Br(?)nsted-Lewis酸型离子液体催化林木种子油转化生物柴油研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究建立了微波辅助水酶法提取林木种子油的工艺;测定了喜树种子油和文冠果种子油的脂肪酸成分及其主要理化性质;制备了用于催化制备生物柴油酯交换反应的Bronsted-Lewis酸型离子液体;建立了微波辅助林木种子油转化生物柴油的制备工艺,并测定了以喜树种子油和文冠果种子油为原料制得的生物柴油产品的主要理化性质。
     1.微波辅助水酶法提取林木种子油工艺的建立
     本研究以凝胶球为载体对纤维素酶、半纤维素酶和果胶酶组成的混合酶进行固载,并将其应用于对喜树种子和文冠果种仁的预处理过程中,之后结合微波辅助提取技术形成了微波辅助水酶法提取林木种子油的工艺。本研究不仅确定了混合酶的组分及用量,优化了混合酶预处理过程中温度与时间两个影响酶活力和处理效率的主要因素,还考察了提取温度、提取时间、辐射功率和液料比等因素对林木种子油提取率的影响,并确定了最佳工艺参数。
     微波辅助水酶法提取喜树种子油最佳工艺参数:
     混合酶组分及用量:纤维素酶2.5mg/g,半纤维素酶1.9mg/g,果胶酶1.3mg/g
     预处理温度:40℃
     预处理时间:6h
     提取温度:50℃
     提取时间:30min
     辐射功率:500W
     液料比:5mL/g
     在上述条件下,喜树种子油的提取率可达19.1%。
     微波辅助水酶法提取文冠果种子油最佳工艺参数:
     混合酶组分及用量:纤维素酶1.8mg/g,半纤维素酶1.3mg/g,果胶酶2.5mg/g
     预处理温度:40℃
     预处理时间:8h
     提取温度:50℃
     提取时间:45min
     辐射功率:500W
     液料比:6mL/g
     在上述条件下,文冠果种子油的提取率可达56.8%。
     2.林木种子油脂肪酸成分及其主要理化性质的测定
     本研究利用GC-MS分别对喜树种子油和文冠果种子油的脂肪酸成分进行了检测,建立了快速、准确测定林木种子油脂肪酸成分的分析方法:
     GC条件:Agilent VF-5ms型石英毛细管柱,30m×0.25mm i.d.×0.25μm载气为高纯氦气(99.99%),柱内载气流量2mL/min;从50℃开始以20℃/min的速率升温到170℃并保持3min,再以15℃/min升温到230℃并保持2min;进样口温度250℃;检测器温度280℃;样品进样量1μL。
     MS条件:正离子模式,离子源温度230℃,分流比50:1,电子能量70eV,扫描范围35-425m/z。
     在上述条件下,喜树种子油主要脂肪酸成分的分析结果为:棕榈酸(5.03%)、硬脂酸(6.89%)、油酸(10.14%)、亚油酸(26.58%)、亚麻酸(45.21%)和二十碳烯酸(4.65%)。
     文冠果种子油主要脂肪酸成分的分析结果为:棕榈酸(5.27%)、硬脂酸(2.03%)、油酸(30.40%)、亚油酸(42.12%)、二十碳烯酸(10.09%)、二十二碳烯酸(3.49%)和二十四碳烯酸(4.44%)。
     同时,依照国家标准方法,本研究分别对这两种林木种子油的主要理化性质进行了测定。
     喜树种子油的测定结果为:相对密度(0.93g/mL)、折光系数(1.470)、水分及挥发物含量(0.15%)、酸值(20.7mg KOH/g)、碘值(128.3)、皂化值(204.8mg KOH/g)、过氧化值(1.62meq/kg)和平均分子量(929.3)。
     文冠果种子油的测定结果为:相对密度(0.92g/mL)、折光系数(1.469)、水分及挥发物含量(0.10%)、酸值(0.56mg KOH/g)、碘值(132.5)、皂化值(185.7mg KOH/g)、过氧化值(0.98meq/kg)和平均分子量(909.1)。
     3.用于催化制备生物柴油酯交换反应的Bronsted-Lewis酸型离子液体的制备
     本研究以Bronsted酸型离子液体与Lewis酸型金属硫酸盐为原料首次制备了一系列Bronsted-Lewis酸型离子液体,其中[BSO3HMIM]HSO4-Fe2(SO4)3表现出最为突出的催化能力,并以乙腈为Lewis弱碱性探针利用红外光谱法对其Lewis酸性进行了鉴定。此外,对[BSO3HMIM]HSO4-Fe2(SO4)3催化酯交换反应机理的分析表明其对生物柴油制备过程中酯交换反应所产生的催化作用是Bronsted酸和Lewis酸两种不同催化途径共同作用的结果。
     4.微波辅助林木种子油转化生物柴油制备工艺的建立,及以喜树种子油和文冠果种子油为原料制备的生物柴油产品的主要理化性质的检测
     本研究建立了微波辅助林木种子油转化生物柴油的制备工艺,考察了反应温度、醇油摩尔比和催化剂用量三个主要因素对生物柴油转化率的影响,并确定了优化的工艺参数。
     微波辅助喜树种子油转化生物柴油的最佳工艺参数为:
     反应温度:60℃
     醇油摩尔比:5
     催化剂用量:4%原料油质量
     在上述条件下,生物柴油的的转化率可达96.7%。
     微波辅助文冠果种子油转化生物柴油的最佳工艺参数为:
     反应温度:60℃
     醇油摩尔比:8
     催化剂用量:3%原料油质量
     在上述条件下,生物柴油的的转化率可达97.5%。
     同时,依照国家标准方法,本研究对以两种林木种子油为原料制备的生物柴油产品的主要理化性质进行了测定。
     以喜树种子油为原料制备的生物柴油产品的测定结果为:密度(0.88g/mL)、运动粘度(4.2mm2/s)、闪点(102℃)、酸值(0.47mg KOH/g)、硫含量(0.03%)、残炭量(0.16%)和十六烷值(55.3)。
     以文冠果种子油为原料制备的生物柴油产品的测定结果为:密度(0.87g/mL)、运动粘度(4.4mm2/s)、闪点(165℃)、酸值(0.03mg KOH/g)、硫含量(0.02%)、残炭量(0.06%)和十六烷值(56.1)。
In this study, aqueous enzymatic process assisted by microwave extraction of tree born oil was established. The fatty acids composition and main physicochemical properties of Camptotheca acuminata seed oil and yellow horn seed oil were determined. Moreover, Bronsted-Lewis acidic ionic liquid (IL) was prepared for catalyzing the transesterification reaction of biodiesel production. Microwave-assisted biodiesel production from tree born oil using the prepared IL as catalyst was established. In addition, main physicochemical properties of the biodiesel product prepared from Camptotheca acuminata seed oil and yellow horn seed oil were determined.
     1. Enzymatic pretreatment assisted microwave aqueous extraction of tree born oil
     The enzyme cocktail of cellulase, hemicellulase and pectinase were immobilized using gel beads. Then immobilized enzyme cocktail was used for the enzymatic pretreatment of Camptotheca acuminata seed and yellow horn seed kernel, and the enzymatic pretreatment assisted microwave aqueous extraction of the both tree born oils was developed. The amounts of cellulase, hemicellulase and pectinase were determined, and the main factors, including pretreatment temperature and time, which affected the enzyme activity and pretreatment efficiency were optimized. Furthermore, the effects of extraction temperature, extraction duration, irradiation power and water to material ratio on the oil extraction yield were investigated.
     The optimal parameters of enzymatic pretreatment assisted microwave aqueous extraction of Camptotheca acuminata seed oil were as follow:
     Enzyme cocktail:cellulase2.5mg/g, hemicellulase1.9mg/g, pectinase1.3mg/g
     Pretreatment temperature:40℃
     Pretreatment time:6h
     Extraction temperature:50℃
     Extraction duration:30min
     Irradiation power:500W
     Water to material ratio:5mL/g
     An oil extraction yield of19.1%could be achieved under the above conditions.
     The optimal parameters of enzymatic pretreatment assisted microwave aqueous extraction. of yellow horn seed oil were as follow:
     Enzyme cocktail:cellulase1.8mg/g, hemicellulase1.3mg/g, pectinase2.5mg/g
     Pretreatment temperature:40℃
     Pretreatment time:8h
     Extraction temperature:50℃
     Extraction duration:45min
     Irradiation power:500W
     Water to material ratio:6mL/g
     An oil extraction yield of56.8%could be achieved under the above conditions.
     2. Determination of the fatty acid composition and main physicochemical properties of tree born oil
     The fatty acid composition of Camptotheca acuminata seed oil and yellow horn seed oil were determined using GC-MS. A fast and accurate method was developed for the analysis of fatty acids composition of tree born oil.
     GC:Agilent VF-5ms silica capillary column (30m x0.25mm i.d.; film thickness0.25μn). Helium (99.99%) was used as carrier gas. The column temperature was initially50℃and then increased to170℃at20℃/min, held for3min, and finally increased to230℃at15℃/min. Injector and detector temperatures were250and280℃, respectively.
     MS:The mass spectrometer was operated in positive ion mode with ionization energy of70eV, and the ion source temperature was230℃. The split ratio was1:50. Mass units were monitored from m/z35to425.
     Under the above conditions, the fatty acid composition of Camptotheca acuminata seed oil was as follow:palmitic acid (5.03%), stearic acid (6.89%), oleic acid (10.14%), linoleic acid (26.58%), linolenic acid (45.21%) and eicosenoic acid (4.65%).
     The fatty acid composition of yellow horn seed oil was as follow:palmitic acid (5.27%), stearic acid (2.03%), oleic acid (30.40%), linoleic acid (42.12%), eicosenoic acid (10.09%), docosenoic acid (3.49%) and nervonic acid (4.44%).
     The main physicochemical properties of tree born oil were determined using GB/T standard methods.
     The main physicochemical properties of Camptotheca acuminata seed oil were as follow: relative density (0.93g/mL), refraction coefficient (1.470), water and volatile content (0.15%), acid value (20.7mg KOH/g), iodine value (128.3), saponification value (204.8mg KOH/g), peroxide value (1.62meq/kg) and average molecular weight (929.3).
     The main physicochemical properties of yellow horn seed oil were as follow:relative density (0.92g/mL), refraction coefficient (1.469), water and volatile content (0.10%), acid value (0.56mg KOH/g), iodine value (132.5), saponification value (185.7mg KOH/g), peroxide value (0.98meq/kg) and average molecular weight (909.1).
     3. Preparation of Bronsted-Lewis acidic IL for catalyzing the transesterification reaction of biodiesel production
     A series of Bronsted-Lewis acidic ILs were prepared using Bronsted acidic IL with various metal sulfates for the first time, and [BSO3HMIM]HSO4-Fe2(SO4)3represented a superior catalytic activity. Acetonitrile, a weak Lewis base, was used to characterize the Lewis acidity of the prepared IL catalyst as the probe for FTIR analysis. Moreover, the catalytic mechanism of transesterification reaction using the prepared Bronsted-Lewis acidic IL was clarified. Clarifying the catalytic mechanism of the transesterification reaction demonstrated that the outstanding catalytic performance of the prepared Bronsted-Lewis acidic IL was based on the synergetic effect of its Bronsted and Lewis acidic parts with different catalytic mechanisms.
     4. Microwave-assisted biodiesel production from tree born oil using Bronsted-Lewis acidic IL as catalyst
     Microwave-assisted biodiesel production from tree bom oil using Bronsted-Lewis acidic IL as catalyst was developed, and the main factors, including reaction temperature, methanol/oil molar ratio and catalyst amount, which affected the conversion yield were optimized.
     The optimal conditions of microwave-assisted biodiesel production from Camptotheca acuminata seed oil were as follow:
     Reaction temperature:60℃
     Methanol/oil molar ratio:5
     Catalyst amount:4%oil mass
     A conversion yield of96.7%could be achieved under the above conditions.
     The optimal conditions of microwave-assisted biodiesel production from yellow horn seed oil were as follow:
     Reaction temperature:60℃
     Methanol/oil molar ratio:8
     Catalyst amount:3%oil mass
     A conversion yield of97.5%could be achieved under the above conditions.
     In addition, the main physicochemical properties of the biodiesel product preparaed from tree born oil were determined.
     The main physicochemical properties of the biodiesel product preparaed from Camptotheca acuminata seed oil were as follow:density (0.88g/mL), viscosity (4.2mm2/s), flash point (102℃), acid value (0.47mg KOH/g), sulfur content (0.03%), carbon residues (0.16%) and cetane number (55.3).
     The main physicochemical properties of the biodiesel product preparaed from yellow horn seed oil were as follow:density (0.87g/mL), viscosity (4.4mm2/s), flash point (165℃), acid value (0.03mg KOH/g), sulfur content (0.02%), carbon residues (0.06%) and cetane number (56.1).
引文
[1]赵群,王红岩,刘德勋,杨慎,董雷.世界生物柴油产业发展现状及我国生物柴油发展建议[J].广州化工,2012,40(17):44-46
    [2]闵恩泽.发展我国生物柴油产业的探讨[J].当代石油石化,2005,13(11):8-11
    [3]巩利平.论我国发展生物柴油的三大意义[J].太原大学学报,2008,9(2):139-140
    [4]李莹莹.中国石油发展现状、问题与前景分析[J].中国能源,2010,32(12):17-20
    [5]冀星,郗小林,钱家麟.我国石油安全战略探讨[J].中国能源,2004,26(1):16-22
    [6]Shay EG. Diesel fuel from vegetable oils:status and opportunities [J]. Biomass Bioenergy,1993,4:228-240
    [7]Janaun J, Ellis N. Perspectives on biodiesel as a sustainable fuel [J]. Renewable and Sustainable Energy Reviews,2010,14:1312-1320
    [8]何风苗,雷昌菊,江香梅.生物质能源——生物柴油研究进展[J].江西林业科技,2007,1:45-48
    [9]张恬,袁银南.生物柴油的环境效益与社会经济效益[J].能源环境保护,2005,19(2):16-19
    [10]Ma F, Hanna MA. Biodiesel production:a review[J]. Bioresource Technology,1999,70:1-15
    [11]吕鹏梅,袁振宏,廖翠萍,孔晓英,马隆龙,吴创之.生物柴油标准分析与制定研究[J].现代化工,2006,26(12):8-14
    [12]韩德奇.生物柴油的现状与发展前景[J].石油化工技术经济,2002,18(4):34-36
    [13]Ma F, Milford AH. Biodiesel production:a review[J]. Bioresource Technology,1999,70:4-15
    [14]周倩.欧洲扩大生物柴油的生产[J].国际化工信息,2003,7:22-23
    [15]忻耀年.生物柴油在德国和欧洲的发展[J].中国油脂,2008,33(4):1-6
    [16]周良虹,黄亚晶.国外生物柴油产业与应用状况[J].可再生能源,2005,4:62
    [17]蒲晓斌,蒋良才,郑超英.德国生物柴油加工利用现状考察报告[J].化工科技市场,2007,30(1):24-26
    [18]冀星,王漩.世界各国生物柴油应用情况[J].国际化工信息,2002,9:1-4
    [19]钱伯章.生物柴油生产的现状及其技术进展[J].节能环保,2006,1:14-17
    [20]朱行.世界主要国家和地区生物燃料发展现状和趋势展望[J].国内外农业,2010,4:126-130
    [21]金青哲,刘元法,岳琨.生物柴油发展现状和趋势[J].粮油加工与食品机械,2006,1:5-6
    [22]蒋剑春,杨凯华,聂小安.生物柴油的研究与应用[J].新能源与新材料,2004,5:22-25
    [23]柏杰.发展生物柴油大有可为[J].中国科技产业,2002,9:64
    [24]岳德荣,王曙明,张永锋,郭中校,赵国臣.巴西农业生物质能源的研究与利用[J].吉林农业科学,2008,33(5):3-5
    [25]李昌珠,黄振,杨艳.巴西生物质能科研和产业化动态[J].湖南林业科技,2011,38(2):1-5
    [26]周良虹,黄亚晶.国外生物柴油产业与应用状况[J].可再生能源,2005,122(4):62-66
    [27]王茂丽,周德翼,韩媛.世界生物柴油的发展现状及对中国油料市场的影响[J].生态经济,2009,4:55-57
    [28]胡宗泰,王英阁,李继香.生物柴油研究现状和发展趋势[J].粮食与油脂,2006,10:1 1-12
    [29]代永刚,马毓霞,南喜平,王曙文,王海岩.生物柴油的现状及发展前景[J].粮油食品科技,2006,14(1):17-19
    [30]朱建良,张冠杰.国内外生物柴油研究生产现状及发展趋势[J].化工时刊,2004,18(1):23-27
    [31]盛梅,李为民,邬国英.生物柴油研究进展[J].中国油脂,2003,4:66-70
    [32]杨颖,田从学.我国生物柴油产业现状及发展对策[J].中国粮油学报,2010,25(2):150-154
    [33]梁红.我国生物能源产业的发展前景与对策[J].生态经济,2007,5:106-108
    [34]Adams C, Peters JF, Rand MC, Schroer BJ, Ziemke MC. Investigation of soybean oil as a diesel fuel extender:Endurance tests [J]. Journal of American Oil Chemists' Society,1983,60:1574-1579
    [35]Peterson CL, Auld DL, Korus RA. Winter rape oil fuel for diesel engines:Recovery and utilization [J]. Journal of American Oil Chemists' Society,1983,60:1579-1587
    [36]Ziejewski MZ, Kaufman KR, Schwab AW. Diesel engine evaluation of non-sunflower oil-aqueous ethanol microemulsion [J]. Journal of American Oil Chemists' Society,1984,66:1626-1630
    [37]Georing CE, Fry B. Engine durability screening test of a diesel oil/soy oil/alcohol microemulsion fuel [J]. Journal of American Oil Chemists' Society,1984,61:1628-1632
    [38]Neuma CDT, Nero AAD, Silva AC. New microemulsion system using diesel and vegetable oils [J]. Fuel,2001,80:75-80
    [39]Ziejewski MZ, Pratt GL, Kaufman KR. Vegetable Oils as Diesel Fuel [C]. Seminar Ⅱ, Northern Regional Research Center, Peoria, Illinois,1983
    [40]Billaud F, Dominguez V, Broutin P, Busson C. Production of hydrocarbons by pyrolysis of methyl esters from rapeseed oil[J]. Journal of American Oil Chemists' Society,1995,72:1149-1154
    [41]Schwab AW, Bagby MO, Freedman B. Preparation and properties of diesel fuels from vegetable oils [J]. Fuel,1987,66:1372-1377
    [42]Zhang Y. Biodiesel Production from Waste Cooking Oil:1. Process Design and Technological Assessment Review [J]. Bioresource Technology,2003,89:1-16
    [43]Demirbas A. Biodiesel from vegetable oils via transesterification in supercritical methanol [J]. Energy Conversion and Management,2002,43:2349-2355
    [44]Vicente G, Martinez M, Aracil J. Integrated biodiesel production:a comparison of different homogeneous catalysts systems [J]. Bioresource Technology,2004,92:297-305
    [45]Darnoko D, Cheryan M. Kinetics of palm oil transesterification in a batch reactor [J]. Journal of American Oil Chemists' Society,2000,12:1263-1267
    [46]鞠庆华,曾昌凤,郭卫军,张利雄,徐南平.酯交换法制备生物柴油的研究进展[J].化工进展,2004,23:1053-1057
    [47]Felizardo P, Correia MJN, Raposo I, Mendes JF, Berkemeier R, Bordado JM. Production of biodiesel from waste frying oils [J]. Waste Management,2006,26:487-494
    [48]Ramadhas AS, Jayaraj S, Muraleedharan C. Biodiesel production from high FFA rubber seed oil[J]. Fuel 2005,84:335-340
    [49]Encinar JM, Gonzalez JF, Sabio E, Ramiro MJ. Preparation and Properties of Biodiesel from Cynara Carduneulus L. oil [J]. Industrial and Engineering Chemistry Research,1999,38:2927-2931
    [50]Freedman B, Butterfield RO, Pryde EH. Transesterification kinetics of soybean oil [J]. Journal of American Oil Chemists' Society,1986,63:1375-1380
    [51]Crabbe E, Nolasco-Hipolito C, Kobayashi G, Sonomoto K, Ishizaki A. Biodiesel production from crude palm oil and evaluation of butanol extraction and fuel properties [J]. Process Biochemistry,2001,37: 65-71
    [52]谢国剑.高酸值潲水油制取生物柴油的研究[J].化工技术与开发,2005,34(2):37-30
    [53]Sheldon RA, Lau RM, Sorgedrager MJ, van Rantwijk F. Biocatalysis in ionic liquids [J]. Green Chemistry,2002,4:147
    [54]Pei YC, Wang JJ, Wu K, Xuan XP, Lu XJ. Ionic liquid-based aqueous two-phase extraction of selected proteins [J]. Separation and Purification Technology,2009,64:288-295.
    [55]Pandey S. Analytical applications of room-temperature ionic liquids:a review of recent efforts [J]. Analytica Chimica Acta,2006,556:38-45
    [56]Han X, Armstrong DW. Ionic liquids in separations [J]. Accounts of Chemical Research,2007,40: 1079-1086
    [57]Zeng H, Wang YZ, Kong JH, Nie C, Yuan Y. Ionic liquid-based microwave-assisted extraction of rutin from Chinese medicinal plants [J]. Talanta,2010,83:582-590
    [58]李雪辉,李榕,陈学伟,王芙蓉,王乐夫.碱性离子液体的研究进展[J].工业催化,2007,15(5):1-5
    [59]王均凤,张锁江,陈慧萍,李闲,张密林.离子液体的性质及其在催化反应中的应用[J].过程工程学报,2003,3(2):177-185
    [60]Wasserscheid P, Keim W. Ionic liquids-new "solutions" for transition metal catalysis [J]. Angewandte Chemie,2000,39:3773-3789
    [61]Wilkes JS. A short history of ionic liquids from molten salts to neoteric solvents [J]. Green Chemistry, 2002,4:73-80
    [62]Chum HL, Koch VR, Miller LL, Osteryoung RA. Electrochemical scrutiny of organometallic iron complexes and hexamethylbenzene in a room temperature molten salt[J]. Journal of American Oil Chemists' Society,1975,97:3264-3265
    [63]Wilkes JS, Levisky JL, Wilson RA, Hussey CL. Dialkylimidazolium chloroaluminate melts:a new class of room temperature ionic liquids for electrochemistry, spectroscopy, and synthesis [J]. Inorganic Chemistry,1982,21:1263-1264
    [64]Wilkes JS, Zaworotko MJ. Air and water stable 1-ethyl-3-methylidazolium based ionic liquids [J]. Journal of Chemistry Society Chemistry Communication,1992,13:965-966
    [65]杨雅立,王晓化,寇元,闵恩泽.不断壮大的离子液体家族[J].化工进展,2003,15(6):471-476
    [66]邵嫒,邓宇.离子液体的应用研究进展[J].精细化工中间体,2005,35(6):14-18
    [67]Smith GP, Dworkin AS, Pagni RM. Bronsted Superacidity of HC1 in a Liquid Chloroaluminate AlCl3-1-Ethyl-3-Methyl-1H-Imidazolium Chloride [J]. Journal of American Oil Chemists' Society,1989,111: 525-530
    [68]Cole AC, Jensen JL, Ntai I, Tran KLT, Weaver KJ, Forbes DC, Davis JH. Novel Bronsted Acidic Ionic Liquid and Their Use as Dual Solvent-Catalysts [J]. Journal of American Oil Chemists' Society,2002, 124:5962-5963
    [69]Singh V, Kaur S, Sapehiyia V, Singh J, Kad GL. Microwave accelerated preparation of [bmim][HSO4] ionic liquid:an acid catalyst for improved synthesis of coumarins [J]. Catalysis Communications,2005, 6:57-60
    [70]李红娟,于世涛,刘福胜,李红亮,解从霞.酸功能化离子液体催化合成三乙酸甘油酯[J].化工进展,2007,26(8):1120-1124
    [71]吴芹,陈和,韩明汉,王金福,金涌.B酸离子液体催化棉籽油酯交换制备生物柴油[J].石油化工,2006,35(6):583-586
    [72]李怀平,汪全义,兰先秋,王欣,宋航.离子液体[Hmim]HSO4催化菜籽油制备生物柴油[J].中国油脂,2008,33(4):57-59
    [73]Zhang L, Xian M, He YC, Li LZ, Yang JM, Yu ST, Xu X. A Bronsted acidic ionic liquid as an efficient and environmentally benign catalyst for biodiesel synthesis from free fatty acids and alcohols [J]. Bioresource Technology,2009,100:4368-4373
    [74]Fulzele DP, Satdive RK. Comparison of techniques for the extraction of the anti-cancer drug camptothecin from Nothapodytes foetida [J]. Journal of Chromatography A,2005,1063:9-13
    [75]胡锦蓉,殷丽君.喜树种子油的理化性质及脂肪酸组成的试验研究[J].中国农业大学学报,2003,8(5):30-32
    [76]Li J, Zu YG, Luo M, Gu CB, Zhao CJ, Efferth T, Fu YJ. Aqueous enzymatic process assisted by microwave extraction of oil from yellow horn(Xanthoceras sorbifolia Bunge.) seed kernels and its quality evaluation [J]. Food Chemistry,2013,138:2152-2158
    [77]Guo F, Fang Z, Tian XF, Long YD, Jiang LQ. One-step production of biodiesel from Jatropha oil with high-acid value in ionic liquids [J]. Bioresource Technology,2011,102:6469-6472
    [78]Zhang S, Zu YG, Fu YJ, Luo M, Liu W, Li J, Efferth T. Supercritical carbon dioxide extraction of seed oil from yellow horn(Xanthoceras sorbifolia Bunge.) and its anti-oxidant activity [J]. Bioresource technology,2010,101:2537-2544
    [79]郭玉宝,汤斌,裘爱泳,季长路,刘同山.水代法从油茶籽中提取茶油的工艺[J].农业工程学报,2008,24(9):249-252
    [80]纪鹏,周建平,刘向宇.微波辅助水代法提取油茶籽油条件研究[J].现代食品科技,2010,26(5):486-489
    [81]Reyes LH, Rahman GMM, Kingston HMS. Robust microwave-assisted extraction protocol for determination of total mercury and methylmercury in fish tissues [J]. Analytica Chimica Acta,2008, 631:121-128
    [82]Proestos C, Komaitis M. Application of microwave-assisted extraction to the fast extraction of plant phenolic compounds [J]. LWT,2007,41:652-659
    [83]于海燕,周绍箕.文冠果油制备生物柴油的研究[J].中国油脂,2009,34(3):43-45
    [84]Harrington KJ. Chemical and physical properties of vegetable oil esters and their effect on diesel fuel performance[J]. Biomass Bioenergy,1986,9:1-17
    [85]Erale MJ, Seddon KR, Adams CJ, Roberts G. Friedel-Crafts reaction in room temperature ionic liquids [J]. Chemistry Communication,1998,19:2097-2098
    [86]Yin DH, Li CZ, Tao L, Yu NY, Hu S, Yin DL. Synthesis of diphenylmethane derivatives in Lewis acidic ionic liquids[J]. Journal of Molecular Catalysis,2006,245:260-265
    [87]Fang D, Zhou XL, Ye ZW, Liu ZL. Bronsted acidic ionic liquids and their use as dual solvent-catalysts for fischer esterifications[J]. Industrial Engineering Chemistry Research,2006,45:7982-7984
    [88]Ghiaci M, Aghabarari B, Habibollahi S, Gil A. Highly efficient Bronsted acidic ionic liquid-based catalysts for biodiesel synthesis from vegetable oils[J]. Bioresource Technology,2011,102:1200-1204
    [89]Liu SW, Zhou HX, Yu ST, Xie CX, Liu FS, Song ZQ. Dimerization of fatty acid methyl ester using Bronsted-Lewis acidic ionic liquid as catalyst [J]. Chemical Engineering Journal,2011,174:396-399
    [90]Guo F, Fang Z, Tian XF, Long YD, Jiang LQ. One-step production of biodiesel from Jatropha oil with high-acid value in ionic liquids [J]. Bioresource Technology,2011,102:6469-6472
    [91]Tanabe K, Takeshita T. Catalytic Activity and Acidic Property of Solid Metal Sulfates[J]. Advanced Catalyst,1967,17:315-349
    [92]Wang Y, Ou S, Liu Z, Xue F, Tang S. Comparison of two different processes to synthesize biodiesel by waste cooking oil [J]. Journal Molecular Catalysis A:Chemistry,2006,252:107-112
    [93]黄化民,徐之雒,刘福安,王梅.硫酸盐水合物催化下的酯化反应II.催化线性自由能方程[J].化学学报,1983,41(12):1087-1090
    [94]刘福安,黄化民.硫酸盐水合物催化下的醋化反应——反应常数与催化剂的关系[J].吉林大学自然科学学报,1987,2:106-108
    [95]Xing H, Wang T, Zhou Z, Dai Y. The sulfonic acid-functionalized ionic liquids with pyridinium cations: Acidities and their acidity-catalytic activity relationships [J]. Journal of Molecular Catalysis A: Chemistry,2007,264:53-59
    [96]Liang XZ, Gong GZ, Wu HH, Yang JG. Highly efficient procedure for the synthesis of biodiesel from soybean oil using chloroaluminate ionic liquid as catalyst [J]. Fuel,2009,88:613-616
    [97]Liu S, Xie C, Yu S, Liu F. Dimerization of rosin using Br(?)nsted-Lewis acidic ionic liquid as catalyst[J]. Catalysis Communication,2008,9:2030-2034
    [98]Eskilsson CS, Bjorklund E. Analytical-scale microwave-assisted extraction[J]. Journal of Chromatography A,2000,902:227-250
    [99]Darnoko D, Cheryan M. Kinetics of Palm Oil Transesterification in a Batch Reactor [J]. Journal of American Oil Chemsis' Society,2000,77:1263-1267
    [100]Freedman B, Butterfield RO, Pryde EH. Variables affecting the yields of fatty esters from transesterified vegetable oils [J]. Journal of American Oil Chemsis' Society,1986,63:1375-1380
    [101]Li J, Fu YJ, Qu XJ, Wang W, Luo M, Zhao CJ, Zu YG. Biodiesel production from yellow horn (Xanthoceras sorbifolia Bunge.) seed oil using ion exchange resin as heterogeneous catalyst[J]. Bioresource Technology,2012,108:112-118