微波加工浆果介电特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以浆果的代表种类蓝靛果和树莓为例,研究微波加工过程中介电特性的变化规律。微波辅助泡沫干燥方法适合于黏度高、热敏性成分多的浆果脱水加工。微波辅助萃取技术适用于对浆果中花青素等有效成分进行提取,特点是萃取效率高、可用乙醇等绿色溶剂。在微波加热过程中,处于高频电磁场中物料的介电特性会发生动态变化,影响其能量吸收和转化过程。介电特性包括介电常数和介电损耗因子两个指标。
     本文研究微波辅助泡沫干燥条件下,蓝靛果起泡果浆的微波能量吸收特性,提出浆果果浆温度变化的指数方程。考虑到物料的物理性能,起泡果浆介电特性的变化可以用温度和含水率的函数描述。这些结果有助于揭示在微波干燥过程中物料的微波能量吸收和转换机理。
     本文研究微波辅助泡沫干燥过程中树莓果粉介电特性的变化规律。通过响应曲面中心组合试验方法,研究微波功率、风量、物料质量及干燥时间等影响因素对树莓果粉花青素降解比率及维生素C降解比率的影响规律,研究微波场内树莓起泡果浆的介电特性随温度和含水率的动态变化规律。研究结果表明:(1)各工艺参数对物料介电常数和介电损耗因子的影响程度从高到低依次为物料质量、干燥时间、微波功率和风量。(2)各工艺参数对物料花青素降解比率的影响程度从高到低依次为微波功率、干燥时间、风量和物料质量。微波功率和干燥时间与花青素降解比率均呈正相关趋势。(3)各工艺参数对物料维生素C降解比率的影响次序程度从高到低依次为物料质量、微波功率、风量和干燥时间。
     本文应用微波辅助萃取技术对树莓粉中花青素成分进行萃取,确定萃取时间、萃取温度、乙醇浓度、物液比为试验影响因素,研究萃取液中花青素萃取量和介电特性的变化规律。研究结果表明:(1)各工艺参数对萃取液花青素萃取量的影响程度从高到低依次为物液比、乙醇浓度、萃取时间和萃取温度。(2)各工艺参数对萃取液介电常数的影响程度从高到低依次为物液比、萃取温度、萃取时间和乙醇浓度。(3)各工艺参数对萃取液介电损耗因子的影响程度从高到低依次为物液比、乙醇浓度、萃取时间和萃取温度;物液比增加,萃取液的介电损耗因子减小。
     本文研究微波辅助泡沫干燥树莓果浆的传热和传质过程模拟,应用Matlab对物料内部厚度增加(从表层到底层)过程中温度和含水率变化过程进行仿真。根据仿真结果分析了初始物料质量400g、微波功率7kW、风量70m~3·h~(-1)、干燥时间240s时,物料内部温度和含水率随物料厚度和干燥时间的变化规律;干燥时间一定时,随着物料内部厚度增加,物料温度呈先升高后降低趋势,含水率呈现升高趋势;物料内部相同厚度处,随着干燥时间增加,物料温度呈升高趋势,含水率呈下降趋势。模拟不同微波功率下,物料温度和含水率随厚度和干燥的时间变化;模拟微波功率与初始物料质量同时变化时,物料内部温度的变化规律;分析了初始物料质量(即初始厚度)不同时,物料含水率的变化规律。果浆初始厚度对物料内不同厚度处的含水率影响明显,物料初始厚度处于低水平时,物料表面水分蒸发速度较快,厚度从表层变化至底层,水分蒸发速度减慢,物料初始厚度处于高水平时,物料表面水分降低速度较慢,厚度从表层变化至中间位置,水分蒸发速度加快,从中间位置变化至物料底层,水分蒸发速度变化不明显。
     模拟结果与试验测量数据拟合程度高,微波泡沫干燥过程的模拟仿真结果可信,对试验实施和实际生产加工有一定的参考价值,为高效率应用微波辅助泡沫干燥方法,加工出高质量浆果制品提供了理论依据。
Select the blue honeysuckle berry and raspberry of typical berry as materials studied, thechanges of dielectric properties in microwave processing were investigated. The microwaveassisted foam-mat drying (MFD) method is suitable for dehydration processing of berry with thehigh viscosity properties and heat-sensitive components. The microwave assisted extractionmethod was applied to extract the active ingredients of berries such as anthocyanin, which ischaracterized by high extraction efficiency and application of green solvents for example ethanol.During the microwave heating processing, dielectric properties of material play a key role in thebehavior of material in high frequency electromagnetic field, which influence the microwaveenergy absorption and conversion within material. Dielectric properties include dielectric constantand dielectric loss factor.
     In the condition of MFD the changes of temperatures of blue honeysuckle puree followed theexponential equations. The changes of dielectric properties of foamed berry puree may bedescribed using the functions of temperature and moisture content considering the variablephysical properties of material. These results contributed to reveal the mechanism of microwaveenergy absorption and conversion within the material during microwave processing.
     In this research, the changes of dielectric properties within raspberry powder in themicrowave-assisted foam drying process were studied. The effects of factors in terms ofmicrowave power, wind amount, material mass and drying time on the degradation ratio ofanthocyanin and vitamin C of raspberries were studied by using responding surface methodology.The effects of temperature and moisture of material on the dielectric properties were studied. Theconclusions were developed as follows:(1) The effects of each factor at descend trend ondielectric constant and dielectric loss factor were microwave materials mass, drying time,microwave power and wind amount.(2) The effects of each factor at descend trend on degradationratio of anthocyanin were microwave power, drying time, wind amount and material mass.Degradation ratio of anthocyanin was positive correlation with microwave power and drying time.(3) The effect of each factor at descend trend on degradation ratio of vitamin C were material mass,microwave power, wind amount and drying time.
     In the study of microwave assisted extraction of anthocyanin from raspberry powder theextraction time, extraction temperature, ethanol concentration, material-liquid ratio were selectedas variables. The yield of anthocyanin extracted from berry and the variation of dielectricproperties were studied. The results showed that:(1) the effects of each factor at descend trend onthe yield of anthocyanin extracted from berry were material-liquid ratio, ethanol concentration, extraction time and extraction temperature.(2) The effects of each factor at descend trend onextraction dielectric constant were material-liquid ratio, extraction temperature, extraction timeand ethanol concentration.(3) The effects of each factor at descend trend on dielectric loss factorin extract liquor were material-liquid ratio, ethanol concentration, extraction time and extractiontemperature. With material-liquid ratio increased, dielectric loss factor of extract liquor decreased.
     Heat and mass transfer process within foamed raspberry under microwave assisted foameddrying conditions was simulated by using Matlab software, which described the variation ofmaterial temperature and moisture content with the thickness of material. When initial materialmass was400g, microwave power was7kW, wind amount was70m~3·h~(-1)and drying time was240s, material temperature and moisture variation with drying time and material thickness wasdetermined. Under the same drying time, material temperature was increased then decreased withthickness and moisture content. Under the same material thickness, temperature tended toincreased trend and moisture content was decreased with increasing drying time. Thethree-dimensional surface of the material temperature and moisture changed with the thickness andthe drying time was drawn under different power. When microwave power and initial materialmass were changed simultaneously, the variation of the material of internal temperature wassimulated. The material moisture content variation was obtained under different initial materialmass. The initial thickness of pulp influenced significantly moisture content under differentmaterial thickness. When initial thickness of material was at low level, moisture of materialsurface quickly evaporated, and the moisture evaporation decreased from top to bottom layer alongmaterial thickness. While initial material thickness was still in high level, the surface evaporationof material was slow. From material top to the middle, moisture quickly evaporated; while fromthe middle to the bottom, there were no significant changes of moisture evaporation.
     The simulation results agreed well with the experimental data. The simulation results ofmicrowave foamed drying process were reliable, which guide the experiment implement andpractical production. The simulation results also provided theoretical basis for applying microwaveassisted foamed drying method efficiently and producing high quality pulp.
引文
[1]王柏林.黑龙江省小浆果资源种类、生产及开发现状[J].种植业,2009,10:14-15.
    [2]刘中才.我国树莓发展现状与前景[J].科技传播,2010,24:103.
    [3]甘振威,张大旭,张娅婕,等.长白山区几种野生浆果营养成分及延缓衰老作用[J].西安交通大学学报(医学版),2004,25(8):343-345.
    [4]SHIOW Y W, LINDA B, MIN D. Methyl assonate enhances antioxidant activity andfalconoid content in blackberries and promotes ant proliferation of human cancercells[J]. Food Chemistry,2008,107:1261-1269.
    [5]李淑芹,李延冰,姜福臣,等.野生植物-蓝靛果营养成分研究[J].东北农业大学学报,1994,25(4):401-404.
    [6]满丽莉,向殿军.树莓保健酸乳的工艺研究[J].轻工科技,2012,12:16-17.
    [7]孙汉巨,高韩玉,钟昔阳,等.覆盆子功能饮料加工工艺的研究[J].食品科学,2005,26(8):131-134.
    [8]李淑芳,张志军,杨丽维,等.树莓澄清果汁的加工工艺[J].试验报告与理论研究,2008,11(5):19-21.
    [9]张雁南.蓝靛果饮料的研制[J].农产品加工学刊,2008,10:82-83.
    [10]黄祥童,朴龙国,孟庆江,等.蓝靛果发酵制酒工艺研究[J].酿酒科技,2003,2:82-84.
    [11]MONICA A F, JOSEPH M C R. Drying of seabuckthorn (Hippophae rhamnoides L) berry:Impact of dehydration methods on kinetics and quality[J]. Drying Technology,2011,29(3):351-359.
    [12]李里特,李秀婷,张友龙.微波加工果蔬脆片的研究[J].食品科学,1995,16(11):20-23.
    [13]汤大卫.微波真空干燥技术的及应用[J].医药工程设计杂志,2002,23(6):3-6.
    [14]GOKCE D, ELCIN D, OZBEK B. Microwave heat treatment of spinach:drying kineticsand effective moisture diffusivity[J]. Drying Technology,2007,25:1703-1712.
    [15]RATIYA T, SOMKIAT P, JARUWAN K, et al. Determination of effective moisturediffusivity and assessment of quality attributes of banana slices duringdrying[J]. Food Science and Technology,2011,44(6):1502-1510.
    [16]RATTI C, KUDRA T. Drying of foamed biological materials: Opportunities andchallenges[J]. Drying Technology,2006,24(9):1101-1108.
    [17]郑先哲,刘成海,周贺.黑加仑果浆微波辅助泡沫干燥特性[J].农业工程学报,2009,25(8):288-293.
    [18]ZHENG X Z, LIU C H, ZHOU H. Optimization of parameters for microwave assistedfoam mat drying of blackcurrant pulp[J].Drying Technology,2011,29(2):230-238.
    [19]SPARR E C, BJORKLUND E. Analytical scale microwave assistedextraction[J]. Chromatography A,2000,902(1):227-250.
    [20]王明芝,于丽梅,高春梅,等.微波萃取技术在中药及天然产物提取中的应用[J].人参研究,2009,2:29-33.
    [21]孔祥强.谈蓝莓中花青素的保健功能[J].现代农业科技,2009,15:130-133.
    [22]李亚东,张志东,吴林.蓝莓果实的成分及保健机能[J].中国食物与营养,2002,1:27-28.
    [23]郑先哲,汪春,贾富国.农产品干燥理论与技术[M].北京:中国轻工业出版社,2008.
    [24]MUJUMDAR A S, LAW L. Drying technology: Trends and applications in postharvestprocessing[J]. Food Bioprocess Technology,2010,3:843-852.
    [25]RATTI C. Advances in food dehydration[M].U S: CRC Press,2009.
    [26]HUI Y, CLARY C, FARID M M, et al. Food drying science and technology:Microbiology, Chemistry, Application[M].U S: DES tech Publications, Inc,2007.
    [27]王瑞.典型蔬菜制品高效微波冷冻干燥的工艺与机理研究[D].无锡:江南大学,2010.
    [28]LEUSINK G J, DAVID D, KITTS P Y, et al. Retention of antioxidant capacityof vacuum microwave fried cranberry[J].Journal of food science,2010,75(3):311-316.
    [29]BóRUEZ R M, CANALES E R, REDON J P. Osmotic dehydration of raspberries withvacuum pretreatment followed by microwave-vacuum drying[J]. Journal of FoodEngineering,2010,99:121-127.
    [30]CLARY C D, MEJIA M E, WANG S, et al. Improving grape quality using microwavevacuum drying associated with temperature control[J]. Journal of Food Science,2007,72(1):23-28.
    [31]罗树灿,李远志,彭伟睿,等.热风和微波结合干燥荔枝加工工艺研究[J].现代食品科技,2006,22(3):10-13.
    [32]RAJKUMAR P, KAILAPPAN R, VISHWANATHAN R, et al. Thin layer drying study onfoamed mango pulp[J]. Agricultural Engineering International,2007,3(4):1-13.
    [33]RATIYA T, SOMKIAT P, SOMCHART S. Drying characteristics and quality of bananafoam mat[J]. Journal of Food Engineering,2008,86:573-583.
    [34]NARINDRA R, DIEGOB B, CRISTINA R, et al. Characterization of apple juice foamsfor foam-mat drying prepared with egg white protein and methylcellulose foamstability[J]. Journal of Food Science,2006,71(3):142-151.
    [35]段振华.现代高新灭菌技术及其在食品工业中的应用研究[J].中国食物与营养,2006,9:28-31.
    [36]PLISZKA B, HUAXCZA C G, WIERZBICKA E. Effects of Extraction Conditions on theContent of Anthocyanins and Bioelements in Berry FruitExtracts[J]. Communications in soil science and plant analysis,2008,39(5-6):753-762.
    [37]李吉,章世邦,蔡丽玲.响应面法优化微波辅助萃取生姜精油研究.嘉兴学院学报[J],2012,24(6):1-5.
    [38]周贺.黑加仑果浆微波泡沫干燥工艺的研究[D].哈尔滨:东北农业大学工程学院,2009.
    [39]王宏业.黑加仑果浆微波辅助泡沫干燥系统研究[D].哈尔滨:东北农业大学工程学院,2011.
    [40]孙宇.微波辅助泡沫干燥蓝靛果工艺研究[D].哈尔滨:东北农业大学工程学院,2012.
    [41]许相雯.微波辅助萃取蓝莓中花青素及纯化的研究[D].哈尔滨:东北农业大学工程学院,2012.
    [42]徐树来,郑先哲(译).食品微波加工技术[M].北京:中国轻工业出版社,2008.
    [43]郭文川.果蔬介电特性研究综述[J].农业工程学报,2007,23(5):284-289.
    [44]CALAY R K, NEWBOROUGH M, PROBERT D,et al.Predictive equations for dielectricproperties of foods[J]. International Journal of Food Science&Technology,1995,29:699-13.
    [45]VENKATESH M S, RAGHAVAN G S V.An overview of microwave processing and dielectricproperties of agri-food materials[J]. Biosystems Engineering,2004,88(1):1-8.
    [46]DATTA A K, ANANTHESWARAN R C. Handbook of microwave technology for foodapplication[M], New York:Marcel Dekker,Inc,2001.
    [47]KENT M. Electrical and dielectric properties of food materials: a bibliographyand tabulated data[M]. London: Science and Technology Publishers,1987.
    [48]SIPAHIOGLU O, BARRINGER S A. Dielectric properties of vegetables and fruitsas a function of temperature, ash, and moisture Content[J]. Journal of foodscience,2003,68(1):234-239.
    [49]CORONEL P J, SIMUNOVIC K P, SANDEEP P. Dielectric properties of pumpable foodmaterials at915MHz[J]. International Journal of Food Properties,2008,11:508-518.
    [50]MIURA S, YAGIHARA A, MASHIMO S. Microwave dielectric properties of solid andliquid foods investigated by time-domain reflectometry[J]. Journal of FoodScience,2003,68(4):1396-1403.
    [51]TONG C H, LENTZ R R, ROSSEN J L.Dielectric properties of pea puree at915MHzand2450MHz as a function of temperature[J]. Journal of food science,1994,59(1):121-122.
    [52]CHENG C C. Temperature distribution and measurement for grape puffs TM in themicrowave vacuum drying system[D]. Fresno: California state university,1996.
    [53]ISMAIL H B, GULUM S, OZGE S. Estimation of Dielectric Properties of Cakes Basedon Porosity, Moisture Content,and Formulations Using Statistical Methods andArtificial Neural Networks. Food Bioprocess Technol Springer Science,2008,DOI:10.1007/s11947-008-0064-z.
    [54]谢明勇,陈奕.微波辅助萃取技术研究进展[J].食品与生物技术学报,2006,25(1):105-114.
    [55]HAGHI A K, AMANIFARD N. Analysis of heat and mass transfer during microwavedrying of food products[J]. Brazilian Journal of Chemical Engineering,2008,25(3):491-501.
    [56]STEFAN J, KOWALSKI G M, JACEK B. Heat and mass transfer duringmicrowave-convective drying[J]. American Institute of Chemical Engineers,2010,56:24-35.
    [57]LAURA A C, CARLOS A P, MASCHERONI R H. Modeling and simulation of microwaveheating of foods under different process schedules[J]. Food BioprocessTechnology,2010, DOI:10.1007/s11947-010-0378-5.
    [58]王俊,许乃章,胥芳.微波干燥农业物料内部温度水分扩散过程的数学模拟[J].生物数学学报,1995,10(3):174-180.
    [59]冉旭,吕联通,刘学文,等.片状食品微波干燥热质传递模型及其干燥特性[J].农业工程学报,2004,20(3):145-148.
    [60]ZHENG X Z, LIU C H, MU Y Q, et al. Analysis of puffing characteristics usinga Sigmodal function for the berry fruit snack subjected to microwave vacuumconditions[J]. Drying Technology,2012,30(5):494-504.
    [61]SUN Y, ZHENG X Z, XU X W, et al. Drying properties and parameters of bluehoneysuckles pulp under foam assisted microwave dryingconditions[J]. International Journal of Food Engineering,2012,8(2):Article(10).
    [62]MADY C,FABRICE V,OSCAR A,et al.Thermal degradation kinetics of anthocyaninsfrom blood orange, blackberry, and roselle using the Arrhenius, Eyring, andBall models[J]. Journal of Agriculture and Food Chemistry,2009,57:6285-6291.
    [63]AHMED J, SHIVHARE U S, RAGHAVAN G S V. Thermal degradation kinetics ofanthocyanin and visual colour of plum puree[J]. European of Food Research andTechnology,2004,218:525–528.
    [64]韩光泽,陈明东,郭平生,等.微波辅助萃取的微波吸收系数与吸收功率密度[J].华南理工大学学报(自然科学版),2007,35(4):52-57.
    [65]王禹,孙海涛,王宝辉,等.微波的热效应与非热效应[J].辽宁化工,2006,35(3):167-169.
    [66]崔宽波,钱龙,白羽嘉,等.微波非热处理对鲜榨杏汁品质影响的研究[J].食品工业,2010,4:56-58.
    [67]杨晓庆,黄卡玛.微波辐射下电解质水溶液中的非热效应研究[J].材料导报,2007,21(1IA):1-3.
    [68]SUNJKA P S, RENNIE T J, BEAUDRY C, et al. Microwave-convective andmicrowave-vacuum drying of cranberries: A comparative study[J]. DryingTechnology,2004,22(5):1217-1231.
    [69]SABLANI S S.ANDREWS P K, DAVIES N M, et al. Effects of air and freeze dryingon phytochemical content of conventional and organic berries[J]. DryingTechnology,2011,29(2):205-216.
    [70]DEV S R S, PADMINI T, ADEDEJI A, et al.A comparative study on the effect ofchemical,microwave,and pulsed electric pretreatments on convective drying andquality of raisins[J]. Drying Technology,2008,26(10):1238-1243.
    [71]MITRA P,MEDA V.Optimization of microwave-vacuum drying parameters of Saskatoonberries using response surface methodology[J].Drying Technology,2009,27(10):1089-1096.
    [72]DEV S R S, RAGHAVAN V G S. Advancements in drying techniques for food, fiber,and fuel[J]. Drying Technology,2012,30(11&12):1147-1159.
    [73]LOMBRANA J I, RODRIGUEZ R, RUIZ U. Microwave-drying of sliced mushroom analysisof temperature control and pressure[J]. Innovative Food Science and EmergingTechnologies,2010,11(4):652-660.
    [74]DINCOV D D, PARROTT K A, PERICLEOUS K A. Heat and mass transfer in two-phaseporous materials under intensive microwave heating[J]. Journal of FoodEngineering,2004,65(3):403-412.
    [75]CAMPANONE L A, ZARITZKY N E. Mathematical analysis of microwave heatingprocess[J]. Journal of Food Engineering,2005,69(3):359-368.
    [76]SALVI D,ORTEGO J,ARAUZ C,et al.Experimental study of the effect of dielectricand physical properties on temperature distribution in fluids during continuousflow microwave heating[J]. Journal of Food Engineering,2009,93(2):149-157.
    [77]SANTOS T, VALENTE M A, MONTEIRO J, et al. Electromagnetic and thermal historyduring microwave heating[J]. Applied Thermal Engineering,2011,31(16):3255-3261.
    [78]ZHANG H, DATTA A K. Microwave power absorption in single and multiple itemfoods[J]. Food and Bioproducts Processing,2003,81(3):57-265.
    [79]AYAPPA K G,DAVIS H T,BARRINGER S A,et al.Resonant microwave power absorptionin slabs and cylinders[J]. AIChE Journal,1997,43(3):615-624.
    [80]SCHUBERT H,REGIER M.The microwave processing of foods[M].England:CRC press,2005.
    [81]VENKATESH M S,RAGHAVAN G S V.An overview of microwave processing and dielectricproperties of agri-food materials[J]. Biosystems Engineering,2004,88(1):1-18.
    [82]LIN Z, ZHENG X Z, SUN Y, et al. Effective moisture diffusivity, activationenergy and kinetic models of microwave-assisted foam-mat drying of berrypulp[J]. Asian Association for Agricultural Engineering,2012,21(2):23-31.
    [83]BRODIE G. Simultaneous heat and moisture diffusion during microwave heating ofmoist wood[J]. Applied Engineering in Agriculture,2007,23(2):179-187.
    [84]AYAPPA K G, DAVIS H T. Microwave heating: an evaluation of powerformulations[J]. Chemical Engineering Science,1991,46(4):1005-1016.
    [85]REDDY L. Drying characteristics of Saskatoon berries under microwave andcombined microwave-convection heating[D]. Saskatoon: University ofSaskatchewan,2006.
    [86]BOLDOR D, SANDERS T H, SWARTZEL K R, et al. A model for temperature and moisturedistribution during continuous microwave drying[J]. Journal of Food ProcessEngineering,2005,28(1):68-87.
    [87]RAO M A, RIZVI S S H, DATTA A K. Engineering properties of food[M]. Boca Raton,FL: CRC press,2005.
    [88]SARAVACOS G D, MAROULIS Z B. Transport properties of foods[M]. New York:Marcel Dekker,2001.
    [89]NELSON S O,TRABELSI S.Influence of water content on RF and microwave dielectricbehavior of foods[J]. Journal of Microwave Power and Electromagnetic Energy,2009,43(20):13-23.
    [90]李春阳,许时婴,王璋.低浓度香草醛-盐酸法测定葡萄籽、梗中原花青素含量的研究[J].食品工业科技,2004,6:128-130.
    [91]刘钟栋.微波技术在食品工业中的应用[M].北京:中国轻工业出版社,1999.
    [92]杨艳杰,何弘水.不同干燥方法红枣中维生素C含量测定分析[J].现代预防医学,2009,36(1):42-43.
    [93]任洁,吴志敏,张丽,等.不同品牌的橙汁饮料中维生素C含量的测定[J].广东化工,2010,5(37):232-233.
    [94]崔政伟.微波技术在食品工程中的新应用展望[J].包装与食品机械,2003,21(4):1-2.
    [95]MANDAL V, MOHAN Y, HEMALATHA R. Microwave assisted extraction-an innovativeand promising extraction tool for medicinal plant research[J]. PharmacognosyReviews,2007,1(1):7-17.
    [96]NAYAK B, BERRIOS J D, POWERS J R,et al. Thermal degradation of anthocyaninsfrom purple potato (CV. purple majesty) and impact on antioxidantcapacity[J]. Journal of Agricultural and Food Chemistry,2011,59(20):11040-11049.
    [97]YANG Z D, ZHAI W. Optimization of microwave-assisted extraction of anthocyaninsfrom purple corn (Zea mays L) cob and identification with HPLC–MS[J].InnovativeFood Science Emerging,2010,11(3):470-476.
    [98]CACACE J E, MAZZA G. Mass transfer process during extraction of phenoliccompounds from milled berries[J]. Food Engineering,2003,59(4):379-389.
    [99]XAVIER M F, LOPES T J, QUADRIM G A N, et al. Extraction of red cabbageanthocyanins: optimization of the operation conditions of the columnprocess[J]. Brazilian Archives Biology Technology,2008,51(1):143-152.
    [100]李聪.微波催陈对干红葡萄酒品质的影响[D].哈尔滨:东北农业大学工程学院,2009.
    [101]周贺.黑加仑果浆微波泡沫干燥工艺的研究[D].哈尔滨:东北农业大学工程学院,2009.