豆科和禾本科植物热激转录因子基因家族的分子进化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球温室效应的加剧,高温已成为造成农业减产和品质下降的一个重要因素。热激转录因子(Heat shock transcription factor,Hsf)作为信号转导途径终端组件,是热激蛋白和其它热激诱导基因表达的核心调控因子,对提高植物耐热性具有重要作用。目前,尽管在拟南芥和番茄等少数模式植物中对部分Hsf基因的功能进行了研究并取得了一些重要结果,但是对于整个植物Hsf基因家族的基因组结构及进化模式并不很清楚。随着越来越多的物种被测序,为分析和理解该问题提供了基础数据。基于此,本研究在全基因组范围内,鉴定了已测序的豆科植物百脉根、苜蓿、鹰嘴豆、大豆、木豆和菜豆中的Hsf基因,以及禾本科植物短柄草、水稻、高粱和玉米中的Hsf基因。从内含子/外显子分布、结构域和基序、系统发育分析、物种内和物种间的微共线性(microsynteny)、基因拷贝数的变化、环境选择压力以及表达模式等方面探究了豆科和禾本科植物Hsf基因家族的起源与进化、基因的复制与丢失。主要结果如下:
     1.利用公布基因组和转录组数据库,在冷季豆科植物百脉根、苜蓿和鹰嘴豆中分别鉴定出11、19和13个Hsfs;在热季豆科植物大豆、木豆和菜豆中分别别鉴定出46、22和29个Hsfs。结构域和基序分析表明豆科Hsf蛋白具有5个保守的结构域或基序,分别为DBD、HR-A/B、NLS、NES结构域,以及AHA基序。其中位于N端的DBD结构域最为保守且高度结构化,由三个α螺旋束和四个反向平行β片层折叠所组成。AHA基序在A类Hsfs的C端高度保守。
     2.对豆科Hsf基因结构的外显子和内含子分布分析显示,在159个内含子中,有140个是相位0,形成了大量的对称外显子,在DBD结构域中发现了一个高度保守的内含子插入位点且都为相位0,说明了豆科Hsf基因结构的进化上外显子改组和内含子的删除可能起着一定的作用。
     3.系统发育分析发现,来自6个豆科植物基因组的140个豆科Hsf基因的可以被划分成18个共享的进化枝,各自代表着一个原始的基因谱系,推算出在这些豆科植物最近的共同祖先中至少含有18个Hsf基因。
     4.通过对物种内基因组区段上基因微共线性分析,以及对基因复制年代分布的计算说明了豆科植物Hsf基因家族的扩张主要通过全基因组复制事件,而不是串联复制。大豆Hsf基因是经历了早期豆科祖先全基因组复制事件和近代的大豆谱系特异性的多倍体事件进化而来,46个包含Hsf基因的大豆染色体区段中有42个区段形成了两个,三个或四个为一组的旁系同源区段组。在百脉根、苜蓿以及木豆基因组中只发现了少数具有旁系同源关系的Hsf基因区段。
     5.豆科物种间基因组区段上基因微共线性分析发现,百脉根、苜蓿以及木豆基因组中的包含Hsf基因的区段与大豆基因中的包含Hsf基因的复制区段具有广泛的共线性,形成了17组直系同源区段。这些结果说明了百脉根、苜蓿以及木豆基因组中包含Hsf基因的区段与大豆中相应的区段都是由其共同祖先中远古全基因组复制事件产生并进化而来的,但是在百脉根、苜蓿以及木豆基因组中超过一半的Hsf基因拷贝丢失了。而大豆的Hsf基因家族在两轮全基因组复制之后,75%的远古复制基因被保留了下来,以及85%近代复制基因被保留了下来。选择压力分析揭示了持续的纯化选择在保持大豆Hsf基因的数量上起着关键性的作用,且说明了复制产生的子基因受到强烈的进化约束力,维持其功能的稳定。
     6.进一步对禾本科植物基因组Hsf基因家族分析显示在短柄草、水稻、高粱和玉米基因组中分别含有24、25、23和25个Hsf基因。物种内的微共线性分析和对基因复制时间的计算表明在短柄草、水稻、高粱和玉米中超过60%的Hsf基因组区段是由全基因组复制产生的,且玉米Hsf基因家族经历了远古禾本科祖先全基因组复制事件和近代玉米谱系特异性的多倍体事件。
     7.禾本科植物物种间的微共线性也表明,短柄草、水稻、高粱和玉米的Hsf基因组区段间具有广泛的微共线性,所有94个区段形成了17组直系同源区段。推算出远古禾本科祖先全基因组复制产生的Hsf基因拷贝在短柄草、水稻、高粱和玉米中的丢失率分别约为32%、29%、35%和44%,此外,在玉米Hsf基因家族中由近代全基因组复制产生的拷贝的丢失率约为34%。这说明了玉米基因组中相对较多的远古复制的Hsf基因被丢失了,且近代复制的基因有较快的丢失速率。选择压力分析表明在禾本科Hsf基因的进化历程中,纯化选择依然起着主导作用,但在个别基因的部分编码区域存在着较强的正向选择,可能促进其功能的分化。
     8.对百脉根和玉米Hsf基因的表达分析表明其在不同组织中和不同胁迫处理后具有差异表达。百脉根LjHsf-01、LjHsf-02、LjHsf-04、LjHsf-09和LjHsf-10基因,以及玉米ZmHsf-01、ZmHsf-03、ZmHsf-04、ZmHsf-23、ZmHsf-24和ZmHsf-25基因强烈受到热激诱导表达。其中玉米A2亚类的ZmHsf-01和ZmHsf-04微共线性和选择压力分析均证明这两个基因在进化中具有高度的保守性和功能的稳定性,可能在禾本科植物的热激胁迫抗性中具有重要作用,为此我们从玉米B73自交系中克隆了ZmHsf-01和ZmHsf-04的全长基因,为进一步开展功能研究奠定了基础。
     综合所述,本研究通过比较基因组学的方法阐明了豆科和禾本科Hsf基因组家族的进化是与全基因组复制事件相偶联,Hsf基因组区段在物种间存在广泛的微共线性,不同植物谱系中具有差异的基因丢失是Hsf基因家族在不同物种中分化重要成因。这些结果为全基因组水平上掲示Hsf基因家族的分子进化提供了重要依据。
With the increase of global greenhouse effect, high temperature has become a mainfactor resulted in the reduction of both the agricultural yield and quality. Heat shocktranscription factors (Hsfs) serve as the terminal components of signal transduction and arethe central regulators of the expression of heat shock proteins and other heat shock-inducedgenes, and have important roles in improving the thermotolerance of plants. Currentprogresses mostly concentrated in the function of Hsfs in Arabidopsis and tomato, however,the genome structures and evolutionary patterns of the entire Hsf gene families are notclearly understood in plants. As more and more genomes of species were sequenced, thereis a chance to shed some light on this question. Therefore, in this study we analyzed theHsf gene families from six legume species for which substantial information aboutgenomes or transcriptomes was available, namely Lotus japonicus, Medicago truncatula,Cicer arietinum, Glycine max, Cajanus cajan and Phaseolus vulgaris. Moreover, the Hsfgene families in four grass genomes of Brachypodium distachyon, Oryza sativa, Sorghumbicolor and Zea mays were analyzed comprehensively. The origin and evolution, and geneduplication and loss of Hsf gene familes in legumes and grasses were studied based oninvestigation of intron/exon distribution patterns, protein domains and motifs, phylogeneticrelationships, intraspecies and interspecies gene colinearity (microsynteny), gene copynumber changes, environmental selection pressure as well as expression patterns of Hsfgenes. The results were as follows:
     1. By searching published genome and transcriptome databases, a total of11,19and13Hsfs were identified in the cool season legumes Lotus japonicus, Medicago truncatulaand Cicer arietinum, respectively, while46,22and29Hsfs were identified in the tropicalseason legumes Glycine max, Cajanus cajan and Phaseolus vulgaris, respectively. Fiveconserved domains or motifs were observed in most of the legume Hsf proteins, namelyDBD, HR-A/B, NLS, NES domains and AHA motifs. The highly structured N-terminalDBD domain of each Hsf was most conserved; it consisted of a three-helical bundle and afour-stranded antiparallel β-sheet. The AHA motifs in the C-terminus of the Class A Hsfswere highly conserved.
     2. The analysis of the legume Hsf gene structure in terms of intron/exon distributionpatterns revealed that among the159introns,140were phase0, and accordingly there werethe presence of an excess of symmetrical exons. Besides, in the DBD domain a highlyconservative intron insertion site was found and all with phase0. These results suggested that exon shuffling and elimination of intron may contribute to the evolution of legume Hsfgenes.
     3. The phylogenetic analysis showed that the140Hsf genes from the six legumespecies could be delineated into18well-supported clades, and each clade represented anancient gene lineage. Therefore, there were at least18Hsf genes in the most recentcommon ancestor of these legumes.
     4. By searching for intraspecies microsynteny between the genome segments oflegumes and dating the age distributions of duplicated genes, we found that the expansionof legume Hsf gene families was mainly through whole genome duplication rather thantandem duplication. The Hsf genes of Glycine max derived from the early-legume genomeduplication and the recent Glycine-lineage-specific polyploidy event. Moreover,42of46the chromosome regions hosting Hsf genes in Glycine max fell into pairs, triples orquadruples and formed paralogous groups of segments, while only a few paralogoussegments were identified in the genomes of Lotus japonicas, Medicago truncatula andCajanus cajan.
     5. By comparing interspecies microsynteny between the genome segments of legumes,we determined that the great majority of Hsf-containing segments in Lotus japonicas,Medicago truncatula and Cajanus cajan show extensive conservation with the duplicatedregions of Glycine max. These segments formed17groups of orthologous segments. Theseresults suggested that these regions shared ancient genome duplication with Hsf genes inGlycine max, but more than half of the copies of these genes were lost. On the other hand,the Glycine max Hsf gene family retained approximately75%and85%of duplicated genesproduced from the ancient genome duplication and recent Glycine-specific genomeduplication, respectively. Selection pressure analysis indicated that continuous purifyingselection has played a key role in the maintenance of Hsf genes in Glycine max, and theduplicated genes were subject to strong evolutionary constraints to retain the stability oftheir functions.
     6. The further analysis of grass genomes showed that24,25,23and25Hsf geneswere identified in Brachypodium distachyon, Oryza sativa, Sorghum bicolor and Zea mays,respectively. By searching for intraspecies gene colinearity and dating the age distributionsof duplicated genes, we found that in Brachypodium distachyon, Oryza sativa, Sorghumbicolor and Zea mays genomes more than60%Hsf-containing segments havemicrosynteny, and resulted from whole genome duplication. The Hsf gene family of Zeamays originated through the ancient whole genome duplication event occurred in the ancestor of grasses and the recent polyploidy event in the ancestor of Zea mays.
     7. By comparing interspecies gene colinearity between grasses, extensivemicrosynteny was also detected between Hsf-containing segments across Brachypodiumdistachyon, Oryza sativa, Sorghum bicolor and Zea mays genomes, and all94segmentsformed17groups of orthologous segments. Thus, approximately32%,29%,35%and44%of duplicated Hsf genes produced from the ancient genome duplication occurred in grassancestor were lost in Brachypodium distachyon, Oryza sativa, Sorghum bicolor and Zeamays, respectively. In addition, approximately34%of Zea mays Hsf genes, which havebeen obtained from recent genome duplication in the ancestor of Zea mays, were lost justover the past13millions years. These results suggested that in the Zea mays genome arelatively large number of ancient copies of Hsf genes have been removed, and recentcopies have a faster loss rate. Selection pressure analysis indicated that purifying selectionstill played a leading role throughout the evolution of Hsf gene families in grasses, whilestrong signatures of positive selection was detected in some parts of coding regions in theindividual genes, suggesting functional differentiation.
     8. The results of expression analyses of Hsf genes from Lotus japonicus and Zea maysdemonstrated that they were differentially expressed in different tissue types and abioticstresses. LjHsf-01, LjHsf-02, LjHsf-04, LjHsf-09and LjHsf-10genes of Lotus japonicus, aswell as ZmHsf-01, ZmHsf-03, ZmHsf-04, ZmHsf-23, ZmHsf-24and ZmHsf-25genes of Zeamays were significantly up-regulated by heat stress. Among these genes, microsyntenyanalysis and selection pressure analysis have proved that ZmHsf-01and ZmHsf-04ofsubclass A2were highly conserved in the evolution of grasses and the stability of thefunction. They may play an important role in the heat shock stress resistance in grasses.Therefore, we cloned the full-length genes of ZmHsf-01and ZmHsf-04from inbred lineB73and laid a foundation of further study on the function.
     In summary, by using the methods of comparative genomics this study demonstratedthat the evolution of legume and grass Hsf gene families were coupling with proposedwhole genome duplication events, Hsf genome segments have extensive microsyntenybetween species, and the difference of gene loss events have contributed to the divergenceof these gene families in different plant lineages. These results can serve as an importantbasis for resolving molecular evolution of the Hsf gene family on the genome-wide level.
引文
[1] Xu X, Pan S, Cheng S, et al. Genome sequence and analysis of the tuber croppotato[J]. Nature,2011,475(7355):189-195.
    [2] Wang X, Wang H, Wang J, et al. The genome of the mesopolyploid crop speciesBrassica rapa[J]. Nat Genet,2011,43(10):1035-1039.
    [3] Al-Dous E K, George B, Al-Mahmoud M E, et al. De novo genome sequencingand comparative genomics of date palm (Phoenix dactylifera)[J]. Nat Biotechnol,2011,29(6):521-527.
    [4] Merchant S S, Prochnik S E, Vallon O, et al. The Chlamydomonas genomereveals the evolution of key animal and plant functions[J]. Science,2007,318(5848):245-250.
    [5] Rensing S A, Lang D, Zimmer A D, et al. The Physcomitrella genome revealsevolutionary insights into the conquest of land by plants[J]. Science,2008,319(5859):64-69.
    [6] Schnable P S, Ware D, Fulton R S, et al. The B73maize genome: complexity,diversity, and dynamics[J]. Science,2009,326(5956):1112-1115.
    [7] Paterson A H, Bowers J E, Bruggmann R, et al. The Sorghum bicolor genome andthe diversification of grasses[J]. Nature,2009,457(7229):551-556.
    [8] Genome sequencing and analysis of the model grass Brachypodium distachyon[J].Nature,2010,463(7282):763-768.
    [9] Tuskan G A, Difazio S, Jansson S, et al. The genome of black cottonwood,Populus trichocarpa (Torr.&Gray)[J]. Science,2006,313(5793):1596-1604.
    [10] Sato S, Nakamura Y, Kaneko T, et al. Genome structure of the legume, Lotusjaponicus[J]. DNA Res,2008,15(4):227-239.
    [11] Schmutz J, Cannon S B, Schlueter J, et al. Genome sequence of thepalaeopolyploid soybean[J]. Nature,2010,463(7278):178-183.
    [12] Jaillon O, Aury J M, Noel B, et al. The grapevine genome sequence suggestsancestral hexaploidization in major angiosperm phyla[J]. Nature,2007,449(7161):463-467.
    [13] Borevitz J O, Ecker J R. Plant genomics: the third wave[J]. Annu Rev GenomicsHum Genet,2004,5:443-477.
    [14] Bowman J L, Floyd S K, Sakakibara K. Green genes-comparative genomics of thegreen branch of life[J]. Cell,2007,129(2):229-234.
    [15] Fitch W M. Distinguishing homologous from analogous proteins[J]. Syst Zool,1970,19(2):99-113.
    [16] Reid A J, Yeats C, Orengo C A. Methods of remote homology detection can becombined to increase coverage by10%in the midnight zone[J]. Bioinformatics,2007,23(18):2353-2360.
    [17] Heger A, Holm L. Towards a covering set of protein family profiles[J]. ProgBiophys Mol Biol,2000,73(5):321-337.
    [18] Apic G, Gough J, Teichmann S A. Domain combinations in archaeal, eubacterialand eukaryotic proteomes[J]. J Mol Biol,2001,310(2):311-325.
    [19] Ekman D, Bjorklund A K, Frey-Skott J, et al. Multi-domain proteins in the threekingdoms of life: orphan domains and other unassigned regions[J]. J Mol Biol,2005,348(1):231-243.
    [20] Joseph J M, Durand D. Family classification without domain chaining[J].Bioinformatics,2009,25(12):i45-i53.
    [21] Enright A J, Van Dongen S, Ouzounis C A. An efficient algorithm for large-scaledetection of protein families[J]. Nucleic Acids Res,2002,30(7):1575-1584.
    [22] Krishnamurthy N, Brown D, Sjolander K. FlowerPower: clustering proteins intodomain architecture classes for phylogenomic inference of protein function[J]. BMCEvol Biol,2007,7(Suppl1):S12.
    [23] Barthel D, Hirst J D, Blazewicz J, et al. ProCKSI: a decision support system forProtein (structure) Comparison, Knowledge, Similarity and Information[J]. BMCBioinformatics,2007,8:416.
    [24] Huynen M A, Bork P. Measuring genome evolution[J]. Proc Natl Acad Sci U S A,1998,95(11):5849-5856.
    [25] Hulsen T, Huynen M A, de Vlieg J, et al. Benchmarking ortholog identificationmethods using functional genomics data[J]. Genome Biol,2006,7(4):R31.
    [26] Gilbert W, de Souza S J, Long M. Origin of genes[J]. Proc Natl Acad Sci U S A,1997,94(15):7698-7703.
    [27] Taylor J S, Raes J. Duplication and divergence: the evolution of new genes andold ideas[J]. Annu Rev Genet,2004,38:615-643.
    [28] Kellis M, Birren B W, Lander E S. Proof and evolutionary analysis of ancientgenome duplication in the yeast Saccharomyces cerevisiae[J]. Nature,2004,428(6983):617-624.
    [29] Adams K L, Wendel J F. Polyploidy and genome evolution in plants[J]. Curr OpinPlant Biol,2005,8(2):135-141.
    [30] Cui L, Wall P K, Leebens-Mack J H, et al. Widespread genome duplicationsthroughout the history of flowering plants[J]. Genome Res,2006,16(6):738-749.
    [31] Yu J, Hu S, Wang J, et al. A draft sequence of the rice genome (Oryza sativa L.ssp. indica)[J]. Science,2002,296(5565):79-92.
    [32] Goff S A, Ricke D, Lan T H, et al. A draft sequence of the rice genome (Oryzasativa L. ssp. japonica)[J]. Science,2002,296(5565):92-100.
    [33] Yu J, Wang J, Lin W, et al. The Genomes of Oryza sativa: a history ofduplications[J]. PLoS Biol,2005,3(2):e38.
    [34] Ouyang S, Zhu W, Hamilton J, et al. The TIGR Rice Genome AnnotationResource: improvements and new features[J]. Nucleic Acids Res,2007,35(Databaseissue):D883-D887.
    [35] Yuan Q, Ouyang S, Liu J, et al. The TIGR rice genome annotation resource:annotating the rice genome and creating resources for plant biologists[J]. NucleicAcids Res,2003,31(1):229-233.
    [36] Wolfe K H. Yesterday's polyploids and the mystery of diploidization[J]. Nat RevGenet,2001,2(5):333-341.
    [37] Bonierbale M W, Plaisted R L, Tanksley S D. RFLP Maps Based on a CommonSet of Clones Reveal Modes of Chromosomal Evolution in Potato and Tomato[J].Genetics,1988,120(4):1095-1103.
    [38] Tanksley S D, Bernatzky R, Lapitan N L, et al. Conservation of gene repertoirebut not gene order in pepper and tomato[J]. Proc Natl Acad Sci U S A,1988,85(17):6419-6423.
    [39] Hulbert S H, Richter T E, Axtell J D, et al. Genetic mapping and characterizationof sorghum and related crops by means of maize DNA probes[J]. Proc Natl Acad SciU S A,1990,87(11):4251-4255.
    [40] Helentjaris T, Weber D, Wright S. Identification of the genomic locations ofduplicate nucleotide sequences in maize by analysis of restriction fragment lengthpolymorphisms[J]. Genetics,1988,118(2):353-363.
    [41] Ahn S, Anderson J A, Sorrells M E, et al. Homoeologous relationships of rice,wheat and maize chromosomes[J]. Mol Gen Genet,1993,241(5-6):483-490.
    [42] Moore G, Foote T, Helentjaris T, et al. Was there a single ancestral cerealchromosome?[J]. Trends Genet,1995,11(3):81-82.
    [43] Gale M D, Devos K M. Comparative genetics in the grasses[J]. Proc Natl AcadSci U S A,1998,95(5):1971-1974.
    [44] Devos K M, Gale M D. Comparative genetics in the grasses[J]. Plant Mol Biol,1997,35(1-2):3-15.
    [45] Gale M D, Devos K M. Plant comparative genetics after10years[J]. Science,1998,282(5389):656-659.
    [46] Choi H K, Mun J H, Kim D J, et al. Estimating genome conservation betweencrop and model legume species[J]. Proc Natl Acad Sci U S A,2004,101(43):15289-15294.
    [47] Chen M, SanMiguel P, de Oliveira A C, et al. Microcolinearity insh2-homologous regions of the maize, rice, and sorghum genomes[J]. Proc Natl AcadSci U S A,1997,94(7):3431-3435.
    [48] Ilic K, SanMiguel P J, Bennetzen J L. A complex history of rearrangement in anorthologous region of the maize, sorghum, and rice genomes[J]. Proc Natl Acad Sci US A,2003,100(21):12265-12270.
    [49] Yan H H, Mudge J, Kim D J, et al. Estimates of conserved microsynteny amongthe genomes of Glycine max, Medicago truncatula and Arabidopsis thaliana[J]. TheorAppl Genet,2003,106(7):1256-1265.
    [50] Cannon S B, McCombie W R, Sato S, et al. Evolution and microsynteny of theapyrase gene family in three legume genomes[J]. Mol Genet Genomics,2003,270(4):347-361.
    [51] Paterson A H, Freeling M, Tang H, et al. Insights from the comparison of plantgenome sequences[J]. Annu Rev Plant Biol,2010,61:349-372.
    [52] McDonald J H, Kreitman M. Adaptive protein evolution at the Adh locus inDrosophila[J]. Nature,1991,351(6328):652-654.
    [53] Yang Z. Likelihood ratio tests for detecting positive selection and application toprimate lysozyme evolution[J]. Mol Biol Evol,1998,15(5):568-573.
    [54] Yang Z, Nielsen R. Codon-substitution models for detecting molecular adaptationat individual sites along specific lineages[J]. Mol Biol Evol,2002,19(6):908-917.
    [55] Drummond D A, Bloom J D, Adami C, et al. Why highly expressed proteinsevolve slowly[J]. Proc Natl Acad Sci U S A,2005,102(40):14338-14343.
    [56] Yang X, Tuskan G A, Cheng M Z. Divergence of the Dof gene families in poplar,Arabidopsis, and rice suggests multiple modes of gene evolution after duplication[J].Plant Physiol,2006,142(3):820-830.
    [57] Mittler R. Abiotic stress, the field environment and stress combination[J]. TrendsPlant Sci,2006,11(1):15-19.
    [58] Hua J. From freezing to scorching, transcriptional responses to temperaturevariations in plants[J]. Curr Opin Plant Biol,2009,12(5):568-573.
    [59] Ahuja I, de Vos R C, Bones A M, et al. Plant molecular stress responses faceclimate change[J]. Trends Plant Sci,2010,15(12):664-674.
    [60] Zinn K E, Tunc-Ozdemir M, Harper J F. Temperature stress and plant sexualreproduction: uncovering the weakest links[J]. J Exp Bot,2010,61(7):1959-1968.
    [61] Huang G T, Ma S L, Bai L P, et al. Signal transduction during cold, salt, anddrought stresses in plants[J]. Mol Biol Rep,2012,39(2):969-987.
    [62] Sonah H, Deshmukh R K, Singh V P, et al. Genomic resources in horticulturalcrops: status, utility and challenges[J]. Biotechnol Adv,2011,29(2):199-209.
    [63] Ritossa F. A new puffing pattern induced by temperature shock and DNP inDrosophila[J]. Experientia,1962,18(12):571.
    [64] Tissieres A, Mitchell H K, Tracy U M. Protein synthesis in salivary glands ofDrosophila melanogaster: relation to chromosome puffs[J]. J Mol Biol,1974,84(3):389-398.
    [65] Boston R S, Viitanen P V, Vierling E. Molecular chaperones and protein foldingin plants[J]. Plant Mol Biol,1996,32(1-2):191-222.
    [66] Bukau B, Weissman J, Horwich A. Molecular chaperones and protein qualitycontrol[J]. Cell,2006,125(3):443-451.
    [67] Nakamoto H, Vigh L. The small heat shock proteins and their clients[J]. Cell MolLife Sci,2007,64(3):294-306.
    [68] Morimoto R I. Proteotoxic stress and inducible chaperone networks inneurodegenerative disease and aging[J]. Genes Dev,2008,22(11):1427-1438.
    [69] Hartl F U, Hayer-Hartl M. Converging concepts of protein folding in vitro and invivo[J]. Nat Struct Mol Biol,2009,16(6):574-581.
    [70] Pratt W B, Morishima Y, Peng H M, et al. Proposal for a role of theHsp90/Hsp70-based chaperone machinery in making triage decisions when proteinsundergo oxidative and toxic damage[J]. Exp Biol Med (Maywood),2010,235(3):278-289.
    [71] Baniwal S K, Bharti K, Chan K Y, et al. Heat stress response in plants: a complexgame with chaperones and more than twenty heat stress transcription factors[J]. JBiosci,2004,29(4):471-487.
    [72] Bjork J K, Sistonen L. Regulation of the members of the mammalian heat shockfactor family[J]. FEBS J,2010,277(20):4126-4139.
    [73] Fujimoto M, Nakai A. The heat shock factor family and adaptation to proteotoxicstress[J]. FEBS J,2010,277(20):4112-4125.
    [74] Nover L, Bharti K, Doring P, et al. Arabidopsis and the heat stress transcriptionfactor world: how many heat stress transcription factors do we need?[J]. Cell StressChaperones,2001,6(3):177-189.
    [75] Damberger F F, Pelton J G, Harrison C J, et al. Solution structure of theDNA-binding domain of the heat shock transcription factor determined bymultidimensional heteronuclear magnetic resonance spectroscopy[J]. Protein Sci,1994,3(10):1806-1821.
    [76] Harrison C J, Bohm A A, Nelson H C. Crystal structure of the DNA bindingdomain of the heat shock transcription factor[J]. Science,1994,263(5144):224-227.
    [77] Vuister G W, Kim S J, Wu C, et al. NMR evidence for similarities between theDNA-binding regions of Drosophila melanogaster heat shock factor and thehelix-turn-helix and HNF-3/forkhead families of transcription factors[J]. Biochemistry,1994,33(1):10-16.
    [78] Schultheiss J, Kunert O, Gase U, et al. Solution structure of the DNA-bindingdomain of the tomato heat-stress transcription factor HSF24[J]. Eur J Biochem,1996,236(3):911-921.
    [79] Littlefield O, Nelson H C. A new use for the 'wing' of the 'winged' helix-turn-helixmotif in the HSF-DNA cocrystal[J]. Nat Struct Biol,1999,6(5):464-470.
    [80] Cicero M P, Hubl S T, Harrison C J, et al. The wing in yeast heat shocktranscription factor (HSF) DNA-binding domain is required for full activity[J].Nucleic Acids Res,2001,29(8):1715-1723.
    [81] Sakurai H, Enoki Y. Novel aspects of heat shock factors: DNA recognition,chromatin modulation and gene expression[J]. FEBS J,2010,277(20):4140-4149.
    [82] Pelham H R. A regulatory upstream promoter element in the Drosophila hsp70heat-shock gene[J]. Cell,1982,30(2):517-528.
    [83] Santoro N, Johansson N, Thiele D J. Heat shock element architecture is animportant determinant in the temperature and transactivation domain requirements forheat shock transcription factor[J]. Mol Cell Biol,1998,18(11):6340-6352.
    [84] Guo L, Chen S, Liu K, et al. Isolation of heat shock factor HsfA1a-binding sites invivo revealed variations of heat shock elements in Arabidopsis thaliana[J]. Plant CellPhysiol,2008,49(9):1306-1315.
    [85] Akerfelt M, Morimoto R I, Sistonen L. Heat shock factors: integrators of cellstress, development and lifespan[J]. Nat Rev Mol Cell Biol,2010,11(8):545-555.
    [86] Dudler R, Travers A A. Upstream elements necessary for optimal function of thehsp70promoter in transformed flies[J]. Cell,1984,38(2):391-398.
    [87] Bienz M, Pelham H R. Heat shock regulatory elements function as an inducibleenhancer in the Xenopus hsp70gene and when linked to a heterologous promoter[J].Cell,1986,45(5):753-760.
    [88] Thomas G H, Elgin S C. Protein/DNA architecture of the DNase I hypersensitiveregion of the Drosophila hsp26promoter[J]. EMBO J,1988,7(7):2191-2201.
    [89] Bharti K, Von Koskull-Doring P, Bharti S, et al. Tomato heat stress transcriptionfactor HsfB1represents a novel type of general transcription coactivator with ahistone-like motif interacting with the plant CREB binding protein ortholog HAC1[J].Plant Cell,2004,16(6):1521-1535.
    [90] Peteranderl R, Rabenstein M, Shin Y K, et al. Biochemical and biophysicalcharacterization of the trimerization domain from the heat shock transcription factor[J].Biochemistry,1999,38(12):3559-3569.
    [91] Nover L, Scharf K D, Gagliardi D, et al. The Hsf world: classification andproperties of plant heat stress transcription factors[J]. Cell Stress Chaperones,1996,1(4):215-223.
    [92] Kotak S, Port M, Ganguli A, et al. Characterization of C-terminal domains ofArabidopsis heat stress transcription factors (Hsfs) and identification of a newsignature combination of plant class A Hsfs with AHA and NES motifs essential foractivator function and intracellular localization[J]. Plant J,2004,39(1):98-112.
    [93] Lyck R, Harmening U, Hohfeld I, et al. Intracellular distribution and identificationof the nuclear localization signals of two plant heat-stress transcription factors[J].Planta,1997,202(1):117-125.
    [94] Scharf K D, Heider H, Hohfeld I, et al. The tomato Hsf system: HsfA2needsinteraction with HsfA1for efficient nuclear import and may be localized incytoplasmic heat stress granules[J]. Mol Cell Biol,1998,18(4):2240-2251.
    [95] Heerklotz D, Doring P, Bonzelius F, et al. The balance of nuclear import andexport determines the intracellular distribution and function of tomato heat stresstranscription factor HsfA2[J]. Mol Cell Biol,2001,21(5):1759-1768.
    [96] Treuter E, Nover L, Ohme K, et al. Promoter specificity and deletion analysis ofthree heat stress transcription factors of tomato[J]. Mol Gen Genet,1993,240(1):113-125.
    [97] Doring P, Treuter E, Kistner C, et al. The role of AHA motifs in the activatorfunction of tomato heat stress transcription factors HsfA1and HsfA2[J]. Plant Cell,2000,12(2):265-278.
    [98] Yuan C X, Gurley W B. Potential targets for HSF1within the preinitiationcomplex[J]. Cell Stress Chaperones,2000,5(3):229-242.
    [99] Bharti K, Schmidt E, Lyck R, et al. Isolation and characterization of HsfA3, a newheat stress transcription factor of Lycopersicon peruvianum[J]. Plant J,2000,22(4):355-365.
    [100] Tjian R, Maniatis T. Transcriptional activation: a complex puzzle with few easypieces[J]. Cell,1994,77(1):5-8.
    [101] Regier J L, Shen F, Triezenberg S J. Pattern of aromatic and hydrophobic aminoacids critical for one of two subdomains of the VP16transcriptional activator[J]. ProcNatl Acad Sci U S A,1993,90(3):883-887.
    [102] Schmitz M L, Dos S S M, Altmann H, et al. Structural and functional analysis ofthe NF-kappa B p65C terminus. An acidic and modular transactivation domain withthe potential to adopt an alpha-helical conformation[J]. J Biol Chem,1994,269(41):25613-25620.
    [103] Lin J, Chen J, Elenbaas B, et al. Several hydrophobic amino acids in the p53amino-terminal domain are required for transcriptional activation, binding to mdm-2and the adenovirus5E1B55-kD protein[J]. Genes Dev,1994,8(10):1235-1246.
    [104] Xiao H, Lis J T, Xiao H, et al. The upstream activator CTF/NF1and RNApolymerase II share a common element involved in transcriptional activation[J].Nucleic Acids Res,1994,22(11):1966-1973.
    [105] Barlev N A, Candau R, Wang L, et al. Characterization of physical interactions ofthe putative transcriptional adaptor, ADA2, with acidic activation domains andTATA-binding protein[J]. J Biol Chem,1995,270(33):19337-19344.
    [106] Melcher K, Johnston S A. GAL4interacts with TATA-binding protein andcoactivators[J]. Mol Cell Biol,1995,15(5):2839-2848.
    [107] Triezenberg S J. Structure and function of transcriptional activation domains[J].Curr Opin Genet Dev,1995,5(2):190-196.
    [108] Jackson B M, Drysdale C M, Natarajan K, et al. Identification of sevenhydrophobic clusters in GCN4making redundant contributions to transcriptionalactivation[J]. Mol Cell Biol,1996,16(10):5557-5571.
    [109] Czarnecka-Verner E, Pan S, Salem T, et al. Plant class B HSFs inhibittranscription and exhibit affinity for TFIIB and TBP[J]. Plant Mol Biol,2004,56(1):57-75.
    [110] Ikeda M, Ohme-Takagi M. A novel group of transcriptional repressors inArabidopsis[J]. Plant Cell Physiol,2009,50(5):970-975.
    [111] Kumar M, Busch W, Birke H, et al. Heat shock factors HsfB1and HsfB2b areinvolved in the regulation of Pdf1.2expression and pathogen resistance inArabidopsis[J]. Mol Plant,2009,2(1):152-165.
    [112] Baniwal S K, Chan K Y, Scharf K D, et al. Role of heat stress transcription factorHsfA5as specific repressor of HsfA4[J]. J Biol Chem,2007,282(6):3605-3613.
    [113] Lin Y X, Jiang H Y, Chu Z X, et al. Genome-wide identification, classificationand analysis of heat shock transcription factor family in maize[J]. BMC Genomics,2011,12:76.
    [114] Wang C, Zhang Q, Shou H X. Identification and expression analysis of OsHsfs inrice[J]. J Zhejiang Univ Sci B,2009,10(4):291-300.
    [115] Sorger P K, Pelham H R. Yeast heat shock factor is an essential DNA-bindingprotein that exhibits temperature-dependent phosphorylation[J]. Cell,1988,54(6):855-864.
    [116] Wiederrecht G, Seto D, Parker C S. Isolation of the gene encoding the S.cerevisiae heat shock transcription factor[J]. Cell,1988,54(6):841-853.
    [117] Clos J, Westwood J T, Becker P B, et al. Molecular cloning and expression of ahexameric Drosophila heat shock factor subject to negative regulation[J]. Cell,1990,63(5):1085-1097.
    [118] Hsu A L, Murphy C T, Kenyon C. Regulation of aging and age-related disease byDAF-16and heat-shock factor[J]. Science,2003,300(5622):1142-1145.
    [119] Xiao X, Zuo X, Davis A A, et al. HSF1is required for extra-embryonicdevelopment, postnatal growth and protection during inflammatory responses inmice[J]. EMBO J,1999,18(21):5943-5952.
    [120] Fujimoto M, Izu H, Seki K, et al. HSF4is required for normal cell growth anddifferentiation during mouse lens development[J]. EMBO J,2004,23(21):4297-4306.
    [121] Xing H, Wilkerson D C, Mayhew C N, et al. Mechanism of hsp70i genebookmarking[J]. Science,2005,307(5708):421-423.
    [122] von Koskull-Doring P, Scharf K D, Nover L. The diversity of plant heat stresstranscription factors[J]. Trends Plant Sci,2007,12(10):452-457.
    [123] Almoguera C, Rojas A, Diaz-Martin J, et al. A seed-specific heat-shocktranscription factor involved in developmental regulation during embryogenesis insunflower[J]. J Biol Chem,2002,277(46):43866-43872.
    [124] Kotak S, Port M, Ganguli A, et al. Characterization of C-terminal domains ofArabidopsis heat stress transcription factors (Hsfs) and identification of a newsignature combination of plant class A Hsfs with AHA and NES motifs essential foractivator function and intracellular localization[J]. Plant J,2004,39(1):98-112.
    [125] Chan-Schaminet K Y, Baniwal S K, Bublak D, et al. Specific interaction betweentomato HsfA1and HsfA2creates hetero-oligomeric superactivator complexes forsynergistic activation of heat stress gene expression[J]. J Biol Chem,2009,284(31):20848-20857.
    [126] Carranco R, Espinosa J M, Prieto-Dapena P, et al. Repression by an auxin/indoleacetic acid protein connects auxin signaling with heat shock factor-mediated seedlongevity[J]. Proc Natl Acad Sci U S A,2010,107(50):21908-21913.
    [127] Port M, Tripp J, Zielinski D, et al. Role of Hsp17.4-CII as coregulator andcytoplasmic retention factor of tomato heat stress transcription factor HsfA2[J]. PlantPhysiol,2004,135(3):1457-1470.
    [128] Hahn A, Bublak D, Schleiff E, et al. Crosstalk between Hsp90and Hsp70chaperones and heat stress transcription factors in tomato[J]. Plant Cell,2011,23(2):741-755.
    [129] Tripp J, Mishra S K, Scharf K D. Functional dissection of the cytosolic chaperonenetwork in tomato mesophyll protoplasts[J]. Plant Cell Environ,2009,32(2):123-133.
    [130] Nishizawa A, Yabuta Y, Yoshida E, et al. Arabidopsis heat shock transcriptionfactor A2as a key regulator in response to several types of environmental stress[J].Plant J,2006,48(4):535-547.
    [131] Banti V, Mafessoni F, Loreti E, et al. The heat-inducible transcription factorHsfA2enhances anoxia tolerance in Arabidopsis[J]. Plant Physiol,2010,152(3):1471-1483.
    [132] Ogawa D, Yamaguchi K, Nishiuchi T. High-level overexpression of theArabidopsis HsfA2gene confers not only increased themotolerance but alsosalt/osmotic stress tolerance and enhanced callus growth[J]. J Exp Bot,2007,58(12):3373-3383.
    [133] Kotak S, Vierling E, Baumlein H, et al. A novel transcriptional cascade regulatingexpression of heat stress proteins during seed development of Arabidopsis[J]. PlantCell,2007,19(1):182-195.
    [134] Nishizawa-Yokoi A, Nosaka R, Hayashi H, et al. HsfA1d and HsfA1e involved inthe transcriptional regulation of HsfA2function as key regulators for the Hsf signalingnetwork in response to environmental stress[J]. Plant Cell Physiol,2011,52(5):933-945.
    [135] Davletova S, Rizhsky L, Liang H, et al. Cytosolic ascorbate peroxidase1is acentral component of the reactive oxygen gene network of Arabidopsis[J]. Plant Cell,2005,17(1):268-281.
    [136] Yamanouchi U, Yano M, Lin H, et al. A rice spotted leaf gene, Spl7, encodes aheat stress transcription factor protein[J]. Proc Natl Acad Sci U S A,2002,99(11):7530-7535.
    [137] Schramm F, Ganguli A, Kiehlmann E, et al. The heat stress transcription factorHsfA2serves as a regulatory amplifier of a subset of genes in the heat stress responsein Arabidopsis[J]. Plant Mol Biol,2006,60(5):759-772.
    [138] Charng Y Y, Liu H C, Liu N Y, et al. A heat-inducible transcription factor, HsfA2,is required for extension of acquired thermotolerance in Arabidopsis[J]. Plant Physiol,2007,143(1):251-262.
    [139] Zhang L, Li Y, Xing D, et al. Characterization of mitochondrial dynamics andsubcellular localization of ROS reveal that HsfA2alleviates oxidative damage causedby heat stress in Arabidopsis[J]. J Exp Bot,2009,60(7):2073-2091.
    [140] Li C, Chen Q, Gao X, et al. AtHsfA2modulates expression of stress responsivegenes and enhances tolerance to heat and oxidative stress in Arabidopsis[J]. Sci ChinaC Life Sci,2005,48(6):540-550.
    [141] Fortunati A, Piconese S, Tassone P, et al. A new mutant of Arabidopsis disturbedin its roots, right-handed slanting, and gravitropism defines a gene that encodes aheat-shock factor[J]. J Exp Bot,2008,59(6):1363-1374.
    [142] Larkindale J, Vierling E. Core genome responses involved in acclimation to hightemperature[J]. Plant Physiol,2008,146(2):748-761.
    [143] Mishra S K, Tripp J, Winkelhaus S, et al. In the complex family of heat stresstranscription factors, HsfA1has a unique role as master regulator of thermotolerancein tomato[J]. Genes Dev,2002,16(12):1555-1567.
    [144] Liu H C, Liao H T, Charng Y Y. The role of class A1heat shock factors (HSFA1s)in response to heat and other stresses in Arabidopsis[J]. Plant Cell Environ,2011,34(5):738-751.
    [145] Lohmann C, Eggers-Schumacher G, Wunderlich M, et al. Two different heatshock transcription factors regulate immediate early expression of stress genes inArabidopsis[J]. Mol Genet Genomics,2004,271(1):11-21.
    [146] Busch W, Wunderlich M, Schoffl F. Identification of novel heat shockfactor-dependent genes and biochemical pathways in Arabidopsis thaliana[J]. Plant J,2005,41(1):1-14.
    [147] Scharf K D, Rose S, Zott W, et al. Three tomato genes code for heat stresstranscription factors with a region of remarkable homology to the DNA-bindingdomain of the yeast HSF[J]. EMBO J,1990,9(13):4495-4501.
    [148] Nishizawa-Yokoi A, Yoshida E, Yabuta Y, et al. Analysis of the regulation oftarget genes by an Arabidopsis heat shock transcription factor, HsfA2[J]. BiosciBiotechnol Biochem,2009,73(4):890-895.
    [149] Nover L, Scharf K D, Neumann D. Cytoplasmic heat shock granules are formedfrom precursor particles and are associated with a specific set of mRNAs[J]. Mol CellBiol,1989,9(3):1298-1308.
    [150] Li M, Berendzen K W, Schoffl F. Promoter specificity and interactions betweenearly and late Arabidopsis heat shock factors[J]. Plant Mol Biol,2010,73(4-5):559-567.
    [151] Yokotani N, Ichikawa T, Kondou Y, et al. Expression of rice heat stresstranscription factor OsHsfA2e enhances tolerance to environmental stresses intransgenic Arabidopsis[J]. Planta,2008,227(5):957-967.
    [152] Frank G, Pressman E, Ophir R, et al. Transcriptional profiling of maturing tomato(Solanum lycopersicum L.) microspores reveals the involvement of heat shockproteins, ROS scavengers, hormones, and sugars in the heat stress response[J]. J ExpBot,2009,60(13):3891-3908.
    [153] Giorno F, Wolters-Arts M, Grillo S, et al. Developmental and heatstress-regulated expression of HsfA2and small heat shock proteins in tomatoanthers[J]. J Exp Bot,2010,61(2):453-462.
    [154] Czarnecka-Verner E, Yuan C X, Scharf K D, et al. Plants contain a novelmulti-member class of heat shock factors without transcriptional activator potential[J].Plant Mol Biol,2000,43(4):459-471.
    [155] Clarke S M, Cristescu S M, Miersch O, et al. Jasmonates act with salicylic acid toconfer basal thermotolerance in Arabidopsis thaliana[J]. New Phytol,2009,182(1):175-187.
    [156] Miller G, Mittler R. Could heat shock transcription factors function as hydrogenperoxide sensors in plants?[J]. Ann Bot,2006,98(2):279-288.
    [157] Schramm F, Larkindale J, Kiehlmann E, et al. A cascade of transcription factorDREB2A and heat stress transcription factor HsfA3regulates the heat stress responseof Arabidopsis[J]. Plant J,2008,53(2):264-274.
    [158] Sakuma Y, Maruyama K, Qin F, et al. Dual function of an Arabidopsistranscription factor DREB2A in water-stress-responsive and heat-stress-responsivegene expression[J]. Proc Natl Acad Sci U S A,2006,103(49):18822-18827.
    [159] Yoshida T, Sakuma Y, Todaka D, et al. Functional analysis of an Arabidopsisheat-shock transcription factor HsfA3in the transcriptional cascade downstream of theDREB2A stress-regulatory system[J]. Biochem Biophys Res Commun,2008,368(3):515-521.
    [160] Chen H, Hwang J E, Lim C J, et al. Arabidopsis DREB2C functions as atranscriptional activator of HsfA3during the heat stress response[J]. Biochem BiophysRes Commun,2010,401(2):238-244.
    [161] Qin F, Kakimoto M, Sakuma Y, et al. Regulation and functional analysis ofZmDREB2A in response to drought and heat stresses in Zea mays L[J]. Plant J,2007,50(1):54-69.
    [162] Diaz-Martin J, Almoguera C, Prieto-Dapena P, et al. Functional interactionbetween two transcription factors involved in the developmental regulation of a smallheat stress protein gene promoter[J]. Plant Physiol,2005,139(3):1483-1494.
    [163] Prieto-Dapena P, Castano R, Almoguera C, et al. Improved resistance tocontrolled deterioration in transgenic seeds[J]. Plant Physiol,2006,142(3):1102-1112.
    [164] Almoguera C, Prieto-Dapena P, Diaz-Martin J, et al. The HaDREB2transcriptionfactor enhances basal thermotolerance and longevity of seeds through functionalinteraction with HaHSFA9[J]. BMC Plant Biol,2009,9:75.
    [165] Schmid M, Davison T S, Henz S R, et al. A gene expression map of Arabidopsisthaliana development[J]. Nat Genet,2005,37(5):501-506.
    [166] Kilian J, Whitehead D, Horak J, et al. The AtGenExpress global stress expressiondata set: protocols, evaluation and model data analysis of UV-B light, drought andcold stress responses[J]. Plant J,2007,50(2):347-363.
    [167] Mittal D, Chakrabarti S, Sarkar A, et al. Heat shock factor gene family in rice:genomic organization and transcript expression profiling in response to hightemperature, low temperature and oxidative stresses[J]. Plant Physiol Biochem,2009,47(9):785-795.
    [168] Narsai R, Castleden I, Whelan J. Common and distinct organ and stressresponsive transcriptomic patterns in Oryza sativa and Arabidopsis thaliana[J]. BMCPlant Biol,2010,10:262.
    [169] Vacca R A, de Pinto M C, Valenti D, et al. Production of reactive oxygen species,alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrialmetabolism are early events in heat shock-induced programmed cell death in tobaccoBright-Yellow2cells[J]. Plant Physiol,2004,134(3):1100-1112.
    [170] Volkov R A, Panchuk I I, Mullineaux P M, et al. Heat stress-induced H(2)O (2) isrequired for effective expression of heat shock genes in Arabidopsis[J]. Plant Mol Biol,2006,61(4-5):733-746.
    [171] Larkindale J, Huang B. Thermotolerance and antioxidant systems in Agrostisstolonifera: involvement of salicylic acid, abscisic acid, calcium, hydrogen peroxide,and ethylene[J]. J Plant Physiol,2004,161(4):405-413.
    [172] Larkindale J, Hall J D, Knight M R, et al. Heat stress phenotypes of Arabidopsismutants implicate multiple signaling pathways in the acquisition of thermotolerance[J].Plant Physiol,2005,138(2):882-897.
    [173] Kuzmin E V, Karpova O V, Elthon T E, et al. Mitochondrial respiratorydeficiencies signal up-regulation of genes for heat shock proteins[J]. J Biol Chem,2004,279(20):20672-20677.
    [174] Ueda T, Anai T, Tsukaya H, et al. Characterization and subcellular localization ofa small GTP-binding protein (Ara-4) from Arabidopsis: conditional expression undercontrol of the promoter of the gene for heat-shock protein HSP81-1[J]. Mol Gen Genet,1996,250(5):533-539.
    [175] Li B, Liu H T, Sun D Y, et al. Ca(2+) and calmodulin modulate DNA-bindingactivity of maize heat shock transcription factor in vitro[J]. Plant Cell Physiol,2004,45(5):627-634.
    [176] Liu H T, Gao F, Cui S J, et al. Primary evidence for involvement of IP3inheat-shock signal transduction in Arabidopsis[J]. Cell Res,2006,16(4):394-400.
    [177] Liu H T, Li G L, Chang H, et al. Calmodulin-binding protein phosphatase PP7isinvolved in thermotolerance in Arabidopsis[J]. Plant Cell Environ,2007,30(2):156-164.
    [178] Liu H T, Liu Y Y, Pan Q H, et al. Novel interrelationship between salicylic acid,abscisic acid, and PIP2-specific phospholipase C in heat acclimation-inducedthermotolerance in pea leaves[J]. J Exp Bot,2006,57(12):3337-3347.
    [179] Clarke S M, Mur L A, Wood J E, et al. Salicylic acid dependent signalingpromotes basal thermotolerance but is not essential for acquired thermotolerance inArabidopsis thaliana[J]. Plant J,2004,38(3):432-447.
    [180] Suzuki N, Rizhsky L, Liang H, et al. Enhanced tolerance to environmental stressin transgenic plants expressing the transcriptional coactivator multiprotein bridgingfactor1c[J]. Plant Physiol,2005,139(3):1313-1322.
    [181] Kotak S, Larkindale J, Lee U, et al. Complexity of the heat stress response inplants[J]. Curr Opin Plant Biol,2007,10(3):310-316.
    [182] Blanc G, Wolfe K H. Widespread paleopolyploidy in model plant species inferredfrom age distributions of duplicate genes[J]. Plant Cell,2004,16(7):1667-1678.
    [183] Cannon S B, Sterck L, Rombauts S, et al. Legume genome evolution viewedthrough the Medicago truncatula and Lotus japonicus genomes[J]. Proc Natl Acad SciU S A,2006,103(40):14959-14964.
    [184] Fawcett J A, Maere S, Van de Peer Y. Plants with double genomes might havehad a better chance to survive the Cretaceous-Tertiary extinction event[J]. Proc NatlAcad Sci U S A,2009,106(14):5737-5742.
    [185] Cannon S B, Ilut D, Farmer A D, et al. Polyploidy did not predate the evolution ofnodulation in all legumes[J]. PLoS One,2010,5(7):e11630.
    [186] De Grassi A, Lanave C, Saccone C. Genome duplication and gene-familyevolution: the case of three OXPHOS gene families[J]. Gene,2008,421(1-2):1-6.
    [187] Cannon S B, Mitra A, Baumgarten A, et al. The roles of segmental and tandemgene duplication in the evolution of large gene families in Arabidopsis thaliana[J].BMC Plant Biol,2004,4:10.
    [188] Maere S, De Bodt S, Raes J, et al. Modeling gene and genome duplications ineukaryotes[J]. Proc Natl Acad Sci U S A,2005,102(15):5454-5459.
    [189] Chapman B A, Bowers J E, Feltus F A, et al. Buffering of crucial functions bypaleologous duplicated genes may contribute cyclicality to angiosperm genomeduplication[J]. Proc Natl Acad Sci U S A,2006,103(8):2730-2735.
    [190] Garg R, Patel R K, Jhanwar S, et al. Gene discovery and tissue-specifictranscriptome analysis in chickpea with massively parallel pyrosequencing and webresource development[J]. Plant Physiol,2011,156(4):1661-1678.
    [191] Punta M, Coggill P C, Eberhardt R Y, et al. The Pfam protein families database[J].Nucleic Acids Res,2012,40(Database issue):D290-D301.
    [192] Letunic I, Doerks T, Bork P. SMART7: recent updates to the protein domainannotation resource[J]. Nucleic Acids Res,2012,40(Database issue):D302-D305.
    [193] Delorenzi M, Speed T. An HMM model for coiled-coil domains and a comparisonwith PSSM-based predictions[J]. Bioinformatics,2002,18(4):617-625.
    [194] Cokol M, Nair R, Rost B. Finding nuclear localization signals[J]. EMBO Rep,2000,1(5):411-415.
    [195] la Cour T, Kiemer L, Molgaard A, et al. Analysis and prediction of leucine-richnuclear export signals[J]. Protein Eng Des Sel,2004,17(6):527-536.
    [196] Guo A Y, Zhu Q H, Chen X, et al.[GSDS: a gene structure display server][J]. YiChuan,2007,29(8):1023-1026.
    [197] Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL_X windowsinterface: flexible strategies for multiple sequence alignment aided by quality analysistools[J]. Nucleic Acids Res,1997,25(24):4876-4882.
    [198] Tamura K, Dudley J, Nei M, et al. MEGA4: Molecular Evolutionary GeneticsAnalysis (MEGA) software version4.0[J]. Mol Biol Evol,2007,24(8):1596-1599.
    [199] Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate largephylogenies by maximum likelihood[J]. Syst Biol,2003,52(5):696-704.
    [200] Page R D. TreeView: an application to display phylogenetic trees on personalcomputers[J]. Comput Appl Biosci,1996,12(4):357-358.
    [201] Maher C, Stein L, Ware D. Evolution of Arabidopsis microRNA families throughduplication events[J]. Genome Res,2006,16(4):510-519.
    [202] Edgar R C. MUSCLE: multiple sequence alignment with high accuracy and highthroughput[J]. Nucleic Acids Res,2004,32(5):1792-1797.
    [203] Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of proteinsequence alignments into the corresponding codon alignments[J]. Nucleic Acids Res,2006,34(Web Server issue):W609-W612.
    [204] Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNApolymorphism data[J]. Bioinformatics,2009,25(11):1451-1452.
    [205] Lynch M, Conery J S. The evolutionary fate and consequences of duplicategenes[J]. Science,2000,290(5494):1151-1155.
    [206] Gilbert W. The exon theory of genes[J]. Cold Spring Harb Symp Quant Biol,1987,52:901-905.
    [207] Patthy L. Intron-dependent evolution: preferred types of exons and introns[J].FEBS Lett,1987,214(1):1-7.
    [208] Bertioli D J, Moretzsohn M C, Madsen L H, et al. An analysis of synteny ofArachis with Lotus and Medicago sheds new light on the structure, stability andevolution of legume genomes[J]. BMC Genomics,2009,10:45.
    [209] Nam J, Kim J, Lee S, et al. Type I MADS-box genes have experienced fasterbirth-and-death evolution than type II MADS-box genes in angiosperms[J]. Proc NatlAcad Sci U S A,2004,101(7):1910-1915.
    [210] Kim K D, Shin J H, Van K, et al. Dynamic rearrangements determine genomeorganization and useful traits in soybean[J]. Plant Physiol,2009,151(3):1066-1076.
    [211] Innes R W, Ameline-Torregrosa C, Ashfield T, et al. Differential accumulation ofretroelements and diversification of NB-LRR disease resistance genes in duplicatedregions following polyploidy in the ancestor of soybean[J]. Plant Physiol,2008,148(4):1740-1759.
    [212] Shin J H, Van K, Kim D H, et al. The lipoxygenase gene family: a genomic fossilof shared polyploidy between Glycine max and Medicago truncatula[J]. BMC PlantBiol,2008,8:133.
    [213] Van K, Kim D H, Cai C M, et al. Sequence level analysis of recently duplicatedregions in soybean [Glycine max (L.) Merr.] genome[J]. DNA Res,2008,15(2):93-102.
    [214] Lai J, Ma J, Swigonova Z, et al. Gene loss and movement in the maize genome[J].Genome Res,2004,14(10A):1924-1931.
    [215] Messing J, Bharti A K, Karlowski W M, et al. Sequence composition and genomeorganization of maize[J]. Proc Natl Acad Sci U S A,2004,101(40):14349-14354.
    [216] Schlueter J A, Scheffler B E, Schlueter S D, et al. Sequence conservation ofhomeologous bacterial artificial chromosomes and transcription of homeologous genesin soybean (Glycine max L. Merr.)[J]. Genetics,2006,174(2):1017-1028.
    [217] Widholm J M, Chinnala A R, Ryu J H, et al. Glyphosate selection of geneamplification in suspension cultures of3plant species[J]. Physiol Plant,2001,112(4):540-545.
    [218] Kellogg E A. Evolutionary history of the grasses[J]. Plant Physiol,2001,125(3):1198-1205.
    [219] Keller B, Feuillet C. Colinearity and gene density in grass genomes[J]. TrendsPlant Sci,2000,5(6):246-251.
    [220] Paterson A H, Bowers J E, Burow M D, et al. Comparative genomics of plantchromosomes[J]. Plant Cell,2000,12(9):1523-1540.
    [221] SanMiguel P, Gaut B S, Tikhonov A, et al. The paleontology of intergeneretrotransposons of maize[J]. Nat Genet,1998,20(1):43-45.
    [222] Bennetzen J L. Comparative sequence analysis of plant nuclear genomes:microcolinearity and its many exceptions[J]. Plant Cell,2000,12(7):1021-1029.
    [223] Salse J, Bolot S, Throude M, et al. Identification and characterization of sharedduplications between rice and wheat provide new insight into grass genomeevolution[J]. Plant Cell,2008,20(1):11-24.
    [224] Devos K M. Updating the 'crop circle'[J]. Curr Opin Plant Biol,2005,8(2):155-162.
    [225] Paterson A H, Bowers J E, Chapman B A. Ancient polyploidization predatingdivergence of the cereals, and its consequences for comparative genomics[J]. ProcNatl Acad Sci U S A,2004,101(26):9903-9908.
    [226] Wang X, Shi X, Hao B, et al. Duplication and DNA segmental loss in the ricegenome: implications for diploidization[J]. New Phytol,2005,165(3):937-946.
    [227] Wei F, Coe E, Nelson W, et al. Physical and genetic structure of the maizegenome reflects its complex evolutionary history[J]. PLoS Genet,2007,3(7):e123.
    [228] Gaut B S, Doebley J F. DNA sequence evidence for the segmental allotetraploidorigin of maize[J]. Proc Natl Acad Sci U S A,1997,94(13):6809-6814.
    [229] Swigonova Z, Lai J, Ma J, et al. Close split of sorghum and maize genomeprogenitors[J]. Genome Res,2004,14(10A):1916-1923.
    [230] Gaut B S. Patterns of chromosomal duplication in maize and their implications forcomparative maps of the grasses[J]. Genome Res,2001,11(1):55-66.
    [231] Fu H, Dooner H K. Intraspecific violation of genetic colinearity and itsimplications in maize[J]. Proc Natl Acad Sci U S A,2002,99(14):9573-9578.
    [232] Song R, Messing J. Gene expression of a gene family in maize based onnoncollinear haplotypes[J]. Proc Natl Acad Sci U S A,2003,100(15):9055-9060.
    [233] Ayala F J."Nothing in biology makes sense except in the light of evolution":Theodosius Dobzhansky:1900-1975[J]. J Hered,1977,68(1):3-10.
    [234] Ronquist F, Teslenko M, van der Mark P, et al. MrBayes3.2: efficient Bayesianphylogenetic inference and model choice across a large model space[J]. Syst Biol,2012,61(3):539-542.
    [235] Jones D T, Taylor W R, Thornton J M. The rapid generation of mutation datamatrices from protein sequences[J]. Comput Appl Biosci,1992,8(3):275-282.
    [236] Gaut B S, Morton B R, McCaig B C, et al. Substitution rate comparisons betweengrasses and palms: synonymous rate differences at the nuclear gene Adh parallel ratedifferences at the plastid gene rbcL[J]. Proc Natl Acad Sci U S A,1996,93(19):10274-10279.
    [237] Guo J, Wu J, Ji Q, et al. Genome-wide analysis of heat shock transcription factorfamilies in rice and Arabidopsis[J]. J Genet Genomics,2008,35(2):105-118.
    [238] Fu S, Rogowsky P, Nover L, et al. The maize heat shock factor-binding proteinparalogs EMP2and HSBP2interact non-redundantly with specific heat shockfactors[J]. Planta,2006,224(1):42-52.
    [239] Vision T J, Brown D G, Tanksley S D. The origins of genomic duplications inArabidopsis[J]. Science,2000,290(5499):2114-2117.
    [240] Nei M, Gojobori T. Simple methods for estimating the numbers of synonymousand nonsynonymous nucleotide substitutions[J]. Mol Biol Evol,1986,3(5):418-426.
    [241] Wolfe K. Robustness--it's not where you think it is[J]. Nat Genet,2000,25(1):3-4.
    [242] Aury J M, Jaillon O, Duret L, et al. Global trends of whole-genome duplicationsrevealed by the ciliate Paramecium tetraurelia[J]. Nature,2006,444(7116):171-178.
    [243] Wolfe K H, Shields D C. Molecular evidence for an ancient duplication of theentire yeast genome[J]. Nature,1997,387(6634):708-713.
    [244] The Arabidopsis Initiative. Analysis of the genome sequence of the floweringplant Arabidopsis thaliana[J]. Nature,2000,408(6814):796-815.
    [245] Van de Peer Y. Computational approaches to unveiling ancient genomeduplications[J]. Nat Rev Genet,2004,5(10):752-763.
    [246] Panopoulou G, Poustka A J. Timing and mechanism of ancient vertebrate genomeduplications--the adventure of a hypothesis[J]. Trends Genet,2005,21(10):559-567.
    [247] Vandepoele K, De Vos W, Taylor J S, et al. Major events in the genome evolutionof vertebrates: paranome age and size differ considerably between ray-finned fishesand land vertebrates[J]. Proc Natl Acad Sci U S A,2004,101(6):1638-1643.
    [248] Jaillon O, Aury J M, Brunet F, et al. Genome duplication in the teleost fishTetraodon nigroviridis reveals the early vertebrate proto-karyotype[J]. Nature,2004,431(7011):946-957.
    [249] Seoighe C, Gehring C. Genome duplication led to highly selective expansion ofthe Arabidopsis thaliana proteome[J]. Trends Genet,2004,20(10):461-464.
    [250] Davis J C, Petrov D A. Do disparate mechanisms of duplication add similar genesto the genome?[J]. Trends Genet,2005,21(10):548-551.
    [251] Hogslund N, Radutoiu S, Krusell L, et al. Dissection of symbiosis and organdevelopment by integrated transcriptome analysis of lotus japonicus mutant andwild-type plants[J]. PLoS One,2009,4(8):e6556.
    [252] Eisen M B, Spellman P T, Brown P O, et al. Cluster analysis and display ofgenome-wide expression patterns[J]. Proc Natl Acad Sci U S A,1998,95(25):14863-14868.
    [253] Jeffares D C, Penkett C J, Bahler J. Rapidly regulated genes are intron poor[J].Trends Genet,2008,24(8):375-378.
    [254] Zhu H, Choi H K, Cook D R, et al. Bridging model and crop legumes throughcomparative genomics[J]. Plant Physiol,2005,137(4):1189-1196.
    [255] Swindell W R, Huebner M, Weber A P. Transcriptional profiling of Arabidopsisheat shock proteins and transcription factors reveals extensive overlap between heatand non-heat stress response pathways[J]. BMC Genomics,2007,8:125.
    [256] Ikeda M, Mitsuda N, Ohme-Takagi M. Arabidopsis HsfB1and HsfB2b act asrepressors of the expression of heat-inducible Hsfs but positively regulate the acquiredthermotolerance[J]. Plant Physiol,2011,157(3):1243-1254.
    [257] Miller G, Shulaev V, Mittler R. Reactive oxygen signaling and abiotic stress[J].Physiol Plant,2008,133(3):481-489.