF1 to activate the Amh promoter in vitro [J]. J Biol Chem,2003,278:28101-28108.
    [72]Kuhlbrodt K, Herbarth B, Sock E, et al. Cooperative function of POU proteins and SOX proteins in glial cells [J]. J. Biol. Chem,1998,273:16050-16057.
    [73]Dietmar P, Francis P, Holinski-feder E, et al. The Sox8 gene is located within 700kb of the tip of chromosome 16p and is deleted in a patient with ATR-16 Syndrome [J]. Genomics,2000,63:108-116.
    [74]Kent J, Wheatley S C, Andrews J E, et al. A male-specific role for Sox9 in vertebrate sex determination [J]. Development,1996,122:2813-2822.
    [75]Wagner T, Wirth J, Meyer J et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9 [J]. Cell,1994,79:1111-1120.
    [76]Wok C, Weller PA, Guioli S, et al. Mutations in SOX9, the gene responsible for Campomelic dysplasia and autosomal sex reversal [J]. Am J Hum Genet,1995,57:1028-1036.
    [77]Marshall O J, Harley V R. Identification of an interaction between Sox9 and HSP70 [J]. FEBSLett, 2001,496:75-80.
    [78]Ling-Jun Zhao, Shangao Zhang and G Chinnadurai. Sox9 Transactivation and Testicular Expression of a Novel Human Gene, KLAA0800 [J]. Journal of Cellular Biochemistry,2002,86:277-289.
    [79]Swain A. Daxl antagonises SRY action in mammalian sex determination [J]. Nature,1999,391: 761-767.
    [80]Lefebvre V, W Huang, V R. Harley. et al. Sox9 is a potent activator of the chondrocyte-specific enhancer of the procal(Ⅱ) collagen gene [J]. Mol. Cell. Biol,1997,17:2336-2346.
    [81]Liu Y, H Li, K Tanaka, et al. Identification of an enhancer sequence within the first intron required for cartilage-specific transcription of the alpha2(XI) collagen gene [J]. Biol Chem,2000,275: 12712-12718.
    [82]Sekiya I, K Tsuji, P Koopman, et al. SOX9 enhances aggrecan gene promoter/enhancer activity and is up-regulated by retinoic acid in a cartilage-derived cell line [J]. Biol Chen,2000,275:10738-10744.
    [83]Xie W F, X. Zhang, S Sakano, et al.1999. Trans-activation of the mouse cartilage-derived retinoic acid-sensitive protein gene by Sox9. J. Bone Miner [J]. Res,14:757-763.
    [84]Huang W, Zhou X, Lefebvre V, et al. Phosphorylation of Sox9 by cyclic AMP-dependent protein kinase A enhances Sox9's ability to transactivate a Co12al chondrocyte-specific enhancer [J]. Mol Cell Biol,2000,20:4149-4158.
    [85]Nurakami S, Kan M, McKeehan W L, et al. Up-regulation of the chondrogenic Sox9 gene by fibroblast growth factors is mediated by the mitogen-activated protein kinase pathway [J]. Proc Natl Aca Sci, 2000,97:1113-1118.
    [86]Potterf S B, Furumura M, Karen J, et al. Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by Sox10 and PAX3 [J]. Hum Genet,2000,107:1-6.
    [87]Raymond, C S, Kettlewell, J R, Hirsch, B, et al. Expression of DMRT1 in the genital ridge of mouse and chicken embryos suggests a role in vertebrate sexual development [J]. Dev Biol,1999a,215: 208-220.
    [88]Raymond, C S, Parker, E D, Kettlewell, J R, et al. A region of human chromosome 9p required for testis development contain two genes related to known sexual regulators [J]. Hum Mol Genet,1999b, 8:989-996.
    [89]Nanda I, Zend-Ajusch E, Shan Z, et al. Conserved synteny between the chicken Z sex chromosome and human chromosome 9 includes the male regulatory gene DMRT1:a comparative (re)view on avian sex determination [J]. Cytogenet Cell Genet,2000,89:67-78.
    [90]Torres Maldonado L C, Landa Piedra A, Moreno Mendoza N, et al. Expression profiles of Daxl, DMRT1, and Sox9 during temperature sex determination in gonads of the sea turtle Lepidochelys olivacea [J]. Gen Comp Endocrinol,2002,129(1):20-26.
    [91]Xiao Huang, Yiqing Guo, Yi Shui, et al. Multiple Alternative Splicing and Differential Expression of DMRT1 During Gonad Transformation of the Rice Field Eel [J]. Biology of reproduction,2005,73: 1017-1024.
    [92]Laurence A M Deloffre, Rute S T Martins, Constantinos C Mylonas, et al. Alternative transcripts of DMRT1 in the European sea bass:Expression during gonadal differentiation [J]. Aquaculture,2009, 293:89-99.
    [93]Marchand O, Govoroun M, D'Cotta H, et al. DMRT1 expression during gonadal differentiation and spermatogenesis in the rainbow trout, Oncorhynchus mykiss [J]. Biochim Biophys Acta,2000,1493 (1-2):180-187.
    [94]Sreenivasulu K, Ganesh S, Raman R. Evolutionarily conserved, DMRT1, encodes alternatively spliced transcripts and shows dimorphic expression during gonadal differentiation in the Lizard, Calotes versicolor [J]. Gene Expr Patterns,2002,2(1/2):51-60.
    [95]Kim S, Kettlewell J R, Anderson R C, et al. Sexually dimorphic expression of multiple double sex-related genes in the embryonic mouse gonad [J]. Gene Expr Patterns,2003,3(1):77-82.
    [96]Baker B S and Wolfner M F. A molecular annalysis of doublesex, a bifunctonal gene that controls both male and female sexual differentiation in Drosophila melanogaster [J]. Genes Dev,1988,2:477-489.
    [97]Burtis K. C and Baker B S. Drosophila doublesex gene controls somatic sexual differentiation by producing alternatively spliced mRNAs encoding related sex-specific polypeptides [J]. Cell,1989,56: 997-1010.
    [98]Schutt C and Nothiger R. Structure, function and evolution of sex-determining systems in Dipteran insects [J]. Development,2000,127:667-677.
    [99]Raymond C S, Shamu C E, Shen M M, et al. Evidence for evolutionary conservation of sex-determining genes [J]. Nature,1998,391:691-695.
    [100]Raymond C S, Murphy M W, O'Sulivan M G, et al. DMRT1, a gene related to worm and fly sexual regulators is required for mammalian testis differentiation [J]. Genes Dev,2000,14:2587-2595.
    [101]Moniot B, Berta P, Scherer G, et al. Male specific expression suggests role of DMRT1 in human sex determination [J]. Mech Dev,2000,91 (1-2):323-325.
    [102]Smith C A, McClive P J, Western P S, et al. Conservation of a sex-determining gene [J]. Nature,1999, 402(6762):601-602.
    [103]Smith C A, Hurley T M, McClive P J, et al. Restricted expression of DMRT3 in chicken and mouse embryos [J]. Gene Expr Patterns,2002,2(1-2):69-72.
    [104]Winkler C, Hornung U, Kondo M, et al. Developmentally regulated and non-sex-specific expression of autosomal Dmrt genes in embryos of the medaka fish (Oryzias latipes) [J]. Mech Dev,2004,121 (7/8):997-1005.
    [105]Nanda I, Hornung U, Kondo M. Common Spontaneous Sex-reversed XX males of the medaka Onyzias Latipes [J]. Genetics,2003,163 (1):245-251.
    [106]Ottolenghi C, Veitia R, Barbieri M, et al. The human doublesex-related gene, DMRT2, is ho-mologous to a gene involved in somitogenesis and encodes a potential bicistronic transcript [J]. Genomics,2000,64:179-86.
    [107]K Ounap, O Uibo, R Zordania, et al. Three patients with 9p deletions including DMRT1 and DMRT2: a girl with XY complement, bilateral ovotestes, and extreme growth retardation, and two XX females with normal pubertal development [J]. Am J Med Genet,2004,130:415-423.
    [108]Nanda I, Kondo M, Hornung U, et al. A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka,Oryzias Iatipes[J]. Proc Natl Acad Sci USA,2002,99: 11778-11783.
    [109]Brenton R Graveley. Alternative splicing increasing diversity in the proteomic world [J]. Trends Genet,2001,17:100-107.
    [110]Brett M, Anton J L, Valabregue R, et al. Region of interest analysis using an SPM toolbox [J]. Neurolmage,2002,16(2):abstract 497
    [111]Gilbert, Walter. "Why Genes in Pieces?" [J]. Nature,1978,271:501.
    [112]Choi E, Kuehl M, Wall R. RNA splicing generates a variant light chain from an aberrantly rearranged kappa gene [J]. Nature,1980,286(5775):776-779.
    [113]Zandberg H, Moen T C, Baas P D. Cooperation of 5'and 3'processing sites as well as intron and exon sequences in calcitonin exon recognition [J]. Nucleic Acids Res,1995,23(2):248-255.
    [114]Jap T S, Wu Y C, Tso Y C, et al. A novel mutation in the intron 1 splice donor site of the cholesterol ester transfer protein(CETP) gene as a cause of hyperalphalipoproteinemia [J]. Metabolism,2002, 51(3):394-397.
    [115]Heng Lu, Xiao Huang, Liao Zhang, et al. Multiple alternative splicing of mouse DMRT1 during Gonadal dierentiation [J]. Biochemical and Biophysical Research Communications,2007,352: 630-634.
    [116]H H Cheng, M Ying, Y H Tian, et al. Transcriptional diversity of DMRT1 (dsx-and mab3-related transcription factor 1) in human testis [J]. Cell Res,2006,16:389-393.
    [117]Zhao Y, Lu H, Yu H, et al. Multiple alternative splicing in gonads of chicken DMRT1[J]. Dev. Genes Evol,2007,217:119-126.
    [118]Yiqing Guo, Hanhua Cheng, Xiao huang, et al. Gene structure, multiple alternative splicing and expression in gonads of zebrafish DMRT1 [J]. Biochemical and Biophysical Research Communications,2005,330:950-957.
    [119]张悦,鲁晓萱,单祥年.性别决定基因的研究进展[J].遗传,2000,22:328—330.
    [120]徐成.牙鲆雌核发育分析鉴定与性别决定机制研究[D].上海:中国科学院海洋研究所,2000.
    [121]阮洪超,张培军.海水鱼类的性转化和性控[M].济南:山东科学技术出版社,1999:38-52.
    [122]Conover D O and Kynard B E. Environmental sex determination:Interaction of temperature and genotype in a fish [J]. Science,1981,213:577-579.
    [123]李军,肖志忠,张士璀.海水鱼类的性别决定和分化[M].济南:山东科学技术出版社,1999: 29-37.
    [124]童金苟,朱嘉濠,关海山.鱼类性别决定的遗传基础研究概况[J].水产学报,2003,27:2.
    [125]Vriz S and Lovell-Badge R. The zebrafish Zf-Sox 19 protein:A novel member of the Sox family which reveals highly conserved motifs outside of the DNA-binding domain [J]. Gene,1995,2: 275-276.
    [126]常重杰,周荣家,余其兴.两种泥鳅中PdSax8和PdSox9基因的染色体定位[J].遗传学报.2000a.27(5):377-382.
    [127]常重杰,周荣家,余其兴.大鳞副泥鳅中Sox9基因保守区的序列分析[J].遗传学报.2000b.27(2):121-126.
    [128]常重杰,杜启艳,周荣家等.具有内含子的大鳞副泥鳅Sox8基因[J].发育与繁殖生物学.2000c.9(2):15-22.
    [129]Liu L and Zhou R. Isolation of Sox11a, Sox11b and Sox19 genes from Rice field eel (Monopterus albus) using degenerate primers and nested PCR [J]. Aquaculture Science,2001,63:191-195.
    [130]Chiang E F, Pai C I, Wyatt M, et al. Two Sox9 genes on duplicated zebrafish chromosomes: expression of similar transcription activators in distinct sites.Developmental [J]. Biology,2001,231: 149-163.
    [131]Kluver N, Kondo M, Herpin A, et al. Divergent expression patterns of Sox9 duplicates in teleosts indicate a lineage specific subfunctionalization [J]. Development Genes and Evolution,2005,215: 297-305.
    [132]Takamatsu N, Kanda H, Ito M, et al. Rainbow trout Sox9:cDNA cloning, gene structure and expression [J]. Gene,1997,20:167-170.
    [133]Argentaro A, Sim H, Kelly S, et al. A SOX9 defect of calmodulin-dependent nuclear import in campomelic dysplasia Pautosomal sex reversal. Journal of Biological Chemistry [J],2003,278(36): 33839-33847.
    [134]Arango NA, Lovell-Badge R, Behringer RR. Targeted mutagenesis of the endogenous mouse Mis gene promoter:in vivo definition of genetic pathways of vertebrate sexual development [J]. Cell,1999, 99:409-414.
    [135]De Santa Barbara P, Bonneaud N, Boizet B, et al. Direct interaction of SRY-related protein SOX9 and steroidogenic factor 1 regulates transcription of the human anti-mullerian hormone gene. Molecular and Cellular Biology [J],1998,18:6653-6665.
    [136]Qin YG and Bishop CE. Sox9 is sufficient for functional testis development producing fertile male mice in the absence of Sry. Human Molecular Genetics [J],2005,14(9):1221-1229.
    [137]Koopman P, Schepers G, Brenner S, et al. Origin and diversity of the Sox transcription factor gene family:genome-wide analysis in Fugu rubripes [J]. Gene,2004,328:177-186.
    [138]Zhou R, Liu L, Guo Y, et al. Similar gene structure of two Sox9a genes and their expression patterns during gonad differentiation in a teleost fish, rice field eel (Monopterus albus) [J]. Molecular Reproduction and Development,2003,66:211-217.
    [139]俞菊华,李建林,曹丽萍等.黄颡鱼Sox9基因的分离及分析[J].农业生物技术学报,2005,13(5):620-623.
    [140]Cresko W A, Yan Y L, Baltrus D A, et al. Genome duplication, subfunction partitioning, and lineage divergence:Sox9 in stickleback and zebrafish [J]. Developmental Dynamics,2003,228:480-489.
    [141]Yan Y L, Miller C T, Nissen R M, et al. A zebrafish Sox9 gene required for cartilage morphogenesis [J]. Development,2002,129:5065-5079.
    [142]Matsuda M, Nagahama Y, Shinomiya A, et al. DMY is a Y-specific DM-domain gene required for male development in the medaka fish [J]. Nature,2002,417:559-563.
    [143]Matsuda M, Shinomiya A, Kinoshita M, et al. DMY gene induces male development in genetically female (XX) medaka fish [J]. Proc. Natl. Acad. Sci. USA,2007,104:3865-3870.
    [144]Otake H, Shinomiya A, Matsuda M, et al. Wild-derived XY sex-reversal mutants in the medaka, Oryzias latipes [J]. Genetics,2006,173:2083-2090.
    [145]Koopman P and Loffler KA. Sex determination:the fishy tale of DMRTl [J]. Curr Biol,2003,13(5): R177-179.
    [146]Kondo M, Nandam I, Hornung U, et al. Absence of the candidate male sex-determining gene DMRT1b (Y) of medaka from other fish species [J]. Current Biology,2003,13(5):416-420.
    [147]Veith AM, Froschauer A, Korting C, et al. Clong of the DMRTJ gene of Xiphophorus maculates: dmY/DMRT1Yis not the master sex-determination gene in the platyfish [J]. Gene,2003:59-66.
    [148]Volff J N, Kondo M, Schartl M. Medaka dmY/DMRT1Y is not t he universal primary sex-determining gene in fish [J]. Trends in Genetics,2003,19 (4):196-199.
    [149]Matsuda M, Sato T, Toyazaki Y, et al. Oryzias curvinotus Has DMY, a gene that is required for male development in the Medaka, O. latipes [J]. Zoological Science,2003,20:159-161.
    [150]Xie W F, X. Zhang, S Sakano, et al. Trans-activation of the mouse cartilage-derived retinoic acid-sensitive protein gene by Sox9 [J]. J. Bone Miner. Res,1999,14:757-763.
    [151]Guan G, Kobayashi T, Nagahama Y. Sexually dimorphie expression of types of DM (Doublesex/ Mab-3)domain genes in a teleost fish, the tilapia(Oreochromis niloticus) [J]. Biochem Bioph Res Co, 2000,72:662-666.
    [152]Kondo M, Froschauer A, KitanoA, et al. Molecular cloning and characterization of DMRT from the medaka Oryzias latipes and the platyfish Xiphophorus maculates [J]. Gene,2002,295:213-222.
    [153]Trant J M, Gavasso S, Ackers J, et al. Developmental expression of cytochrome, P450 aromatase genes(CYP19a and CYP19b)in zebrafish(Danio rerio) [J]. J Exp Zool,2001,290(5):475-483.
    [154]Kishida M and Callard G V. Distinct cytoehrome P450aromatase isoforms in zebrafish (Daniorerio) brain and ovary are differentially programmed and estrogen regulated during early development [J]. Endocrinology,2001,142(2):740-750.
    [155]Kitano T, Taka mune K, Kobayashi T, et al. Suppression of p450 aromatase gene expression in sex-reversed males produced by rearing gengtically female larvae at a high water temperature during a period of sex differentiation in the japanese flounder (Paralichthys olivaceus) [J]. J Mol Endocrinol, 1999,23(2):167-176.
    [156]Kitano T, Taka mune K, Nagahama Y, et al. Aromatase inhibitor and 17 alpha-methyltestosterone cause sex-reversal from genetical females to phenotypic males and suppression of P450 aromatase gene expression in japanese flounder (Paralichthys olivaceus) [J]. Mol Repred Dev,2000,56(1):1-5.
    [157]Wang D S, Kobayashi T, Senthilkumaran B, et al. Molecular cloning of DAX1 and SHP cDNAs and their expression patterns in the Nile tilapia, Oreochromis niloticus [J]. Biochemical and Biophysical Research Communications,2002,297(3):632-640.
    [158]Nakamoto M, Wang D S, SuzukiA, et al. Daxl suppresses P450arom expression in medkaka ovarian follicles [J]. Mol Reprod Dev,2007,74(10):1239-1246.
    [159]Miura T, Miura C, Konda Y, et al. Spermatogenesis-preventing substance in Japanese eel [J]. Development,2002,129:2689-2697.
    [160]Shiraishi E, Imazato H, Yamamoto T, et al. Identification of two teleost homologs of the Drosophila sex determination factor, transformer-2 in medaka(OryzIas latipes) [J]. Mech Develop,2004,121: 991-996.
    [161]Sambrook J, Fritsch E F, Maniatis T. Molecular cloning:a laboratory manual,2nd edn. Cold Spring Harbor, New York,1989.
    [162]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T) method [J]. Methods,2001,25:402-408.
    [163]Cremazy F, Berta P, Girard F. Sox Neuro, a new Drosophila Sox gene expressed in the developing central nervous system [J]. Mech Dev,2000,93:215-219.
    [164]Schillam M W, Van E M, Van de Wetering M, et al. The murine Sox4 protein is encoded on a single exon [J]. Nucleic Acids Res,1993,21:2009.
    [165]Nakamoto M, Suzuki A, Matsuda M, et al. Testicular type Sox9 is not involved in sex determination but might be in the development of testicular structures in the medaka, Oryzias latipes [J]. Biochem Biophys Res Commun,2005,333:729-736.
    [166]Yokoi H, Kobayashi T, Tanaka M, et al. Sox9 in a teleost fish, medaka (Oryzias latipes):evidence for diversified function of Sox9 in gonad differentiation [J]. Mol Reprod Dev,2002,63:5-16.
    [167]Martino S D, Yan Y L, Jowett T, et al. Expression of Sox11 gene duplicates in zebrafish suggests the reciprocal loss of ancestral gene expression patterns in development [J]. Dev Dyn,2000,217: 279-292.
    [168]Woods I G, Kelly P D, Chu F, et al. A comparative map of the zebrafish genome [J]. Genome Res, 2000,10:1903-1914.
    [169]Taylor J S, Braasch I, Frickey T, et al. Genome duplication, a trait shared by 22000 species of ray-finned fish [J]. Genome Res,2003,13:382-390.
    [170]Postlethwait J H, Yan Y L, Gates M A, et al. Vertebrate genome evolution and the zebrafish gene map [J]. Nat Genet,1998,18:345-349.
    [171]Dutton KA, Pauliny A, Lopes S S, et al. Zebrafish colourless encodes Sox10 and specifies non-ectomesenchymal neural crest fates [J]. Development,2001,128:4113-4125.
    [172]Pompolo S, Harley V R. Localisation of the SRY-related HMG box protein, SOX9, in rodent brain [J]. Brain Res,2001,906:143-148.
    [173]Ohno S. Evolution by gene duplication [M]. Germany:Springer,1970.
    [174]Ito M, Ishikawa M, Suzuki S, et al. A rainbow trout SRY-type gene expressed in pituitary glands [J]. FEBS Lett,1995,377:37-40.
    [175]Sock E, Schmidt K, Hermanns-Borgmeyer et al. Idiopathic weight reduction in mice deficient in the high-mobility-group transcription factor Sox8[J]. Mol Cell Biol,2001,21:6951-6959.
    [176]Schmidt K, Schinke T, Haberland M, et al. The high mobility group transcription factor Sox8 is a negative regulator of osteoblast differentiation [J]. J Cell Biol,2005,168:899-910.
    [177]Takada S, Koopman P. Origin and possible roles of the Sox8 transcription factor gene during sexual development [J]. Cytogenet Genome Res,2003,101(3-4):212-218.
    [178]Moreno-Mendoza N, Harley V R, Merchant-Larios H. Differential expression of SOX9 in gonads of the sea turtle Lepidochelys olivacea at male- or female-promoting temperatures [J]. J Exp Zool,1999, 284:705-710.
    [179]Vidal V P, Chaboissier M C, De Rooij D G, et al. Sox9 induces testis development in XX transgenic mice [J]. Nat Genet,2001,28:216-217.
    [180]Pask A J, Harry J L, Graves J A, et al. SOX9 has both conserved and novel roles in marsupial sexual differentiation [J]. Genesis,2002,33:131-139.
    [181]Chaboissier M C, Kobayashi A, Vidal V I, et al. Functional analysis of Sox8 and Sox9 during sex determination in the mouse [J]. Development,2004,131:1891-1901.
    [182]Frojdman K, Harley V R, Pelliniemi L J. Sox9 protein in rat sertoli cells a age and stage dependent [J]. Histochem Cell Biol,2000,113(1):31-36.
    [183]Sekido R, Bar I, Narvaez V. Sox9 is up-regulated by the transient expression of SRY specifically in Sertoli cell precursors [J].Dev Biol,2004,274(2):271-279.
    [184]Lasala C, Carre-Eusebe D, Picard J Y, et al. Subcellular and molecular mechanisms regulating anti-Mullerian hormone gene expression in mammalian and nonmammalian species [J].DNA Cell Biol, 2004,23(9):572-585.
    [185]Du Q Y, Wang F Y, Hua H Y, et al. Cloning and study of adult-tissue-specific expression of Sox9 in Cyprinus carpio [J]. J Genet,2007,86:85-91.
    [186]Houston C S, Opitz J M, Spranger J W, et al. The campomelic syndrome:review, report of 17 cases, and follow-up on the currently 17-year old boy first reported by Maroteaux et al. in 1971 [J]. Am J Med Genet,1983,15:3-28.
    [187]Bondurand N, Kobetz A, Pingault V, et al. Expression of the SOX10 gene during human development [J]. Febs. Letters,1998,432:168-172.
    [188]Kuhlbrodt K, Herbarth B, Sock E, et al. Sox10, a novel transcriptional modulator in glial cells [J]. J Neurosci,1998,18:237-250.
    [189]Cheng Y C, Cheung M, Abu-ElmagdM M, et al. Chick Sox10, a transcription factor expressed in both early neural crest cells and central nervous system [J]. Brain Res Dev,2000,121:233-241.
    [190]Dutton K A, Pauliny A, Lopes S S, et al. Zebrafish colourless encodes Sox10 and specifies non-ectomesenchymal neural crest fates [J]. Development,2001,128:4113-4125.
    [191]格拉夫祖诺夫.自动控制可靠性理论基础[M].北京:水利水电出版社.1989:1-60.
    [192]Yukang Wang, Patrick N J Schnegelsberg, Jessica Dausman, et al. Functional redundancy of the musclespecific transcription factors myf5 and myogenin [J]. Nature,1996,379:823-825.
    [193]Hanks M, Wurst W, Anson-Cartwright L, et al. Rescue of the En-1 mutant phenotype by replacement of En-1 with En-2 [J]. Science,1995,269:679-682.
    [194]Boyer A, Dornan S, Daneau I. Convervation of the function of DMRT1 regulatory sequences in mammallian sex differentiation [J]. Genesis,2002,34(4):236-243.
    [195]Raymond C S, Murphy M W, O'Sullivan M G, et al. DMRT1, a gene related to worm and fly sexual regulators, is required for mammanliam tesis differentiation [J]. Genes Dev,2002,14(4):2587-2595.
    [196]朱必才,高建国,张子峰等.哺乳动物性别决定及其机制的研究[J].细胞生物学杂志,2002,24(5):282-286.
    [197]Ellegren H. Hens, cocks and avian sex differmination:A quest for genes on Z or W [J]. EMBO reports,2001,2(3):192-196.
    [198]Shan Z, Nanda I, Wang Y, et al. Sex-specific expression of an evolutionarily conserved male regulatory gene, DMRT1 in birds [J]. Cell Genet,2000,89(3-4):252-257.
    [199]Wei Xia, LiZhou, Bo Yao, et al. Differentialand spermatogenic cell-specific expression of DMRT1 during sexreversalin protogynous hermaphroditic groupers [J]. Molecular and Cellular Endocrinology, 2007,23(5):156-172.
    [200]郑江霞,杨宁.鸟类性别决定候选基因在性反转鸡胚中的表达[J].遗传,2007,29(1):81-86.
    [201]Koopman P, Loffler KA. Sex determination:the fishy tale of DMRT1 [J]. Curr Biol,2003,13(5): 177-179.
    [202]Amit Anand, Minarbha Patel, Albert Lalremruata, et al. Multiple alternative splicing of DMRT1 during gonadogenesis in Indian mugger, a species exhibiting temperature-dependent sex determination [J]. Gene,2008,425:56-63.