指纹图谱技术结合化学计量学在某些食品和中药样品质量控制中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,指纹图谱技术和化学计量学方法被广泛应用到食品和中药的质量控制中,这些技术能够较好的解决定性和定量控制食品和中药的内在质量,有效地保证食品的品质和中药的药效这一复杂问题。指纹图谱技术具有全面性、整体性、层次性、关联性和模糊性等特点,能够尽可能全面地获得食品和中药的化学组分信息,建立快速而有效的食品和中药安全质量控制体系,对国民经济的发展作出贡献。本论文以几种常见的食品和中药:山楂、薄荷、白前及其混伪品(白薇和徐长卿)和紫苏叶为研究对象,利用近红外漫反射光谱(NIRS)、高效液相色谱-二极管阵列检测(HPLC-DAD)、超高效液相色谱四级杆飞行时间串联质谱(UPLC-Q-TOF-MS)和顶空气相色谱质谱联用(HS-GC-MS)采集样品的波谱数据并建立可靠的指纹图谱,采用标准化学方法分别测定了山楂和薄荷的主要化学成分和抗氧化活性,最后结合多种化学计量学方法对所研究的体系进行评估和研究,旨在为上述试验材料的质量控制和评价提供一种比较新型的方法。主要研究内容及结果如下:
     1.建立了一种可定量测定中药及其混伪品含量的近红外光谱分析方法,采用的多元校正技术有偏最小二乘回归(PLSR)和径向基函数人工神经网络(RBF-ANN)。本研究采集了中药白前、白薇、徐长卿、白前中混有一种或两种伪品的近红外漫反射光谱数据,波长范围为800-2500nm,包括三个样品集,白前中混有白薇,白前中混有徐长卿,白前中同时混有白薇和徐长卿。PLSR和RBF-ANN模型均得到了令人满意的结果,即使掺假水平的质量比为5%时,但是RBF-ANN对上述三种样品预报的预报误差均方根(RMSEP)的结果更好。本研究表明利用近红外漫反射光谱结合多元数据分析方法(如PLSR或RBF-ANN)定量分析中药中混有一种或两种伪品含量是可行的。
     2.建立了近红外光谱校正模型用于区分来自三个不同产地的山楂,同时测定其中的总糖、总酸、总酚和总抗氧化活性。主成分分析(PCA)被用于不同地理来源水果的区分,三种模式识别方法:线性判别分析(LDA)、偏最小二乘判别分析(PLS-DA)和反传人工神经网络(BP-ANN)被用于分类并且比较了它们的预报结果。此外,基于一阶导数处理后的近红外光谱数据的三种多元校正模型:偏最小二乘回归(PLSR)、反传人工神经网络(BP-ANN)和最小二乘支持向量机(LS-SVM)被用于定量分析四个化学指标,即总糖、总酸、总酚和总抗氧化活性,同时利用预报集样品检验模型的可靠性。
     3.采用顶空气相色谱质谱联用(HS-GC-MS)、高效液相色谱-二极管阵列检测(HPLC-DAD)和超高效液相色谱四级杆飞行时间串联质谱(UPLC-Q-TOF-MS)结合多元数据分析研究了来自不同地理来源的薄荷样品。HS-GC-MS和HPLC-DAD数据集的主成分分析(PCA)和多准则决策法(MCDM) PROMETHEE#GAIA的得分投影图表明来自三个不同地区的样品形成明显的分界,反传人工神经网络(BP-ANN)和偏最小二乘判别分析(PLS-DA)模型的预报能力令人满意。PLS-DA的权重回归系数得到对于分类贡献较大的化合物主要有:chlorogenic acid, unknown3, kaempherol7-O-rutinoside, salvianolic acid L, hesperidin, diosmetin, unknown6和pebrellin。结果表明HS-GC-MS和UPLC-Q-TOF-MS结合多元数据分析可被用于植物性材料如薄荷的地理来源区分,同时鉴别对于分类起主要作用的化合物。
     4.建立了一种可同时分析薄荷中多种化学成分和生物活性的新型的近红外光谱方法,如总多糖、总黄酮、总多酚和总抗氧化活性。为了分辩上述组分的近红外光谱矩阵,最小二乘支持向量机(LS-SVM)被证明是最适合组分预测的化学计量学方法,尽管结果稍优于径向基函数偏最小二乘法(RBF-PLS),而偏最小二乘回归(PLSR)的结果不是很好。此外,主成分分析(PCA)和系统聚类分析(HCA)能够区分四个不同地区的样品,对三种分类方法:K-最近邻法(KNN)、线性判别分析(LDA)和偏最小二乘判别分析(PLS-DA)的预报结果进行了比较。总的来说,此方法不仅节省了分析时间而且减少了传统方法所需的试剂消耗,可进一步验证以取代传统的湿化学分析方法。
     5.利用高效液相色谱全轮廓图指纹图谱结合化学计量学建立了一种可用于区分不同栽培地区紫苏叶样品的方法,经过自适应迭代再加权最小二乘法(airPLS)和相关优化翘曲(COW)校正后,基线漂移和保留时间漂移现象得到了明显的改善,全轮廓色谱图数据为输入变量时,PCA结果表明不同来源的样品能够按特性各自聚为一类;分段间隔压缩变量后数据的PCA得到与全轮廓色谱图数据为输入变量时相当的结果,PLS-DA模型对于分类的识别能力和预报能力分别为92.8%和89.6%。
Fingerprinting technology combined with chemometrics have been widely applied in the quality control of food and traditional Chinese medicine (TCM) products, which can effectively solve the problem of the intrisic quality control of food and TCM, and ensure the attributes of foods and pharmaceutical effects of TCM. Fingerprinting technology has the characterics of comprehensiveness, integrity, hierarchy, relevance, and fuzziness, the chemical information of food and TCM can be obtained comprehensively using this method. Therefore, it is important and necessary to construct a rapid and effective food and TCM quality control system for people health. In this study, some common food and TCM samples, such as Cynanchum stauntonii (CS) and its adulterants(Cyannchum atrati (CA) and Cynanchum paniculati (CP)); Chinese hawthorn fruit; Mint (Mentha haplocalyx Briq.); Perilla frutescens (L.) Britt, were used as samples in this study. The analytical methods included near-infrared spectroscopy (NIRS), high performance liquid chromatography-diode array detector (HPLC-DAD), ultra high performance liquid chromatography-quadrupole-time-of-flight-mass spectrometry (UPLC-Q-TOF-MS), and head space-gas chromatography-mass spectrometry (HS-GC-MS), several chemical components and antioxidant activity in Chinese hawthorn and Mint were determined using standard analytical methods, incorporating with several chemometric methods for data analysis, aiming at providing novel methods for the quality control and evaluation of the above-mentioned materials. The main conclusions were as follows:
     1. A rapid near-infrared spectroscopy (NIRS) analytical method which was supported by multi-variate calibration, e.g. partial least squares regression (PLSR) and radial basis function artificial neural networks (RBF-ANN) was developed, in order to quantify the TCM and the adulterants. In this work, Cynanchum stauntonii (CS), a commonly used TCM, in mixtures with one or two adulterants-two morphological types of TCM, Cynanchum atrati (CA) and Cynanchum paniculati (CP), were determined using NIR reflectance spectroscopy. The three sample sets, CS adulterated with CA or CP, and CS with both CA and CP, were measured in the range of800-2500nm. Both PLSR and RBF-ANN calibration models provided satisfactory results, even at an adulteration level of5%(w/w), but the RBF-ANN models with better root mean square error of prediction (RMSEP) values for CS, CA, and CP arguably performed better. Consequently, this work demonstrates that the NIR method of sampling complex mixtures of similar substances such as CS adulterated by CA and/or CP is capable of producing data suitable for the quantitative analysis of mixtures consisting of the original TCM adulterated by one or two similar substances, provided the spectral data are interrogated by multi-variate methods of data analysis such as PLSR or RBF-ANN.
     2. Near-infrared spectroscopy (NIRS) calibrations were developed for the discrimination of Chinese hawthorn(Crataegus pinnatifida Bge. var. major) frruit from three geographical regions as well as for the estimation of the total sugar, total acid, total phenolic content, and total antioxidant activity. Principal component analysis (PCA) was used for the discrimination of the fruit on the basis of their geographical origin. Three pattern recognition methods:linear discriminant analysis, partial least squares-discriminant analysis, and back-propagation artificial neural networks were applied to classify and compare these samples. Furthermore, three multivariate calibration models based on the first derivative NIR spectroscopy, partial least squares regression, back propagation artificial neural networks and least squares-support vector machines (LS-SVM), were constructed for quantitative analysis of the four analytes, total sugar, total acid, total phenolic content, and total antioxidant activity and validated by prediction data sets.
     3. Mint (Mentha haplocalyx Briq.) obtained from different geographical regions was characterized using head space-gas chromatography-mass spectrometry (HS-GC-MS) and ultra high performance liquid chromatography-quadrupole-time-of-flight-mass spectrometry (UPLC-Q-TOF-MS) and followed multivariate data analyses. Principal component analysis (PCA), and the rank-ordering multi-criteria decision making (MCDM) PROMETHEE and GAIA score plots from HS-GC-MS and HPLC-DAD data sets showed a clear distinction among mint from three different regions in China. Classification results showed that satisfactory performance of the prediction ability for back propagation-artificial neural networks (BP-ANN) and partial least suqares-discriminant analysis (PLS-DA). The major compounds that contributed to the discrimination were chlorogenic acid, unknown3, kaempherol7-O-rutinoside, salvianolic acid L, hesperidin, diosmein, unknown6, and pebrellin in mint on the basis of regression coefficients of PLS-DA model. The results indicated that HS-GC-MS and UPLC-Q-TOF-MS fingerprints in combination with chemometric analyses can be used to distingusih the grographical origins of plants and identify compounds were responsible for discrimination.
     4. A novel near-infrared spectroscopy (NIRS) has been researched and developed for the simultaneous analyses of the chemical components and associated properties of Mint (Mentha haplocalyx Briq.) samples, which are commonly used for tea brewing, namely, total polysaccharide content (TPSC), total flavonoid content (TFC), total phenolic content (TPC), and total antioxidant activity (TAA). To resolve the NIRS data matrix for such analyses, LS-SVM was found to be the best chemometrics method for prediction although it was closely followed the RBF-PLS model; notably, the commonly used PLS was unsatisfactory in this case. Additionally, principal component analysis (PCA) and hierarchical cluster analysis (HCA), were able to distinguish the Mint samples according to their four provinces of origin; this was further facilitated with the use of the chemometrics classification methods-K-nearest neighbors (KNN), linear discriminant analysis (LDA), and partial least squares-discriminant analysis (PLS-DA). In general, given the potential savings on sampling and analysis time as well as on the costs of special analytical reagents required for the standard individual methods, NIRS offers a very attractive alternative for the simultaneous analysis of Mint samples.
     5. Perilla frutescens (L.) Britt samples from different geographical origins in China were distinguished using liquid chromatography incorporated with chemometrics method, a total of84samples were used for data analysis. The chromatographic fingerprints demonstrated the chemical compositons of the samples, enabling the discrimination of samples from different origins is possible. Prior to classification, the datasets were subjected to pretreatment including baseline correction and retention time alignment. Principal component analysis (PCA) was performed to the aligned and compressed data matrix, respectively, to investigate the data distribution and evaluate the data quality, seperation among the three sets of samples was observed in the PCA score plots. Partial least squares-discriminant analysis (PLS-DA) provided the recognition ability and prediction ability of92.8%and89.6%, respectively, and a relative satisfactory results were obtained in this study.
引文
[1]Shogren J F. Food-safety economics:consumer health and welfare. Proceedings of the Frontis workshop on new approaches to food-safety economics [M]. Wageningen, Netherlands,2002.
    [2]Sykuta M. Agricultural organization in an era of traceability [J]. Journal of Agricultural and Applied Economics,2005,27(2):365~377.
    [3]Zhao Y, Zhao G Study on the traceability syestem in the food supply chain [J]. Food and Fermentation Industry,2007,33(9):146~149.
    [4]Zhang J, Zhang X D, Dediu L, Victor C. Review of the current application of fingerprints allowing detection of food adulteration and fraud in China [J]. Food Control,2011,22:1126~1135.
    [5]Inventory of herbal substances for assessment-Alphabetical order, European Medicine Evaluation Agency, London, UK,2010. http://www.ema.europa.eu/docs/en.GB/document_library/other/2009/12/WC500017723.pdf
    [6]Guideline on declaration of herbal substances and herbal preparations in herbal medicinal products/traditional herbal medicinal products. European Medicine Evaluation Agency, London, UK, 2010. http://www.ema.europa.eu/docs/en.GB/document.library/Scientific.guideline/2009/09/WC500003283.pd f.
    [7]Guideline on the use of CTD format in the preparation of a registration application for traditional herbal medicinal products. European Medicine Evaluation Agency, London, UK,2008. http://www.ema.europa.eu/docs/en.GB/document.library/Regulatory and procedural guideline/2009/12/WC500017156.pdf
    [8]Comments on FDA Guidance for Industry:Botanical Drug products, Food and Drug Administration. Rockville, MD, USA,2000. http://www.fda.gov/downloads/Drugs/Guidance Compliance Regulatory Information/Guidances/ucm070491.pdf
    [9]Status Quo of Drug Supervision in China, Information Office of the State Council of the people's Republic of China, Beijing, China,2008. http://former.sfda.gov.cn/cmsweb/webportal/W43879541/A64028182. html
    [10]Guidelines for the assessment of herbal medicines, World Health Organization, Geneva, Switzerland, 1991.http://whqlibdoc.who.int/HQ/1991/WHO_TRM_91.4.pdf
    [11]周伟,陈立仁,王彩霞,蒋玉梅.食品质量指纹技术[J].甘肃农业大学学报,2006,2:115-118.
    [12]国家药典委员会编.中华人民共和国药典(2010年版一部)[S].北京:化学工业出版社,2010.
    [13]IUPAC Compendium of Chemical Terminology [G]. Royal Society of Chemistry, Cambridge, UK,1997.
    [14]罗国安,梁琼麟,王义明.中药指纹图谱-质量评价、质量控制与新药开发[M].北京:化学工业出版社,2009.
    [15]王莉.现代仪器分析在白酒行业中的应用和前景展望[J].酿酒,2006,33(5):28~32.
    [16]蒋玉梅,毕阳,周小平.果腔顶空法分析厚皮甜瓜“银帝”的挥发性成分[J].食品工业科技,2005,26(8):173-176.
    [17]Zou P, Hong Y, Koh H L. Chemical fingerprinting of Isatis indigotica root by RP-HPLC and hierchical clustering analysis [J]. Journal of Pharmaceutical and Biomedical Analysis,2005,38:514~520.
    [18]Yang L W, Wu D H, Tang X, Peng W, Wang X R, Ma Y, Su W W. Fingerprint quality control of Tianjihuang by high-performance liquid chromatography-photodiode array detection [J]. Journal of Chromatography A,2005,1070:35~42.
    [19]Alaerts G, Matthijs N, Smeyers-Verbeke J, Heyden Y V. Chromatographic fingerprint development for herbal extracts:A screening and optimization methodology on monolithic columns [J]. Journal of Chromatography A,2007,1172:1~8.
    [20]Singhuber J, Zhu M, Prinz S, Kopp B. Aconitum in traditional Chinese medicine-A valuable drug or an unpredictable risk? [J]. Journal of Ethnopharmacology,2009,126:18~30.
    [21]Bilia A R, Melillo de Malgalhaes P, Bergonzi M C, Vincieri F F. Simultaneous analysis of artemisinin and flavonoids of several extracts of Artemisia annua L. obtained from a commercial sample and a selected cultivar [J]. Phytomedicine,2006,13:487~493.
    [22]Ortet R, Prado S, Mouray E, Thomas O P. Sesquiterpene lactones from the endemic Cape Verdean Artemisia gorgonum [J]. Phytochemistry,2008,69:2961~2965.
    [23]Ma C F, Wang H H, Lu X, Xu G W, Liu B Y. Metabolic fingerprinting investigation of Artemisia annua L. in different stages of development by gas chromatography and gas chromatography-mass spectrometry [J]. Journal of Chromatography A,2008,1186:412~419.
    [24]Toh D F, New L S, Koh H L, Chan E C Y. Ultra-high performance liquid chromatography/time-of-flight mass spectrometry (UHPLC/TOFMS) for time-dependent profiling of raw and steamed Panax notoginseng [J]. Journal of Pharmacology and Biomedicinal Analysis,2010,52:43~50.
    [25]Sauina J. Characterization of wines using compositional profiles and chemometrics [J]. TRAC-Trends in Analytical Chemistry,2010,29:234~245.
    [26]高文远.现代中药质量控制及技术[M].北京:科学技术出版社,2010.
    [27]Zhou J H, Li Y, Zhao J, Xue X F, Wu L M, Chen F. Geographical traceability of propolis by high-performance liquid-chromatography fingerprint [J]. Food Chemistry,2008,108:749~759.
    [28]Tang D Q, Yang D Z, Tang A B, Gao Y Y, Jiang X L, Mou J, Yin X X. Simultaneous chemical fingerprint and quantitative analysis of Ginkgo biloba extract by HPLC-DAD [J]. Analytical and Bioanalytical Chemistry,2010,396:3087~3095.
    [29]Chen X Q, Zan K, Yang J, Liu X X, Mao Q, Zhang L, Lai M X, Wang Q. Quantitative analysis of triterpenoids in different parts of Ilex hainanensis, Ilex stewardii, and Ilex pubescens using HPLC-ELSD and HPLC-MS" and antibacterial activity [J]. Food Chemistry,2011,126:1454~1459.
    [30]Ding X P, Wang X T, Chen L L, Qi J, Xu T, Yu B Y. Quality and antioxidant activity detection of Crataegus leaves using on-line high-performance liquid chromatography with diode array detector coupled to chemiluminescence detection [J]. Food Chemistry,2010,120:929~933.
    [31]Xie Z H, Zhao Y, Chen, P, Jing P, Yue J, Yu L L. Chromatographic fingerprint analysis and rutin and quercetin compositions in the leaf and whole-plant samples of Di- and Tetraploid Gynastemma pentaphyllum [J]. Journal of Agricultural and Food Chemistry,2011,59:3042~3049.
    [32]Zhao Y, Xie Z H, Niu, Y G, Shi H M, Chen P, Yu L L. Chemical compositions, HPLC/MS fingerprinting profiles and radical scavenging properties of commercial Gynostemma pentaphyllum (Thunb.) Makino samples [J]. Food Chemistry,2012,134:180~188.
    [33]Borges G, Crozier A. HPLC-PDA-MS fingerprinting to assess the authenticity of pomegranate beverages [J]. Food Chemistry,2012,135:1863~1867.
    [34]Shi Y H, Xie Z Y, Wang R, Huang S J, Li Y M, Wang Z T. Quantitative and chemical fingerprint analysis for the quality evaluation of Isatis indigotica based on ultra-performance liquid chromatography with photodiode array detector combined with chemometric methods [J]. International Journal of Molecular Sciences,2012,13:9035~9050.
    [35]Anklam E, Radovic B. Suitable analytical methods for determining the origin of European honey [J]. American Laboratory,2001,7:60~64.
    [36]Wang Y J, Yang C X, Li S H, Yang L, Wang Y N, Zhao J B, Jiang Q. Volatile characteristics of 50 peaches and nectarines evaluated by HP-SPME with GC-MS [J]. Food Chemistry,2009,116:356~364.
    [37]Chai Q Q, Wu B H, Liu W S, Wang L J, Yang C X, Wang Y J, Fang J B, Liu Y C, Li S H. Volatiles of plums evaluated by HS-SPME with GC-MS at the germplasm level [J]. Food Chemistry,2012,130: 432~440.
    [38]Aprea E, Biasioli F, Carlin S, Endrizzi I, Gasperi F. Investigation of volatile compounds in two raspberry cultivars by two headspace techniques:Solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) and proton-transfer reaction-mass spectrometry (PTR-MS) [J]. Journal of Agricultural and Food Chemistry,2009,57:4011~4018.
    [39]Cirlini M, Dall'Asta C, Silvanini A, Beghe D, Fabbri A, Galaverna G, Ganino T. Volatile fingerprinting of chestnut flours from traditional Emilia Romagna (Italy) cultivars [J]. Food Chemistry,2012,134: 662~668.
    [40]Parastar H, Jalali-Heravi M, Sereshti H, Mani-Vamosfaderani A. Chromatographic fingerprint analysis of secondary metabolites in citrus fruits peels using gas chromatography-mass spectrometry combined with advanced chemometric methods [J]. Journal of Chromatography A,2012,1251:176~187.
    [41]Ferrandino A, Carlomagno A, Baldassarre S, Schubert A. Varietal and pre-fermentative volatiles during ripening of Vitis vinifera cv Nebbiolo berries from three growing areas [J]. Food Chemistry,2012,135: 2340~2349.
    [42]Ganzera M. Quality control of herbal medicines by capillary electrophoresis:Potential, requirements and applications [J]. Electrophoresis,2008,29:3489~3503.
    [43]Franquet-Griell H, Checa A, Nunez O, Saurina J, Hernandez-Cassou S, Puignou L. Determination of polyphenols in Spanish wines by Capillary Zone Electrophoresis. Application to wine characterization by using chemometrics [J]. Journal of Agricultural and Food Chemistry,2012,60:8340~8349.
    [44]Sugimoto M, Kaneko M, Onuma H, Sakaguchi Y, Mori M, Abe S, Soga T, Tomita M. Changes in the charged metabolite and sugar profiles of pasteurized and unpasteurized Japanese sake with storge [J]. Journal of Agricultural and Food Chemistry,2012,60:2586~2593.
    [45]Ordiales E, Martin A, Benito M J, Hernandez A, Ruiz-Moyano S, Cordoba M D. Technological characterization by free zone capillary electrophoresis (FCZE) of the vegetable rennet (Cynara cardunculus) used in "Torta del Casar" cheese-making [J]. Food Chemistry,2012,133:227~235.
    [46]Zhou X G, Zheng C Y, Sun J Y, You T Y. Analysis of nephroloxic and carcinogenic aristolochic acids in Aristolochia plants by capillary electrophoresis with electrochemical detection at a carbon fiber microdisk electrode [J]. Journal of ChromatographyA,2006,1109:152~159.
    [47]Wang C, Han D D, Wang Z, Zang X H, Wu Q H. Analysis of Strychnos alkaloids in traditional Chinese medicines with improved sensitivity by sweeping micellar electrokinetic chromatography [J]. Analytica ChimicaActa,2006,572:190~196.
    [48]Zhu J H, Yu K, Chen X G, Hu Z D. Comparison of two sample preconcentration strategies for the sensitivity enhancement of flavonoids found in Chinese herbal medicine in micellar electrokinetic chromatography with UV detection [J]. Journal of Chromatography A,2007,1166:191~200.
    [49]Chopra S, Ahmad F J, Khar R K, Motwani S K, Mahdi S, Lqbal Z, Talegaonkar S. Validated high-performance thin-layer chromatography method for determination of trigonelline in herbal extract and pharmaceutical dosage form [J]. Analytica Chimica Acta,2006,577:46~51.
    [50]Annegowda H V, Mordi M N, Ramanathan S, Hamdan M R, Mansor S M. Effect of extraction techniques of phenolic content, antioxidant and antimicrobial activity of Bauhinia purpurea:HPTLC determination of antioxidants [J]. Food Analytical Methods,2012,5:226~233.
    [51]Tian R T, Xie P S, Liu H P. Evaluation of traditional Chinese herbal medicine:Chaihu (Bupleuri Radix) by both high-performance liquid chromatographic and high-performance thin-layer chromatographic fingerprint and chemometric analysis [J]. Journal of Chromatography A,2009,1216:2150-2155.
    [52]Salmon C N A, Bailey-Shaw Y A, Hibbert S, Green C, Smith A M, Williams LAD. Characterisation of cultivars of Jamaican ginger (Zingiber officinale Roscoe) by HPTLC and HPLC [J]. Food Chemistry, 2012,131:1517~1522.
    [53]Bazylko A, Tomczyk M, Flazinska A, Legas A. Chemical fingerprint of Potentilla species by using HPTLC method [J]. JPC-Journal of Planar Chromatography,2011,24(5):441~444.
    [54]Sukumar D, Arimboor R, Arumughan C. HPTLC fingerprinting and quantification of lignans as markers in sesame oil and its polyherbal formulations [J]. Journal of Pharmaceutical and Biomedical Analysis, 2008,47:795~801.
    [55]Xu C H, Sun S Q, Guo C Q, Zhou Q, Tao J X, Noda I. Multi-steps infrared macro-fingerprint analysis for thermal processing of Fructus viticis [J]. Vibrational Spectroscopy,2006,41:118~125.
    [56]Liu H X, Sun S Q, Lv G H, Liang X Y. Discrimination of extracted lipophilic constituents of Angelica with multi-steps infrared macro-fingerprint method [J]. Vibrational Spectroscopy,2006,40:202~208.
    [57]Karoui R, Downey G, Blecker C. Mid-infrared spectroscopy coupled with chemometrics:A tool for the analysis of intact food systems and the exploration of their molecular structure-quality relationships-A review [J]. Chemical Reviews,2010,110:6144~6168.
    [58]Mclntyre A C, Bilyk M L, Nordon A, Colquhoun G, Littlejohn D. Detection of counterfeit Scotch whisky samples using mid-infrared spectrometry with an attenuated total reflectance probe incorporating polycrystalline silver halide fibres [J]. Analytica Chimica Acta,2011,690:228~233.
    [59]Bevilacqua M, Bucci R, Magri A D, Magri A L, Marini F. Tracing the origin of extra virgin olive oils by infrared spectroscopy and chemometrics:A case study [J]. Analytica Chimica Acta,2012,717:39~51.
    [60]Cen H Y, He Y. Theory and application of near infrared reflectance spectroscopy in determination of food quality [J]. Trends in Food Science & Technology,2007,18:72~83.
    [61]Shen F, Yang D T, Ying Y B, Li B B, Zheng Y F, Jiang T. Discrimination between Shaoxing wines and other Chinese rice wines by near-infrared spectroscopy and chemometrics [J]. Food and Bioprocess Technology,2012,5:786~795.
    [62]Moghimi A, Aghkhani M H, Sazgarnia A, Sarmad M. Vis/NIR spectroscopy and chemometrics for the prediction of soluble solids content and acidity (pH) of kiwifruit [J]. Biosystems Engineering,2010,106: 295~302.
    [63]Vigni M L, Cocchi M. Near infrared spectroscopy and multivariate anlaysis to evaluate wheat flour doughs leavening and bread properties [J]. Analytica Chimica Acta,2013,764:17~23.
    [64]Kamruzzaman M, Elmasry G, Sun D W, Allen P. Prediction of some quality attributes of lamb meat using near-infrared hyperspectral imaging and multivariate analysis [J]. Analytica Chimica Acta,2012,714: 57~67.
    [65]Oliveri P, Casolino M C, Casale M, Medini L, Mare F, Lanteri S. A spectral transfer procedure for application of a single class-model to spectra recorded by different near-infrared spectrometers for authentication of olives in brine [J]. Analytica Chimica Acta,2013,761:46~52.
    [66]Christensen J, Norgaard L, Bro R, Engelsen S B. Multivariate autofluorescence of intact food systems [J]. Chemical Reviews,2006,106:1979-1994.
    [67]Airado-Rodriguez D, Galeano-Diaz T, Duran-Meras I, Wold J P. Usefulness of fluorescence excitation-emission matrices in combination with PARAFAC, as fingerprints of red wines [J]. Journal of Agricultural and Food Chemistry,2009,57:1711~1720.
    [68]Sadecka J, Tothova J. Fluorescence spectroscopy and chemometrics in the food classification-a review [J]. Czech Journal of Food Sciences,2007,25:159~173.
    [69]Ruoff K, Luginbuhl W, Kunzli R, Bogdavov S, Bosset J O, von der Ohe K, von der Ohe W, Amado R. Authentication of the botantical and geographical origin of honey by front-face fluorescence spectroscopy [J]. Journal of Agricultural and Food Chemistry,2006,64:6858~6866.
    [70]Guimet F, Ferr J, Boqu R, Vidal M, Garcia J. Excitation-Emission fluorescence spectroscopy combined with three-way methods of analysis as a complementary technique for olive oil characterization [J]. Journal of Agricultural and Food Chemistry,2005,53:9319~9328.
    [71]Alonso-Salces R M, Heberger K, Holland M V, Moreno-Rojas J M, Mariani C, Bellan G, Reniero F, Guillou C. Multivariate analysis of NMR fingerprint of the unsaponifiable fraction of virgin olive oils for authentication purposes [J]. Food Chemistry,2010,118:956~965.
    [72]Lee E J, Shaykhutdinov R, Weljie A M, Vogel H J, Facchini P J. Quality assessment of ginseng by1H NMR metabolite fingerprinting and profiling analysis [J]. Journal of Agricultural and Food Chemistry, 2009,57:7513~7522.
    [73]Shuib N H, Shaari K, Khatib A, Ralf Kneer M, Zareen S, Raof S M, Lajis N H, Neto V. Discrimination of young and mature leaves of Melicope ptelefolia using'H NMR and multivariate data analysis [J]. Food Chemistry,2011,126:640~645.
    [74]EI-Abassy R M, Donfack P, Materny A. Discrimination between Arabica and Robusta green coffee using visible micro Raman spectroscopy and chemometric analysis [J]. Food Chemistry,2011,126: 1443~1448.
    [75]Almeida M R, Alves R S, Nascimbem L B L R, Stephani R, Poppi R J, de Oliveira L F C. Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis [J]. Analytical and Bioanalytical Chemistry,2010,397:2693~2701.
    [76]Wang Q, Lonergan S M, Yu C X. Rapid determination of pork sensory quality using Raman spectroscopy [J]. Meat Science,2012,91:232~239.
    [77]Guo B L, Wei Y M, Pan J R, Li Y. Stable C and N isotope ratio analysis for regional geographical tracebility of cattle in China [J]. Food Chemistry,2010,118:915~920.
    [78]Hulsemann F, Flenker U, Parr M, Geyer H, Schanzer W. Authenticity control and identification of origin of synthetic creatine-monohydrate by isotope ratio mass spectrometry [J]. Food Chemistry,2011,125: 767~772.
    [79]Rummel S, Hoelzl S, Horn P, Rossmann A, Schlicht C. The combination of stable isotope abundance ratios of H, C, N and S with 87Sr/86Sr for geographical origin assignment of orange juices [J]. Food Chemistry,2010,118:890~900.
    [80]Chudzinska M, Baralkiewicz D. Application of ICP-MS method of determination of 15 elements in honey with chemometric approach for the verification of their authenticity [J]. Food and Chemical Toxicology,2011,49:2741~2749.
    [81]Llorent-Martinez E J, Ortega-Barrales P, Fernandez-de Cordova M L, Dominguez-Vidal A, Ruiz-Medina A. Investigation by ICP-MS of trace element levels in vegetable edible oils produced in Spain [J]. Food Chemistry,2011,127:1257~1262.
    [82]Mahmood N, Petraco N, He Y. Elemental fingerprint profile of beer samples constructed using 14 elements determined by inductively coupled plasma-mass spectrometry (ICP-MS):Multivariation analysis and potential application to forensic sample comparison [J]. Analytical and Bioanalytical Chemistry,2012,402:861~869.
    [83]Hanrahan G, Gomez F A. Chemometric methods in Capillary Electrophoresis [M]. Wiley, Hoboken, NJ, USA,2009.
    [84]Morgan E. Chemometrics: Experimental design [M]. Wiley, Hoboken, NJ, USA,1991.
    [85]Ji Y B, Xu Q S, Hu Y Z, Heyden Y V. Development, optimization and validation of a fingerprint of Ginkgo biloba extracts by high-performance liquid chromatography [J]. Journal of Chromatography A, 2005,1066:97~104.
    [86]Massart D L, Vandeginste B G M, Buydens L M C. Handbook of chemometrics and qualimetrics [M]. PartA, Elsevier, Amsterdam,1997.
    [87]Pravdova V, Walczak B, Massart D L. A comparison of two algorithms for warping of analytical signals [J]. Analytica Chimica Acta,2002,456:77~92.
    [88]Tomasi G, Van den Berg F, Andersson C. Correlation optimized warping and dynamic time warping as preprocessing methods for chromatographic data [J]. Journal of Chemometrics,2004,18:231~241.
    [89]Van Nederkassel A M, Daszykowski M, Eilers P H C, Heyden Y V. A comparison of three algorithms for chromatograms alignment [J]. Journal of Chromatography A,2006,1118:199~210.
    [90]Van Nederkassel A M, Xu C J, Lancelin P, Sarraf M, Mackenzie D A, Walton N J, Bensaid F, Lees M, Martin G J, Desmurs J R, Massart D L, Smeyers-Verbeke J, Heyden Y V. Chemometric treatment of vanillin fingerprint chromatograms effect of different signal alignments on principal component analysis plots [J]. Journal of Chromatography A,2006,1120:291~298.
    [91]Eilers P H C. Parametric time warping [J]. Analytical Chemistry,2004,76:404~411.
    [92]Walczak B, Wu W. Fuzzy warping of chromatograms [J]. Chemometrics and Intelligent Laboratory Systems,2005,77:173~180.
    [93]Massart D L, Vandeginste B G M, Buydens L M C, De Jong S, Lewi P W, Smeyers-Verbeke J. Handbook of Chemometrics and Qualimetrics A, Data Handling in science and technology 20A [M]. Elsevier, Amsterdam,1998.
    [94]Vandeginste B G M, Massart D L, Buydens L M C, De Jong S, Lewi P W, Smeyers-Verbeke J. Handbook of Chemometics and Qualimetrics B, Data Handling in science and technology 20B [M]. Elsevier, Amsterdam,1998.
    [95]Andersen C M, Bro R. Variable selection in regression- a tutorial [J]. Journal of Chemometrics,2010,24: 728~737.
    [96]Berrueta LA, Alonso-Salces R M, Heberger K. Supervised pattern recognition in food analysis [J]. Journal of Chromatography A,2007,1158:196~214.
    [97]Zou X B, Zhao J W, Povey M J W, Holmes M, Hanpin M. Variables selection methods in near-infrared spectroscopy [J]. Analytica Chimica Acta,2010,667:14~32.
    [98]Polshin E, Aernouts B, Saeys W, Delvaux F, Delvaux F R, Saison D, Hertog M, Nicolai B M, Lammertyn J. Beer quality sceeening by FT-IR spectrometry:Impact of measurement of strategies, data pre-processings and variables selection algorithms [J]. Journal of Food Engineering,2011,106:188-198.
    [99]Liao Y T, Fan Y X, Cheng F. On-line prediction of pH values in fresh pork using visible/near-infrared spectroscopy with wavelet de-noising and variable selection methods [J]. Journal of Food Engineering, 2012,109:668-675.
    [100]Sorol N, Arancibia E, Bortolato S A, Olivieri A C. Visible/near infrared-partial least-squares analysis of Brix in sugar cane juice:A test field for variable selection methods [J]. Chemometrics and Intelligent Laboratory Systems,2010,102:100~109.
    [101]Shin E C, Craft B D, Pegg R B, Phillips R D, Eitenmiller R R. Chemometric approach to fatty acid profiles in runner-type peanut cultivars by principal component anlysis (PCA) [J]. Food Chemistry,2010, 119:1262-1270.
    [102]Leardi R. Chemometrics in data analysis. In M. Lees (Ed.), Food authenticity and traceability [M]. Cambridge:Woodhead Publishing limited,2003.
    [103]Pereira H L, Sousa A J. Data analysis for the treatment of multidimensional tables:handbook of the intensive course of the data analysis [M]. In CVRM (Ed.). Lisbon:Instituto Superior Tecnico,2000.
    [104]Alther G A. A simplified statistical sequence applied to routine water quality analysis: A case history [J]. Ground Water,1979,17:556~561.
    [105]Ward J H. Hierchical grouping to optimize an objective function [J]. Journal of American Statistics Association,1963,69:236~244.
    [106]Fisher R A. The use of multiple measurements in taxonomic problems [J]. Annals of Eugenics,1936,7: 179~188.
    [107]Wu W, Mallet Y, Walczak B, Penninckx W, Massart D L, Heuerding S, Erni F,. Comparison of regularized discriminant analysis, linear discriminant analysis and quadratic discriminant analysis, applied to NIR data [J]. Analytica Chimica Acta,1996,329:257~265.
    [108]Barreira J C M, Casal S, Ferreira I C F R, Peres A M, Pereira J A, Oliveira M B P P. Supervised chemical pattern recognition in Almond (Prunus dulcis) Portuguese PDO cultivars:PCA-and LDA-based triennial study [J]. Journal of Agricultural and Food Chemistry,2012,60:9697~9704.
    [109]Barreira J C M, Ferreira I C F R, Oliveira M B P P. Triacylglycerol profile as a chemical fingerprint of mushroom species: Evaluation by principal component analysis and linear discriminant analysis [J]. Journal of Agricultural and Food Chemistry,2012,60:10592~10599.
    [110]Chen Y, Zhu S B, Xie M Y, Nie S P, Liu W, Li C, Gong X F, Wang Y X. Quality control and original discrimination of Ganoderma lucidum based on high-performance liquid performance fingerprints and combined chemometrics methods [J]. Analytica Chimica Acta,2008,623:146~156.
    [111]Wold S. Pattern recognition by means of disjoint principal components models [J]. Pattern Recognition, 1976,8:127~139.
    [112]Daszykowski M, Kaczmarek K, Stanimirova I, Heyden Y V, Walceak B. Robust SIMCA-bounding influence of outliers [J]. Chemometrics and Intelligent Laboratory Systems,2007,87:95~103.
    [113]Stanimirova I, Ustun B, Cajka T, Riddelova K, Hajslova J, Buydens L M C, Walczak B. Tracing the geographical origin of honeys based on volatiles compounds profiles assessment using pattern recognition techniques [J]. Food Chemistry,2010,118:171~176.
    [114]Marini F, Magri A L, Bucci R. Multilayer feed-forward artificial neural networks for class modeling [J]. Chemometrics and Intelligent Laboratory Systems,2007,28:118~124.
    [115]Marini F. Artificial neural networks in foodstuff analyses: Trends and perspectives:Areview [J]. Analytica Chimica Acta,2009,635:121~131.
    [116]Ceballos-Magana S G, De Pablos F, Jurado J M, Martin M J, Alcazai A, Muniz-Valencia R, Gonzalo-Lumbreras R, Izquierdo-Hornillos R. Characterisation of tequila according to their major volatile composition using multilayer perceptron neural networks [J]. Food Chemistry,2013,136: 1309~1315.
    [117]Debska B, Guzowska-Swider B. Application of artificial neural network in food classification [J]. Analytica Chimica Acta,2011,705:283~291.
    [118]Suykens J A K, Van Gestel T, De Brabanter J, De Moor B, Vandawalle J. Least squares support vector machines [M]. Singapore, World Scientific Publishing,2002.
    [119]Chauchard F, Cogdill R, Roussel S, Roger J M, Bellon-Maurel V. Application of LS-S VM to non-linear phenomena in NIR spectroscopy: development of a robust and portable sensor for acidity prediction in grapes [J]. Chemometrics and Intelligent Laboratory Systems,2004,71:141~150.
    [120]Shi J Y, Zou X B, Huang X W, Zhao J W, Li Y X, Hao L M, Zhang J C. Rapid detecting total acid content and classifying different types of vinegar based on near infrared spectroscopy and least-squares support vector machine [J]. Food Chemistry,2013,138:192~199.
    [1]Yu H, Zhong S, Chan K, Berry M I. Pharmacognostical investigation on traditional Chinese medicinal herbs:Identification of four herbs from the UK market [J]. Journal of Pharmacy and Pharmcology,1995, 47:1129.
    [2]European Medicines Agency. Guideline on quality of herbal mecicinal products/traditional herbal medicinal products (EMA/CPMP/QWP/2819/00 Rev.2) [S]. London, UK:European Medicines Agency, 2011.
    [3]廖运河.白前和白薇的区别[J].实用中医药杂志,2008,24:326-327.
    [4]邱声祥.柳叶白前化学成分研究[J].中国中药杂志,1994,19:488-489.
    [5]Wang P, Qin H L, Zhang L, Li Z H, Wang Y H, Zhu H B. Steroids from the roots of Cynanchum stauntonii [J]. Planta Medica,2004,70:1075~1079.
    [6]Yang Z C, Wang B C, Yang X S, Wang Q. Chemical composition of the volatile oil from Cynanchum stauntonii and its activities of anti-infulenza virus [J]. Colloids and Surfaces B:Biointerfaces,2005,43: 198~202.
    [7]潘旭.同属易混品种白前、白薇和徐长卿的鉴别[J].首都医药,2005,12:43-44.
    [8]Wang C Z, Ni M, Sun S, Li X L, He H, Mehendale S R, Yuan C S. Detection of adulteration of notoginseng root extract with other Panax species by quantitative HPLC coupled with PCA [J]. Journal of Agricultrual and Food Chemistry,2009,57:2363~2367.
    [9]Liang Q L, Qu J, Luo G A, Wang Y M. Rapid and reliable determination of illegal adulterant in herbal medicines and dietary supplements by LC/MS/MS [J]. Journal of Pharmaceutical and Biomedical Analysis,2006,40:305~311.
    [10]Laasonen M, Harmia-Pulkkinen T, Simard C L, Michiels E, Rasanen M, Vuorela H. Fast identification of Echinacea purpurea dried roots using near-infrared spectroscopy [J]. Analytical Chemistry,74: 2493~2499
    [11]Zhang L, Nie L. Discrimination of geographical origin and adulteration of Radix astragali using Fourier transform infrared spectroscopy and chemometric methods [J]. Phytochemical Analysis,2010,21: 609~615.
    [12]Cianchino V, Acosta G, Ortega C, Martinez LD, Gomez M R. Analysis of potential adulteration in herbal medicines and dietary supplements for the weight control by capillary electrophoresis [J]. Food Chemistry,2008,108:1075~1081.
    [13]周德,李亚玲.白薇、徐长卿、白前等六种中药的鉴别比较[J].中国中医药现代远程教育,2010,8:80~82.
    [14]薛凤荣,陈永林.白前、白薇、徐长卿及易混品的紫外光谱鉴别[J].山东中医杂志,1994,13:362.
    [15]刘兰生.白前等同属植物来源的药材及混伪品紫外导数光谱鉴定[J].中草药,2002,33:169-170.
    [16]Burns D A, Ciurcazk E W. Handbook of near-infrared analysis (2nd ed.) [M]. New York, NY, USA: Marcel Dekker,2001.
    [17]Blanco M, Coello J, Iturriaga H, Maspoch S, Serrano D. Near-infrared analytical control of pharmaeuticals. A single calibration model from mixed phase to coated tablets [J]. Analyst,1998,123: 2307~2312.
    [18]Kuriakose S, Thankappan X, Joe, H, Venkataraman V. Detection and quantification of adulteration in sandalwood oil through near infrared spectroscopy [J]. Analyst,2010,135:2676~2681.
    [19]Wu D, Nie P C, Cuello J, He Y, Wang Z P, Wu H X. Application of visible and near infrared spectroscopy for rapid and non-invasive quantification of common adulterants in Spirulina powder [J]. Journal of Food Engineering,2011,102:278~286.
    [20]Yap K Y L, Chan S Y, Lim C S. Authentication of traditional Chinese medicine using infrared spectroscopy:distinguishing between ginseng and its morphological fakes [J]. Journal of Biomedical Science,2007,14:265~273.
    [21]Lai Y H, Ni Y N, Kokot S. Discrimination of Rhizoma Corydalis from two sources by near-infrared spectroscopy supported by the wavelet transform and least-squares support vector machine methods [J]. Vibrational Spectroscopy,2011,56:154~160.
    [22]Li W L, Xing L H, Cai Y, Qu H B. Classification and quantification analysis of Radix scutellariae from different origins with near infrared diffuse reflection spectroscopy [J]. Vibrational Spectroscopy,2011,55: 58~64.
    [23]Martens H, Naes T. Multivariate calibration [M]. Chichester, UK:Wiley,1989.
    [24]Despagne F, Massart D L. Neural networks in multivariate calibration [J]. Analyst,1998,123: 157R~178R.
    [25]Lu C H, Xiang B G, Hao G, Xu J P, Wang Z W, Chen C Y. Rapid detection of melamine in milk powder by near infrared spectroscopy [J]. Journal of Near Infrared Spectroscopy,2009,17:59~67.
    [26]Savitzky A, Golay M J E. Smoothing and differentiation of data by simplified least squares procedures [J]. Analytical Chemistry,1964,36:1627~1639.
    [27]Barnes R J, Dhanoa M S, Lister S J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra [J]. Applied Spectroscopy,1989,43:772~779.
    [28]Geladi P, MacDougall D, Martens H. Linearization and scatter-correction for near-infrared reflectance spectra of meat [J]. Applied Spectroscopy,1985,39:491~500.
    [29]Gorry P A. General least-squares smoothing and differentiation by the convolution (Savitzky-Golay) method [J]. Analytical Chemistry,1990,62:570~573.
    [30]Camastra F, Vinciarelli A. Machine learning for audio, image and video analysis:Theory and applications [M]. London, UK:Springer,2008.
    [31]Duda R O, Hart P E, Stork D G. Pattern classification (2nd ed.) [M]. New York, NY, USA:Wiley,2001.
    [32]Martens H, Naes T. Multivariate calibration [M]. Chichester, UK:Wiley,1989.
    [33]Balabin R M, Lomakina E I. Support vector machine regression (SVR/LS-SVM)-an alterative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data [J]. Analyst,2011,136:1703-1712.
    [34]Wold S, Ruhe A, Wold H, Dunn W J. The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses [J]. SIAM Journal on Scientific and Statistical Computing,1984,5:735~743.
    [35]Peiris K H S, Pumphrey M O, Dowell F E. NIR absorbance characteristics of deoxynivalenol and of sound and Fusarium-damaged wheat kernels [J]. Journal of Near Infrared Spectroscopy,2009,17: 213~221.
    [36]Liu Y L, Barton F E, Lyon B G, Windham W R, Lyon C E. Two-deimensional correlation analysis of visible/near-infrared spectral intensity variations of chicken breasts with various chilled and frozen storages [J]. Journal of Agricultural and Food Chemistry,2004,52:505~510
    [37]Workman J. How to interpret infrared spectra for a variety of applications. Item Number:SHIR100 [C]. Spectroscopy Audio Seminar Series,2002.
    [38]陆婉珍,袁洪福,徐广通,强冬梅.现代近红外光谱分析技术[M].北京:中国石化出版社,2000,14~16.
    [39]Osborne B G, Fearn T, Hindle P H. Practical NIR spectroscopy with applications in food and beverage analysis (2nd ed.) (Longman food technology series) [M]. Harlow, UK:Longman Scientific & Technical, 1993.
    [40]Balabin R M, Safieva R Z, Lomakina E I. Comparison of linear and nonlinear calibration models based on near infrared (NIR) spectroscopy data for gasoline properties prediction [J]. Chemometrics and Intelligent Laboratory Systems,2007,88:183~188.
    [41]Balabin R M, Safieva R Z, Lomakina E I. Wavelet neural network (WNN) approach for calibration model building based on gasoline near infrared (NIR) spectra [J]. Chemometrics and Intelligent Laboratory Systems,2008,93:58~62.
    [42]Felizarodo P, Baptista P, Menezes J C, Correia M J N. Multivariate near infrared spectroscopy models for predicting methanol and water content in biodiesel [J]. Analytica Chimica Acta,2007,595:107~113.
    [1]Williams P C. Implementation of near-infrared technology. In Near-Infrared Technology in the Agricultural and Food Industries [M].2nd ed., American Association of Cereal Chemists: St. Paul, MN, 2001,145~169.
    [2]Oliveri P, Egidio V D, Woodcock T, Downey G. Application of class-modelling techniques to near infrared data for food authentication purposes [J]. Food Chemistry,2011,125:1450~1456.
    [3]Ni Y N, Mei M H, Kokot S. Analysis of complex, processed substances with the use of NIR spectroscopy and chemometrics: Classification and prediction of properties-the potato crisps example [J]. Chemometrics and Intelligent Laboratory Systems,2011,105:147~156.
    [4]Fernandez Pierna J A, Lecler B, Conzen J P, Niemoeller A, Baeten V, Dardenne P. Comparison of various chemometric approaches for large near infrared spectroscopic data of feed and feed products [J]. Analytica Chimica Acta,2011,705:30~34.
    [5]Xu H R, Qi B, Sun T, Fu X P, Ying Y B. Variable selection in visible and near-infrared spectra: Application to on-line determination of sugar content in pears [J]. Journal of Food Engineering,2012, 109:142~147.
    [6]Xie L J, Ye X Q, Liu D H, Ying Y B. Prediction of titratable acidity, malic acid, and citric acid in bayberry fruit by near-infrared spectroscopy [J]. Food Research International,2011,44:2198~2204.
    [7]Zhang M H, Luypaert J, Fernandez Pierna J A, Xu Q S, Massart D L. Determination of total antioxidant capacity in green tea by near-infrared spectroscopy and multivariate calibration [J]. Talanta,2004,62: 25~35.
    [8]Zhang C Y, Shen Y, Chen J, Xiao P, Bao J S. Nondestructive prediction of total phenolics, flavonoid contents, and antioxidant capacity of rice grain using near-infrared spectroscopy [J]. Journal of Agricultural and Food Chemistry,2008,56:8268~8272.
    [9]Zhang Z S, Ho W K K, Huang Y, Chen Z Y. Hypocholesterolemic activity of hawthorn fruit is mediated by regulation of cholesterol-7a-hydroxylase and acyl CoA:cholesterol acyltransferase [J]. Food Research International,2002,35:885~891.
    [10]赵焕谆,丰宝田.中国果树志:山楂卷[M].北京:中国林业出版社,1996,1-65.
    [11]Liu P Z, Yang B R, Kallio H. Characterization of phenolic compounds in Chinese hawthorn (Crataegus pinnatifida Bge. var. major) fruit by high performance liquid chromatography-electrospray ionization mass spectrometry [J]. Food Chemistry,2010,121:1188~1197.
    [12]Stratil P, Klejdus B, Kuban V. Determination of phenolic compounds and their antioxidant activity in fruits and cereals [J]. Talanta,2007,71:1741~1751.
    [13]Liu P Z, Kallio H, Lu D G, Zhou C S, Ou S Y, Yang B R. Acids, sugars, and sugar alcohols in Chinese hawthorn(Crataegus spp.) fruits [J]. Journal of Agricultural and Food Chemistry,2010,58:1012~1019.
    [14]中国人民共和国药典一部[M].北京:中国医药科技出版社,2010,29.
    [15]Kennard R W, Stone L S. Computer aided design of experiments [J]. Technometrics,1969,11:137-148.
    [16]Dubois M, Gilles K A, Hamilton J K, Rebers P A, Smith F. Colorimetric method for determination of sugars and related substances [J]. Analytical Chemistry,1956,28 (3):350~356.
    [17]Singleton V L, Rossi J A Jr. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents [J]. Amercian Journal of Enology Viticulture,1965,16:144~158.
    [18]Frankel E N, Meyer A S. The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants [J]. Journal of Science and Food Agriculture,2000,80:1925~1941.
    [19]Sun T, Tang J M, Powers J R. Effect of pectolytic enzyme preparations on the phenolic composition and antioxidant activity of Asparagus juice [J]. Journal of Agricultrual and Food Chemistry,2005,53:42~48.
    [20]Re R, Pelligrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C A. Antioxidant activity applying an improved ABTS radical cation decolorization assay [J]. Free Radical and Biological Medicine,1999, 26:1231~1237.
    [21]Geladi P, Macdougall D, Martens H. Linearization and scatter-correction for near-infrared reflectance spectra of meat [J]. Applied Spectroscopy,1985,39:491~500.
    [22]Barnes R J, Dhanoa M S, Lister S J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra [J]. Applied Spectroscopy,1989,43:772~777.
    [23]Gorry P A. General least-squares smoothing and differentiation by the convolution (Savitzky-Golay) method [J]. Analytical Chemistry,1990,62:570~573.
    [24]Duda R O, Hart P E, Stork D G. Pattern Classification,2nd ed [M]. Wiley: New York,2001.
    [25]Jombart T, Devillard S, Balloux F. Discriminant analysis of principal components:a new method for the analysis of genetically structured populations [J]. BMC Genetic,2010,11(94):1~15.
    [26]Casale M, Sinelli N, Oliveri P, Egidio V D, Lanteri S. Chemometrical strategies for feature selection and data compression applied to NIR and MIR spectra of extra virgin olive oils for cultivar identification [J]. Talanta,2010,80:1832~1837.
    [27]Baumann K. Cross-validation as the objective function for variable-selection techniques [J]. TrAC-Trends in Analytical Chemistry,2003,22:395~406.
    [28]Despagne F, Massart D L. Neural networks in multivariate calibration [J]. Analyst,1998,123: 157R~178R.
    [29]Geladi P, Kowalski B R. Partial least-squares regression: a tutorial [J]. Analytica Chimica Acta,1986, 185:1-17.
    [30]Martens H, Naes T. Multivariate calibration [M]. Wiley: New York,1989.
    [31]Suykens J A K, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J. Least Squares Support Vector Machines [M]. World Scientific: Singapore,2002.
    [32]Wesley I J, Blakeney A B. Investigation of starch-protein-water mixtures using dynamic near infrared spectroscopy [J]. Journal of Near Infrared Spectroscopy,2001,9:211~220.
    [33]Goddu R F. Near infrared spectrophotometry. In Advances in Analytical Chemistry and Instrumentation [M]. New York:Interscience,1960,347~417.
    [34]Yu H Y, Ying Y B, Fu X P, Lu H S. Classification of Chinese rice wine with different marked ages based on near infrared spectroscopy [J]. Journal of Food Qualality,2006,29:339~352.
    [35]Chen Y Q, Bai G, Xiao J, Wang L, Luo Q M. Noninvasive blood glucose measurement system based on three wavelengths in near-infrared region [C]. Fifth international conference on photonics and imaging in biology and medicine. Saratov, Russia,2007,38.
    [36]Li H, Kikuchi R, Kumagai M, Amano T, Tang H N, Lin J M, Fujiwara K, Ogawa N. Nondestructive estimation of strength deterioration in photovoltaic backsheets using a portable near infrared spectrometer [J]. Solar Energy Materials and Solar Cells,2012,101:166~169.
    [37]Pciris K H S, Pumphrey M O, Dowell F E. NIR absorbance characteristics of deoxynivalenol and of sound and Fusarium-damaged wheat kernels [J]. Journal of Near Infrared Spectroscopy,2009,17: 213-221.
    [38]Sato T, Uezono I, Morishita T, Tetsuka T. Nondestructive estimation of fatty acid composition in seeds of Brassica napus L. by near-infrared spectroscopy [J]. Journal of American Oil Chemistry Society,1998, 75:1877~1881.
    [39]Moron A, Cozzolino D. Application of near infrared reflectance spectroscopy for the analysis of organic C, total N, and pH in soils of Uruguay [J]. Journal of Near Infrared Spectroscopy,2002,10:215~221.
    [40]Alexander T, Tran C D. Near-infrared spectrometric determination of di- and tripeptides synthesized by a combinatorial solid-phase method [J]. Analytical Chemistry,2001,73:1062~1067.
    [41]Iwahashi M, Hayashi Y, Hachiya N, Matsuzawa H, Kobayashi H. Self-association of octan-1-ol in the pure liquid state and in decane solutions as observed by viscosity, self-diffusion, nuclear magnetic resonance and near-infrared spectroscopy measurements [J]. Journal of Chemistry Society Faraday Trans, 1993,89:707~712.
    [42]Tran C D, De Paoli Lacerda S H. Determination of binding constants of cyclodextrins in room-temperature ionic liquids by near-infrared spectrometry [J]. Analytical Chemistry,2002,74: 5337~5341.
    [43]Michell A J, Schimleck L R. NIR spectroscopy of woods from Eucalyptus globules [J]. Appita Journal, 1996,49:23-26.
    [44]Miller C E, Edelman P G, Ratner B D, Eichinger B E. Near-infrared spectroscopic analyses of poly (ether urethane urea) block copolymers. Part Ⅱ: phase separation [J]. Applied Spectroscopy,1990,44: 581~586.
    [45]Blanco M, Maspoch S, Villarroya Ⅰ, Peralta X, Gonzalez J M, Torres J. Determination of the penetration value of bitumens by near infrared spectroscopy [J]. Analyst,2000,125:1823~1828.
    [46]Golic M, Walsh K, Lawson P. Short-wavelength near-infrared spectra of sucrose, glucose, and fructose with respect to sugar concentration and temperature [J]. Applied Spectroscopy,2003,57:139~145.
    [47]Cozzolino D, Kwiatkowski M J, Parker M, Cynkar W U, Dambergs R G, Gishen M, Herderich M J. Prediction of phenolic compounds in red wine fermentations by visible and near infrared spectroscopy [J]. Analytica Chimica Acta,2004,513:73~80.
    [48]Xu L, Deng D H, Cai C B. Predicting the age and type of tuocha tea by Fourier transform infrared spectroscopy and chemometric data analysis [J]. Journal of Agricultural and Food Chemistry,2011,59: 10461~10469.
    [49]Liu F, He Y, Sun G M. Determination of protein content of Auricularia auricula using near infrared spectroscopy combined with linear and nonlinear calibrations [J]. Journal of Agricultural and Food Chemistry,2009,57:4520~4527.
    [50]Shao Y N, Cen Y L, He Y, Liu F. Infrared spectroscopy and chemometrics for the starch and protein prediction of irradiated rice [J]. Food Chemistry,2011,126:1856~1861.
    [1]梁呈元,李维林,张涵庆,任冰如.薄荷化学成分及其药理作用研究进展[J].中国野生植物资源,2003,22:9-12.
    [2]Link A, Balaguer F, Goel A. Cancer chemoprevention by dietary polyphenols: Promising role for epigenetics [J]. Biochemical Pharmacology,2010,80:1771~1792.
    [3]Mimica-Dukic N, Bozin B, Mentha L. Species (Lamiaceae) as promising sources of bioactive secondary metabolites [J]. Current Pharmaceutical Design,2008,14:3141~3150.
    [4]Cushnie T P T, Lamb A J. Antimicrobial activity of flavonoids [J]. International Journal of Antimicrobiological Agents,2005,26:343~356.
    [5]De Vincenzi M, Maialetti F, Di Pasquale M, Dessi M R. Monographs on botanical flavouring substances used in foods [J]. Fitoterapia,1991,62:47~63.
    [6]Cao G, Shan Q Y, Li X M, Cong X D, Zhang Y, Cai H, Cai B C. Analysis of fresh Mentha haplocalyx volatile components by comprehensive two-dimensional gas chromatography and high-resolution time-of-flight mass spectrometry [J]. Analyst,2011,136:4653~4661.
    [7]She G M, Xu C, Liu B, Shi R B. Polyphenolic acids from mint (the aerial of Mentha haplocalyx Briq.) with DPPH radical scavenging activity [J]. Journal of Food Science,2010,75:359~362.
    [8]Tyler V E. The honest herbal (3rd ed.) [M]. Pharmaceutical Products Press:Binghamton, NY,1993.
    [9]Sylianco C Y L, Blanco F R, Lim C M. Mutagenicity, clastogenicity and antimutagenicity of medicinal plant tablets produced by the NSTA pilot plant IV, Yerba buena tablet [J]. Philippine Journal of Science, 1986,115:299~305.
    [10]Wang Y X, Li Q, Wang Q, Li Y J, Ling J H, Liu L L, Chen X H, Bi K S. Simultaneous determination of seven bioactive components in Oolong tea Camellia sinensis:Quality control by chemical composition and HPLC fingerprints [J]. Journal of Agricultural and Food Chemistry,2012,60:256~260.
    [11]Bradish C M, Perkins-Veazie P, Fernandez G E, Xie G X, Jia W. Comparison of flavonoid composition of red raspberries (Rubus idaeus L.) grown in the southern United States [J]. Journal of Agricultural and Food Chemistry,2012,60:5779~5786.
    [12]Sagratini G, Maggi F, Caprioli G, Cristalli G, Ricciutelli M, Torregiani E, Vittori S. Comparative study of aroma profile and phenolic content of Montepulciano monovarietal red wines from the Marches and Abruzzo regions of Italy using HS-SPME-GC-MS and HPLC-MS [J]. Food Chemistry,2012,132: 1592~1599.
    [13]Asikin Y, Taira I, Inafuku-Teramoto S, Sumi H, Ohta H, Takara K, Waka K. The composition of volatile aroma components, flavanones, and polymethoxylated flavones in Shiikuwasha (Citrus depressa Hayata) peels of different cultivation lines [J]. Journal of Agricultural and Food Chemistry,2012,60:7973~7980.
    [14]Lu J G, Zhu L,Lo K Y W, Leung A K M, Ho A H M, Zhang H Y, Zhao Z Z, Fong D W F, Jiang Z H. Chemical differentiation of two taste variants of Gynostemma pentaphyllum by using UPLC-Q-TOF-MS and HPLC-ELSD [J]. Journal of Agricultural and Food Chemistry,2013,61:90~97.
    [15]Ni Y N, Mei M H, Kokot S. One- and two-dimensional gas chromatography and high performance liquid chromatography-diode-array detector fingerprints of complex substances: A comparison of classificatin performance of similar, complex Rhizoma Curcumae samples with the aid of chemometrics [J]. Analytica Chimica Acta,2012,712:37~44.
    [16]Ni Y N, Liu Y, Kokot S. Two-dimensional fingerprinting approach for comparison of complex substances analysed by HPLC-UV and fluorescence detection [J]. Analyst,2011,136:550~559.
    [17]Ni Y N, Peng Y Y, Kokot S. Fingerprinting of complex mixtures with the use of high performance liquid chromatography, inductively coupled plasma atomic emission spectroscopy and chemometrics [J]. Analytica Chimica Acta,2008,616:19~27.
    [18]Konig W A, Hochmuth D H, Joulain D. Terpenoids and related constituents of essential oil. Library of Mass Finder 2.1 [M]. Institute of Organic Chemistry, Hamburg.
    [19]NIST (National Institute of Standards and Technology). Spectral database for organic compounds. NIST WebBook. http://www.webbook.nist.gov/chemistry,2008.
    [20]Decision Lab 2000. Executive edition [M], Visual Decision Inc., Montreal, Canada.
    [21]Beebe K R, Pell R J, Seasholtz M B. Chemometrics:A pratical guide [M]. John Wiley & Sons Ltd., New York,1998.
    [22]Kokot S, King G, Keller H R, Massart D L. Microwave digestion:An analysis of procedures [J]. Analytica Chimica Acta,1992,259:267~279.
    [23]Keller H R, Massart D L, Brans J P. Multicriteria decision making:A case study [J]. Chemometrics and Intelligent Laboratory Systems,1991,11:175~189.
    [24]Despagne F, Massart D L. Neural networks in mutivariate calibration [J]. Analyst,1998,123:157~178.
    [25]Cawley G C, Talbot N L C. Efficient leave-one-out cross-validation of kernel Fisher discriminant classifiers [J]. Pattern Recognition,2003,36:2585~2593.
    [26]Barker M, Rayens W. Partial least squares for discrimination [J]. Journal of Chemometrics,2003,17: 166~173.
    [27]Benabdelkamel H, Donna L D, Mazzotti F, Naccarato A, Sindona G, Tagarelli A, Taverna D. Authenticity of PGI "Clementine of Calabria" by multielement Fingerprint [J]. Journal of Agricultural and Food Chemistry,2012,60:3717~3726.
    [28]Alonso-Salces R M, Moreno-Rojas J M, Holland M V, Reniero F, Guillou C, Heberger K. Virgin olive oil authentication by multivariate analyses of'H NMR fingerprints and 8I3C and 82H data [J]. Journal of Agricultural and Food Chemistry,2010,58:5586~5596.
    [29]Purcell D E, O'Shea M G, Kokot S. Role of chemometrics for at-field application of NIR spectroscopy to predict sugarcane clonal performance [J]. Chemometrics and Intelligent Laboratory Systems,2007,87: 113~124.
    [30]Marini F. Artificial neural networks in foodstuff analyses:Trends and perspectives. A review [J]. Analytica Chimica Acta,2009,635:121~131
    [31]Kennard R W, Stone L S. Computer aided design of experiments [J]. Technometrics,1969,11:137~148.
    [1]Agelet L E, Jr Hurburgh C R. A tutorial on near infrared spectroscopy and its calibration [J]. Critival Reviews in Analytical Chemistry,2010,40(4):246~260.
    [2]Dong W J, Ni Y N, Kokot S. A near-infrared reflectance spectroscopy method for direct analysis of several chemical components and properties of fruit, for example, Chinese hawthorn [J]. Journal of Agricultural and food chemistry,2013,61(3):540~546.
    [3]Leon L, Kelly J D, Downey G. Detection of apple juice adulteration using near-infrared transilectance spectroscopy [J]. Applied spectroscopy,2005,59(5):593~599.
    [4]Chen L Z, Wang J H, Ye Z H, Zhao J, Xue X F, Vander Heyden Y, Sun Q. Classification of Chinese honeys according to their floral origin by near infrared spectroscopy [J]. Food Chemistry,2012,135(2): 338~342.
    [5]Cen H Y, He Y. Theory and application of near infrared reflectance spectroscopy in determination of food quality [J]. Trends in Food Science and Technology,2007,18(2):72~83.
    [6]Guo Z M, Chen Q S, Chen L P, Huang W Q, Zhang C, Zhao C J. Optimization of informative spectral variables for the quantification of EGCG in green tea using fourier transform near-infrared (FT-NIR) spectroscopy and multivariate calibration [J]. Applied Spectroscopy,2011,65(9):1062~1067.
    [7]Chen Q S, Zhao J W, Zhang H D, Wang X Y. Feasibility study on qualitative and quantitative analysis in tea by near infrared spectroscopy with multivariate calibration [J]. Analytica Chimica Acta,2006,572(1): 77~84.
    [8]Marena M, Elizabeth J, Mariza B. Quantification of the major phenolic compounds, soluble solid content and total antioxidant activity of green rooibos(Aspalathus linearis) by means of near infrared spectroscopy [J]. Journal of Near Infrared Spectroscopy,2006,14(4):213~222.
    [9]Chen Q S, Guo Z M, Zhao J W, Qin O Y. Comparisons of different regressions tools in measurement of antioxidant activity in green tea using near infrared spectroscopy [J]. Journal of Pharmacological and Biomedical Analysis,2012,60:92~97.
    [10]Ali M S, Saleem M, Ahmad W, Parvez M, Yamdagni R. A chlorinated monoterpene ketone, acylated P-sitosterol glycosides and a flavanone glycoside from Mentha longifolia (Lamiaceae) [J]. Phytochemistry,2002,59(8):889~895.
    [11]梁呈元,李维林,张涵庆,任冰如.薄荷化学成分及其药理作用研究进展[J].中国野生植物资源,2003.22:9-12.
    [12]She G M, Xu C, Liu B, Shi R B. Polyphenolic acids from mint (the aerial of Mentha haplocalyx Briq.) with DPPH radical scavenging activity [J]. Journal of Food Science,2010,75(4):359~362.
    [13]Dubois M, Gilles K A, Hamilton J K, Rebers P A, Smith F. Colorimetric method for determination of sugars and related substances [J]. Analytical Chemistry,1956,28(3):350~356.
    [14]Jia Z S, Tang M C, Wu J M. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals [J]. Food Chemistry,1999,64(4):555~559.
    [15]Perez-Jimenez J, Arranz S, Tabernero M, Diaz-Rubio M E, Serrano J, Goni I, Saura-Calixto F. Updated methodology to determine antioxidant capacity in plant foods, oils and beverages:Extraction, measurement and expression of results [J]. Food Research International,2008,41(3):274~285.
    [16]Kennard R W, Stone L S. Computer aided design of experiments [J]. Technometrics,1969,11(1): 137~148.
    [17]Singleton V L, Rossi Jr J A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents [J]. American Journal of Enology and viticulture,1965,16(3):144~158.
    [18]Brand-Williams W, Cuvelier M E, Berset C. Use of a free radical method to evaluate antioxidant activity [J]. LWT-Food Science and Technology,1995,28(1):25~30.
    [19]Frankel E N, Meyer A S. The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants [J]. Journal of Science and Food Agriculture,2000,80(13):1925~1941.
    [20]Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay [J]. Free Radical Biology & Medicine,1999, 26(9-10):1231~1237.
    [21]Westerhuis J A, De Jong S, Smilde A K. Direct orthogonal signal correction [J]. Chemomometrics and Intelligent Laboratory Systems,2001,56(1):13~25.
    [22]Bicchi C P, Panero O M, Pellegrino G M, Vanni A C. Characterization of roasted coffee and coffee beverages by solid phase microextraction-gas chromatography and principal component analysis [J]. Journal of Agricultural and Food Chemistry,1997,45(12):4680~4686.
    [23]Inon F A, Garrigues S, De la Guardia M. Nutritional parameters of commercially available milk samples by FTIR and chemometric techniques [J]. Analytica Chimica Acta,2004,513(2):401~412.
    [24]Fabani M P, Toro M E, Vazquez F, Diaz M P, Wunderlin D A. Differential absorption of metals from soil to diverse vine varieties from the valley of tulum (Argentina):Consequences to evaluate wine provenance [J]. Journal of Agricultural and Food Chemistry,2009,57(16):7409~7416.
    [25]Riovanto R, Cynkar W U, Berzaghi P, Cozzolino D. Discrimination between Shiraz Wines from different Australian regions: The role of spectroscopy and chemometrics [J]. Journal of Agricultural and Food Chemistry,2011,59(18):10356~10360.
    [26]Cozzolino D, Smyth H E, Gishen M. Feasibility study on the use of visible and near-infrared spectroscopy together with chemometrics to discriminate between commercial white wines of different varietal origins [J]. Journal of Agricultural and Food Chemistry,2003,51(26):7703~7708.
    [27]Baumann K. Cross-validation as the objective function for variable-selection techniques [J]. TrAC-Trends in Analytical Chemistry,2003,22(6):395~406.
    [28]Geladi P, Kowalski B R. Partial least-squares regression:A tutorial [J]. Analytica Chimica Acta,1986, 185:1-17.
    [29]Walczak B, Massart D L. The radial basis functions-partial least squares approach as a flexible non-linear regression technique [J]. Analytica Chimica Acta,1996,331(3):177~185.
    [30]Thissen U, Ustun B, Melssen W J, Buydens L M C. Multivariate calibration with least-squares support vector machines [J]. Analytical Chemistry,2004,76(11):3099~3105.
    [31]Cozzolino D, Kwiatkowski M J, Parker M, Cynkar W U, Dambergs R G, Gishen M, Herderich M J. Prediction of phenolic compounds in red wine fermentations by visible and near infrared spectroscopy [J]. Analytica Chimica Acta,2004,513(1):73~80.
    [32]Fu X P, Ying Y B, Lu H S, Xu H R, Yu H Y. FT-NIR diffuse reflectance spectroscopy for kiwifruit firmness detection [J]. Sensonry and Instrumentation for Food Quality,2007,1(1):29~35.
    [33]Clarke F. Extracting process-related information from pharmaceutical dosage forms using near infrared microscopy [J]. Vibrational Spectroscopy,2004,34(1):25~35.
    [34]Lestander T A, Rhen C. Multivariate NIR Spectroscopy models for moisture, ash, and calorific content in biofuels using bi-orthogonal partial least squares regression [J]. Analyst,2005,130(8):1182~1189.
    [35]Tran C D, De Paoli Lacerda S H. Determination of binding constants of cyclodextrins in room-temperature ionic liquids by near-infrared spectrometry [J]. Analytical Chemistry,2002,74(20): 5337~5341.
    [36]Buckton G, Yonemochi E, Yoon W L, Moffat A C. Water sorption and near IR spectroscopy to study the differences between microcrystalline cellulose and silicified microcrystalline cellulose before and after wet granulation [J]. International Journal of Pharmacy,1999,181(1):41~47.
    [37]Xie L J, Ye X Q, Liu D H, Ying Y B. Quantification of glucose, fructose and sucrose in bayberry juice by NIR and PLS [J]. Food Chemistry,2009,114(3):1135~1140.
    [38]Cozzolino D, Mccarthy J, Bartowsky E. Comparison of near and mid infrared spectroscopy to discriminate between wines produced by different Oenococcus Oeni strains after malolactic fermentation: A feasibility study [J]. Food Control,2012,26(1):81~87.
    [39]Chen Y, Xie M Y, Zhang H, Wang Y X, Nie S P, Li C. Quantification of total polysaccharides and triterpenoids in Ganoderma lucidum and Ganoderma atrum by near infrared spectroscopy and chemometrics [J]. Food Chemistry,2012,135(1):268~275.
    [40]Wu D, He Y, Shi J H, Feng S J. Exploring near and mid-infrared spectroscopy to predict trace iron and zinc contents in powdered milk [J]. Journal of Agricultural and Food Chemistry,2009,57(5): 1697~1704.
    [41]Hu H Y., Lin H J., Xu H R, Ying Y B, Li B B, Pan X X. Prediction of enological parameters and discrimination of rice wine age using least-squares support vector machines and near infrared spectroscopy [J]. Journal of Agricultural and Food Chemistry,2008,56(2):307~313.
    [1]中国人民共和国药典一部[M].北京:中国医药科技出版社,2010,318.
    [2]Banno N, Akihisa T, Tokuda H, Yasukawa K, Higashihara H, Ukiya M, Watanabe K, Kimura Y, Hasegawa J, Nishino H. Triterpene acids from the leaves of Perila frutescens and their anti-inflammatory and antitumor-promoting effects [J]. Bioscience, Biotechnology and Biochemistry, 2004,68:85~90.
    [3]Osakabe N, Yasuda A, Natsume M, Yoshikawa T. Rosmarinic acid inhibits epidermal inflammatory responses: Anticarcinogenic effect of Perilla frutescens extract in the murine two-stage skin model [J]. Carcinogenesis,2004,25:549~557.
    [4]Park H Y, Nam M H, Lee H S, Jun W, Hendrich S, Lee K W. Isolation of caffeic acid from Perilla frutescens and its role in enhancing γ-glutamylcysteine synthetase activity and glutathione level [J]. Food Chemistry,2010,119(2):724~730.
    [5]Skin T Y, Kim S H, Kim S H, Kim Y K, Park H J, Chae B S, Jung H J, Kim H M. Inhibitory effect of mast cell-mediated immediate-type allergic actions in rats by Perilla frutescens [J]. Immunopharmacology and Immunotoxicology,2000,22:489~500.
    [6]Meng L H, Lozano Y, Bombarda I, Gaydou E, Li B. Anthocyanin and flavonoid production from Perilla frutescens: Pilot plant scale processing including cross-flow microfiltration and reverse osmosis [J]. Journal of Agricultural and Food Chemistry,2006,54:4297~4303.
    [7]Kim J K, Park S Y, Na J K, Seong E S, Yu C Y. Metabolite profiling based on lipophilic compounds for quality assessment of Perilla (Perilla frutescens) Cultivars [J]. Journal of Agricultural and Food Chemistry,2012,60:2257~2263.
    [8]Huang B K, Lei Y L, Tang Y H, Zhang J C, Qin L P, Liu J A. Comparison of HS-SPME with hydrodistillation and SFE for the analysis of the volatile compounds of Zisu and Baisu, two varietal species of Perilla frutescens of Chinese origin [J]. Food Chemistry,2011,125:268~275.
    [9]Yamazaki M, Nakajima J I, Yamanashi M, Sugiyama M, Makita Y, Springob K, Awazuhara M, Saito K. Metabolomics and differential gene expression in anthocyanin chemo-varietal forms of Perilla frutescens [J]. Photochemistry,2003,62:987~995.
    [10]Liang Y Z, Xie P S, Chan K. Quality control of herbal medicines [J]. Journal of Chromatography B,2004, 812:53-70.
    [11]Zhao Y, Xie Z H, Niu Y Q Shi H M, Chen P, Yu L L. Chemical compositions, HPLC/MS fingerprinting profiles and radical scavenging properties of commercial Gynostemma pentaphyllum (Thunb.) Makino samples [J]. Food Chemistry,2010,134:180~188.
    [12]Chen P, Ozcan M, Harnly J. Chromatographic fingerprint analysis for evaluation of Ginkgo biloba products [J]. Analytical and Bioanalytical Chemistry,2007,389:251~261.
    [13]Chen P, Harmly J M, Lester G E. Flow injection mass spectral fingerprints demonstrate chemical differences in Rio Red Grapefruit with respect to year, harvest time, and conventional versus organic farming [J]. Journal of Agricultural and Food Chemistry,2010,58(8):4545~4553.
    [14]Luthria D L, Lin L Z, Robbins R J, Finlev J W, Banuelos G S, Harnly J M. Discriminating between cultivars and treatments of Broccoli using mass sepctral fingerprinting and analysis of variance-principal component analyis [J]. Journal of Agricultural and Food Chemistry,2008,56(21):9819~9827.
    [15]Lin L Z, Harnly J M, Upton R. Comparison of phenolic component profiles of Skullcap (Scutellaria lateriflora) and Germander (Teucrium canadense and T. Chamaedrys), a potentially hepatotoxic adulterant [J]. Phytochmical Analysis,2009,20(4):298~306.
    [16]Zhang Z M, Chen S, Liang Y Z. Baseline correction using adaptive iteratively reweighted penalized least squares [J]. Analyst,2010,135:1138~1146.
    [17]Lucio-Gutierrez J R, Coello J, Maspoch S. Enhanced chromatographic fingerprinting of herbal materials by multi-wavelength selection and chemometrics [J]. Analytica Chimica Acta,2012,710:40~49.
    [18]Lucio-Gutierrez J R, Garza-Juarez A, Coello J, Maspoch S, Salazar-Cavazos M L, Salazar-Aranda R, De Torres N W. Multi-wavelength high-performance liquid chromatographic fingerprints and chemometrics to predict the antioxidant activity of Turnera diffusa as part of its quality control [J]. Journal of Chromatography A,2012,1235:68~76.
    [19]Nielsen N P V, Carstensen J M, Smedsgaard J. Aligning of single and multiple wavelength chromaographic profiles for chemometric data analysis using correlation optimised warping [J]. Journal of Chromatography A,1998,805(1-2):17~35.
    [20]Pravdova V, Walczak B, Massart D L. A comparison of two algorithms for warping of analytical signals [J]. Analytica Chimica Acta,2002,456(1):77~92.
    [21]Brereton R G. Pattern Recognition, Applied Chemometrics for Scientists [M]. John Wiley & Sons, Ltd, 2007,145
    [22]Berrueta LA, Alonso-Salces R M, Heberger K. Supervised pattern recognition in food analysis [J]. Journal of Chromatography A,2007,1158:196~214.
    [23]Liu F, He Y. Classification of brands of instant noodles using Vis/NIR spectroscopy and chemometrics [J]. Food Research International,2008,41(5):562~567.
    [24]Sun J H, Chen P. Differentiation of Panax quinquefolius grown in the USA and China using LC/MS-based chromatographic fingerprinting and chemometric approaches [J]. Analytical and Bioanalytical Chemistry,2011,399:1877~1889.
    [25]Baumann K. Cross-validation as the objective function for variable-selection techniques [J]. TrAC-Trends in Analytical Chemistry,2003,22:395~406.
    [26]Kennard R W, Stone L S. Computer aided design of experiments [J]. Technometrics,1969,11:137~148.