穿孔素基因突变与中国人急性淋巴细胞性白血病/淋巴瘤
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[研究背景]
     穿孔素(Perforin PRF1)由T细胞,NK细胞等活性杀伤细胞分泌。其基因突变导致细胞毒介导的杀伤作用减弱,免疫系统清除病变细胞能力减弱,淋巴系统异常增生甚至发生肿瘤。目前发现高达60%家族性嗜血细胞综合征(familial hemaphagocytic lymphohistiocytosis,FHLH)与PRF1突变相关。Clementi等发现PRF1基因敲除小鼠易患淋巴系统肿瘤,Smyth等也再次证明了这一点。近年来人们发现再生障碍性贫血、淋巴瘤、自身免疫性淋巴增殖综合征都与PRF1突变有关。Cannella等发现儿童间变大细胞淋巴瘤存在PRF1突变Clementi等在弥漫大B细胞淋巴瘤病人中发现PRF1突变另外Clementi曾报道一例自身免疫性淋巴系统增殖性疾病转变为淋巴瘤的病例同时有PRF1、FAS突变;并发现该患者兄长具备同样的基因突变,其兄发生了嗜血细胞综合征,预示着PRF1突变单独或协同其他基因突变或在环境因素作用下可能引发各种淋巴系统增殖性疾病。急性淋巴细胞性白血病(acute lymphoblastic leukemia ALL)/林巴瘤是一种淋巴细胞单克隆增殖性疾病,并存在多种染色体异常、基因突变等细胞遗传学改变,因此很可能PRF1基因突变与其有一定关系,Santoro曾研究一百例白种儿童急淋白血病,认为与穿孔素基因突变A91V有关,但是Mehta曾研究二千余例白种儿童急淋白血病,认为与穿孔素基因突变无关,仅PRF191V(在美国白种人中约占5%)可能与BCR-ABL阳性儿童急淋白血病有一定关系。中国人与外国人种族不同,成人急淋白血病/淋巴瘤预后与儿童明显不同,本文拟观察PRF1基因突变、SNP(single nucleotide polymorphism单核苷酸多态性)与中国人急性淋巴细胞白血病/淋巴瘤的关系。
     [目的]
     了解PRF1突变、SNP是否与中国人ALL/淋巴瘤有关。
     [研究对象与方法]
     1.研究对象
     2006年2月-2008年12月期间从北京市道培医院和北京大学第一附属医院收集的111例ALL患者,2005年10月至2010年2月武警总医院和北大医院住院和门诊随访确诊的77例淋巴瘤患者,北京大学第一附属医院2008年6-10月63例健康体检人员作对照。该研究已取得北京市道培医院、北京大学第一医院和武警总医院伦理委员会通过。
     2.研究方法
     (1)基因组DNA提取病例组和对照组研究对象的基因组DNA提取自外周血、指甲或头发。
     (2)PRF1基因外显子及两旁内含子的扩增和测序
     (3)Ph染色体及BCR/ABL融合基因检测
     (4)免疫表型分析
     (5)EBER-1原位杂交
     [结果一]
     1.染色体分析和融合基因检测的结果
     111例ALL中B-ALL93例,T-ALL18例。111例ALL中93例作了核型分析,32例(34.4%)有t(9;22)(q34;q11)易位,即Ph染色体阳性,均为B-ALL。111例ALL都作了融合基因的检查,36例融合基因阳性,均为B-ALL。Ph染色体阳性的32例均为bcr/abl+,未作核型分析者中还有4例bcr/abl+。
     2.在ALL中检测到4种新的杂合性PRF1错义突变,它们引起氨基酸的改变为:G198R、R225Q、D486G和R509K。它们都是B-ALL并伴有核型异常
     3.在ALL中检测到2种新的PRF1杂合性同义突变:S388S、Q540Q,它们也都是B-ALL并伴有核型异常或融合基因4.PRF1基因内SNP rs885821、rs885822、rs10999427和rs10999426的杂合率在正常人与ALL患者之间未发现明显差异
     [结果二]
     1.在77例淋巴瘤中检测到8种新的PRF1错义突变.在77例淋巴瘤中检出了8种PRF1基因的错义点突变,它们引起氨基酸的改变为:L11P、Q164L、I125R、P188L、R 385W、L6P、A109G、F169S,前三种为纯合性错义突变,后五种为杂合性错义突变。
     2.在77例淋巴瘤中检测到3种新的PRF1同义突变
     我们还在3例淋巴瘤患者中检出了3种PRF1同义突变,c.9 C>T(A3A)和c.216 C>A(T72T)为双等位基因突变,c.180 A>G (P60P)为单等位基因突变。
     3. PRF1基因内SNP rs885821、rs885822、rs10999427和rs10999426的杂合率在正常人与淋巴瘤患者之间未发现明显差异。
     4.对4例病人指甲、头发分别测序,与外周血相同。
     5.对8例发生突变的淋巴瘤病人病理切片进行EBER检测,仅一例为阳性。
     [结论]
     1.PRF1基因突变与B-ALL有关,主要发生在Ph+或有其它核型异常的B-ALL。
     2.PRF1基因突变与淋巴瘤有关,与EB病毒感染无关。
     3.ALL/淋巴瘤中发生的PRF1基因突变是种系突变。
Background
     perforin(PRF1) was secreted by T cells, NK cells and other active killer cells. Mutations in PRF1 result in the decrease or absence of the protein and its activity, so that immunological surveillance to virus-infected and transformed tumor cells is compromised. Mutations in PRF1 are found in about 60% cases of familial hemaphagocytic lymphohistocytisis (FHLH) due to severely impaired CTL and NK functions.Knock-out mice for perforin have a high incidence of lymphocytic tumors. In recent years, mutations and polymorphisms in PRF1 have been detected in aplastic anemia, lymphomas and autoimmune lymphoproliferative syndromes. For example, a total of 6 different perforin mutations were identified in 12 of 44 cases with childhood anaplastic large cell lymphoma. In a group of 29 lymphoma patients, biallelic mutations were found in 4 patients and monoallelic mutations presented in 4 other patients. In another report, one case with mutations in PRF1 and FAS genes developed T-cell lymphoblastic lymphoma, and his brother carried the same mutations but manifested hemophagocytic lymphohistiocytosis, suggesting that additional genetic or environmental factors may have impact on clinical symptoms of the patients with PRF1 mutations. Acute lymphoblastic leukemia (ALL) is a malignant monoclonal lymphoproliferative disease, often associated with chromosomal abnormalities or mutations in several genes. A91V mutation in PRF1 has been investigated in childhood ALL with paradoxical results. This mutation was a frequent predisposing factor for childhood ALL from screening A91V mutation in 100 patients. However, in another study on 2272 ALL children, A91V polymorphism was not found to be a risk factor for childhood ALL. Here we want to investigated mutations and SNPs in PRF1 in 111 children and adults with ALL and 77 with lymphoma.
     Objective
     To identify whether mutations and single nucleotide polymorphism (SNP) in perforin gene (PRF1) are correlated with acute lymphoblastic leukemia (ALL) and lymphoma.
     Patients and methods
     1. ALL/lymphoma patients and healthy candidate recruitment
     111 ALL patients, who treated in Beijing Daopei Hospital or Peking University First Hospital during the period from February 2006 to December 2008, were recruited; The patients were diagnosed as ALL and supposed for hematopoietic stem cell transplantation.77 lymphoma patients, who treated in Peking University First Hospital and the General Hospital of Armed Police during the period from October 2005 to February 2010, were recruited; In addition,63 healthy medical students were recruited as controls. The research project was approved by the Medical Ethics Committee of Peking University First Hospital and the General Hospital of Armed Police and the Institutional Review Board of Beijing Daopei Hospital.
     2.Methods
     (1)DNA preparation
     Genomic DNA was extracted from mononuclear cells in peripheral blood or nail and hair
     (2)Sequencing of PCR products amplified from coding exons and their flanking introns in PRF1
     (3)Karyotype analysis and BCR-ABL fusion gene examination
     (4)Immunophenotype
     (5)EBER-1 in situ hybridization
     Results 1
     1. Karyotype and BCR-ABL fusion gene analysis Among111 ALL cases,93 cases are B-ALL,18 cases are T-ALL.We performed karyotype analysis in 93 cases of the 111 ALL patients. t(9;22)(q34;q11) trnaslocation, i.e., positive Ph chromosome, was found in 32 (34.4%) cases, of whom all were B-ALL patients. We also performed fusion gene examinations in 111 ALL cases. BCR-ABL fusion transcript was found in 36 cases, of whom 32 cases were Ph chromosome positive, and 4 cases were not performed karyotype analysis.
     2.Four novel monoallelic missense point mutations in PRF1 were found in 4 B-ALL cases with abnormal karyotype.The resultant amino acid changes are G198R、R225Q、D486G and R509K.
     3. Two novel monoallelic synonymous point mutations S388S and Q540Q in PRF1 were detected in 5 B-ALL cases with abnormal karyotype or fusion gene.
     4. No significant differences in the heterozygosity ratio of reported SNPs in PRF1 between ALL patients and normal controls.
     Results 2
     1. Eight novel missense point mutations in PRF1 were found in 77 lymphomas In the 77 lymphoma cases,8 point mutations were found in PRF1. L11P、Q164L、I125R are biallelic missense mutations, P188L、R385W、L6P、A109G、F169S are monoallelic missense mutations.
     2. Three novel synonymous point mutations in PRF1 were found in 77 lymphomas In the 77 lymphoma cases,3 point mutations were found in PRF1. c.9 C>T (A3A)and c.216 C> A (T72T) are biallelic mutations, c.180 A> G (P60P) is monoallelic mutation.
     3. No significant differences in the heterozygosity ratio of reported SNPs in PRF1 between lymphoma patients and normal controls. Genotype and allele frequencies of rs885821, rs885822, rs10999427, rs10999426 and rs12161733 conform to Hardy-Weinberg equilibrium, and have no significant differences between lymphoma patients and normal individuals (P> 0.05)
     4. The same mutations could also be detected in nail or hair follicles in 4 lymphoma cases.
     5. Only one is EBER positive among 8 lymphoma cases with PRF1 mutations.
     Conclusions
     1.Mutations in PRF1 may occur in B-ALL patients, frequently seen in those with Ph chromosome or other karyotype abnormalities.
     2.Mutations in PRF1 can also occur in lymphoma patients and has no correlationship with EB virus.
     3. Mutations in PRF1 in ALL/lymphoma are germline mutations.
引文
1.Hoves S, Joseph AT, and Ilia V. The battlefield of perforin/granzyme cell death pathways. J. Leukoc. Biol,2010; 87:237-243.
    2.Podack ER, Konigsberg PJ. Cytolytic T cell granules. Isolation, structural, biochemical, and functional characterization. J Exp Med. Sep,1984; 160:695-710.
    3.M Nakata, M J Smyth, Y Norihisa, A Kawasaki, Y Shinkai, K Okumura, and H Yagita. Constitutive expression of pore-forming protein in peripheral blood gamma/delta T cells:Implication for their cytotoxic role in vivo. J Exp Med. Dec 1990; 172:1877-1880.
    4. William J. Grossman, James W. Verbsky, Winfried Barchet, Marco Colonna John P. Atkinsonand Timothy J. Ley. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity. Oct 2004; 21:589-601.
    5.Kawasaki A, Shinkai Y, Yagita H, Okumura K. Expression of perforin in murine natural killer cells and cytotoxic T lymphocytes in vivo. Eur J Immunol.May 1992; 22:1215-1219.
    6. D Jenne, C Rey, J A Haefliger, B Y Qiao, P Groscurth, and J Tschopp. Identification and sequencing of cDNA clones encoding the granule-associated serine proteases granzymes D, E, and F of cytolytic T lymphocytes. Proc Natl Acad Sci USA.Jul 1988; 85:4814-4818.
    7. David Kagi, Birgit Ledermann, Kurt Burki, Peter Seiler, Bernhard Odermatt, Kristin J. Olsen, Eckhard R. Podack, Rolf M. Zinkernagel & Hans Hengartner. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature.May 1994; 369:31-37.
    8 Elena.E.Solomou,Federica Gibellini, Brian Stewart,et al.Perforin gene mutation in patients with acquired aplastic anemia. Blood 2007;109:5234-5237.
    9. Clementi, R., et al. A proportion of patients with lymphoma may harbor mutations of the perforin gene. Blood.2005; 105:4424-4428.
    10. Katano, H., et al. Chronic active Epstein-Barr virus infection associated with mutations in perforin that impair its maturation. Blood.2004; 103:1244-1252.
    11. Stepp.S.E,et al. Perforin gene defects in familial hemophagocytic lymphohistiocytosis.Science 1999;286:1957-1959.
    12.HG Otten, WGJ van Ginkel, A Hagenbeek et al.Prevalence and clinical significance of resistance to perforin-and FAS-mediated cell death in leukemia Leukemia 2004; 18:1401-1405.
    13.Rita Clementi, M.D., Lorenzo Dagna, M.D., Umberto Dianzani, M.D., et al.Inherited Perforin and Fas Mutations in a Patient with Autoimmune Lymphoproliferative Syndrome and Lymphoma New England Journal of Medicine 2004;351:1419-1424
    14Molleran Lee. S.et al. Characterisation of diverse PRF1 mutations leading to decreased nature killer cell activity in North American families with hemophagocytic lymphohistiocytosis.J.Med.Genet.2004;41:137-144.
    15. Sonia Cannella, Alessandra Santoro, Giuseppa Bruno, et al. Germline Mutations of the Perforin Gene Are a Frequent Occurrence in Childhood Anaplastic Large Cell Lymphoma. Cancer 2007; 109:2566-71.
    16. Santoro, A., et al. A single amino acid change A91V in perforin:a novel, frequent predisposing factor to childhood acute lymphoblastic leukemia?Haematologica.2005;90:697-698.
    17 PA Mehta, SM Davies, A Kumar,et al.Perforin polymorphism A91V and susceptibility to B-precursor childhood acute lymphoblastic leukemia:a report from the Children's Oncology Group.Leukemia 2006;20:1539-1541.
    18. Gabert J, Beillard E, van der Velden VH, et al. Standardization and quality control studies of 'real-time' quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia-a Europe Against Cancer program.Leukemia,2003; 17:2318-2357.
    19.Lehmann C, Zeis M, Schmitz N, Uharek L. Impaired binding of perforin on the surface of tumor cells is a cause of target cell resistance against cytotoxic effector cells. Blood 2000; 96:594-600.
    20.Veronique Mateo, Michael Menager,Genevieve de Saint-Basile,et al.Perforin-dependent apoptosis functionally compensates Fas deficiency in activation-induced cell death of human T lymphocytes.Blood 2007; 110:4285-4292.
    21.Ramon Urrea Moreno, Juana Gil, Carmen Rodriguez-Sainz, et al.Functional assessment of perforin C2 domain mutations illustrates the critical role for calcium-dependent lipid binding in perforin cytotoxic function Blood:2009;113:338-346.
    22.Hamza Okur,Gunay Balta,Nurten Akarsu,et al.Clinical and molecular aspects of Turkish familial hemophagocytic lymphohistiocytosis patients with perforin mutations.Leukemia Research.2008;32:972-975.
    23.Ilia Voskoboinik, Marie-Claude Thia, and Joseph A. Trapani A functional analysis of the putative polymorphismsA91V and N252S and 22 missense perforin mutations associated with familial hemophagocytic lymphohistiocytosis Blood:2005; 105:4700-4706
    24.Smyth MJ, Thia KY, Street SE, et al.Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J Exp Med 2000; 192:755-760.
    25. Cappellano G, Orilieri E, Comi C, et al.Variations of the perforin gene in patients with multiple sclerosis. Genes Immun.2008;Jul;9:438-44.
    26. Orilieri E, Cappellano G, Clementi R, et al.Variations of the perforin gene in patients with type 1 diabetes. Diabetes.2008; Apr;57:1078-83.
    27. Chia J, Yeo KP, Whisstock JC, et al.Temperature sensitivity of human perforin mutants unmasks subtotal loss of cytotoxicity, delayed FHL, and a predisposition to cancer. Proc Natl Acad Sci U S A.2009; Jun 16;106:9809-14.
    28. Voskoboinik I, Smyth MJ, Trapani JA. Perforin-mediated target-cell death and immunehomeostasis. Nat Rev Immunol 2006; 6:940-952.
    29. Trizzino A, zur Stadt U, Ueda I, Risma K, Janka G, Ishii E et al. Genotype-phenotype study of familial haemophagocytic lymphohistiocytosis due to perforin mutations. J Med Genet 2008; 45:15-21.
    30. Kagi D, Ledermann B, Burki K, Seiler P, Odermatt B, Olsen KJ et al. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 1994; 369:31-37.
    31. Smyth MJ, Thia KY, Street SE, MacGregor D, Godfrey DI, Trapani JA. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J Exp Med 2000; 192:755-760.
    32.Paul Bolitho, Shayna E. A. Street, Jennifer A. Westwood,Winfried Edelmann,Duncan MacGregor,Paul Waring,William K. Murraye,Dale I. Godfrey,Joseph A. Trapani,Ricky W. Johnstone,and Mark J. Smyth.Perforin-mediated suppression of B-cell lymphoma PNAS 2009 Feb 24:2723-2728.
    33. Hadders MA, Beringer DX, Gros P. Structure of C8alpha-MACPF reveals mechanism of membrane attack in complement immune defense. Science 2007; 317: 1552-1554.
    34. Rosado CJ, Buckle AM, Law RH, Butcher RE, Kan WT, Bird CH et al. A common fold mediates vertebrate defense and bacterial attack. Science 2007; 317: 1548-1551.
    35. Slade DJ, Lovelace LL, Chruszcz M, Minor W, Lebioda L, Sodetz JM. Crystal structure of the MACPF domain of human complement protein C8 alpha in complex with the C8 gamma subunit. J Mol Biol 2008; 379:331-342.
    36. Chia J, Yeo KP, Whisstock JC, Dunstone MA, Trapani JA, Voskoboinik I. Temperature sensitivity of human perforin mutants unmasks subtotal loss of cytotoxicity, delayed FHL, and a predisposition to cancer. Proc Natl Acad Sci USA 2009; 106:9809-9814.
    37. Voskoboinik I, Sutton VR, Ciccone A, House CM, Chia J, Darcy PK et al. Perforin activity and immune homeostasis:the common A91V polymorphism in perforin results in both presynaptic and postsynaptic defects in function. Blood 2007; 110: 1184-1190.
    38. Rosado CJ, Kondos S, Bull TE, Kuiper MJ, Law RH, Buckle AM et al. The MACPF/CDC family of pore-forming toxins. Cell Microbiol 2008; 10:1765-1774.
    39. Denning MG, Anderson MP, Amara JF, Marshall J, Smith AE, Welsh MJ. Processing ofmutant cystic fibrosis transmembrane conductance regulator is temperature-sensitive. Nature 1992; 358:761-764.
    40. Kagi D, Odermatt B, Ohashi PS, Zinkernagel RM, Hengartner H. Development of insulitis without diabetes in transgenic mice lacking perforin-dependent cytotoxicity. J Exp Med 1996; 183:2143-2152.
    41. Kagi D, Odermatt B, Seiler P, Zinkernagel RM, Mak TW, Hengartner H. Reduced incidence and delayed onset of diabetes in perforin-deficient nonobese diabetic mice. J Exp Med 1997; 186:989-997.
    42. Potter S, Chan-Ling T, Ball HJ, Mansour H, Mitchell A, Maluish L et al. Perforin mediated apoptosis of cerebral microvascular endothelial cells during experimental cerebral malaria. Int J Parasitol 2006; 36:485-496.
    43. Nitcheu J, Bonduelle O, Combadiere C, Tefit M, Seilhean D, Mazier D et al. Perforindependent brain-infiltrating cytotoxic CD8+ T lymphocytes mediate experimental cerebral malaria pathogenesis. J Immunol 2003; 170:2221-2228.
    44. Cappellano G, Orilieri E, Comi C, Chiocchetti A, Bocca S, Boggio E et al. Variations of the perforin gene in patients with multiple sclerosis. Genes Immun 2008; 9:438-444.
    45. Deb C, Lafrance-Corey RG, Zoecklein L, Papke L, Rodriguez M, Howe CL. Demyelinated axons and motor function are protected by genetic deletion of perforin in a mouse model of multiple sclerosis. J Neuropathol Exp Neurol 2009; 68: 1037-1048.
    46. AJ Brennan, J Chia, JA Trapanil, I Voskoboinik.Perforin deficiency and susceptibility to cancer. Cell Death and Differentiation 2010; 17:607-615
    47. Rosado, C. J., Kondos, S., Bull, T. E., Kuiper, M. J., Law, R. H., Buckle, A. M., Voskoboinik, I., Bird, P. I., Trapani, J. A., Whisstock, J. C., Dunstone, M. A. The MACPF/CDC family of pore-forming toxins. Cell. Microbiol.2008; 10:1765-1774.
    48. Hadders, M. A., Beringer, D. X., Gros, P. Structure of C8-MACPF reveals mechanism of membrane attack in complement immune defense. Science 2007;317:1552-1554.
    49. Rosado, C. J., Buckle, A. M., Law, R. H., Butcher, R. E., Kan, W. T., Bird, C. H., Ung, K., Browne, K. A., Baran, K., Bashtannyk-Puhalovich, T. A., Faux, N. G., Wong, W., Porter, C. J., Pike, R. N., Ellisdon, A. M., Pearce, M. C., Bottomley, S. P., Emsley, J., Smith, A. I., Rossjohn, J., Hartland, E. L., Voskoboinik, I., Trapani, J. A., Bird, P. I., Dunstone, M. A., Whisstock, J. C. A common fold mediates vertebrate defense and bacterial attack. Science 2007;317:1548-1551.
    50. Slade, D. J., Lovelace, L. L., Chruszcz, M., Minor, W., Lebioda, L., Sodetz, J. M. Crystal structure of the MACPF domain of human complement protein C8 in complex with the C8 subunit. J. Mol. Biol.2008;379:331-342.
    51. Baran, K., Dunstone, M., Chia, J., Ciccone, A., Browne, K. A., Clarke, C. J. P., Lukoyanova, N., Saibil, H., Whisstock, J. C., Voskoboinik, I., Trapani, J. A. The molecular basis for perforin oligomerization and transmembrane pore assembly. Immunity 2009;30:684-695.
    52. Voskoboinik, I., Thia, M. C., Fletcher, J., Ciccone, A., Browne, K., Smyth, M. J., Trapani, J. A. Calcium-dependent plasma membrane binding and cell lysis by perforin are mediated through its C2 domain:a critical role for aspartate residues 429,435, 483, and 485 but not 491. J. Biol. Chem.2005; 280:8426-8434.
    53. Young, J. D., Hengartner, H., Podack, E. R., Cohn, Z. A. Purification and characterization of a cytolytic pore-forming protein from granules of cloned lymphocytes with natural killer activity. Cell 1986;44:849-859.
    54. Kurschus, F. C., Fellows, E., Stegmann, E., Jenne, D. E. Granzyme B delivery via perforin is restricted by size, but not by heparan sulfatedependent endocytosis. Proc. Natl. Acad. Sci. USA 2008; 105:13799-13804.
    55. Browne, K. A., Blink, E., Sutton, V. R., Froelich, C. J., Jans, D. A., Trapani, J. A. Cytosolic delivery of granzyme B by bacterial toxins:evidence that endosomal disruption, in addition to transmembrane pore formation, is an important function of perforin. Mol. Cell. Biol.1999;19:8604-8615.
    56. Keefe, D., Shi, L., Feske, S., Massol, R., Navarro, F., Kirchhausen, T., Lieberman, J. Perforin triggers a plasma membrane-repair response that facilitates CTL induction of apoptosis. Immunity 2005;23:249-262.
    57. Trapani, J. A., Sutton, V. R., Thia, K. Y., Li, Y. Q., Froelich, C. J., Jans, D. A., Sandrin, M. S., Browne, K. A. A clathrin/dynamin-and mannose-6-phosphate receptor-independent pathway for granzyme B-induced cell death. J. Cell Biol. 2003;160:223-233.
    58. Shi, L., Mai, S., Israels, S., Browne, K., Trapani, J. A., Greenberg, A. H. Granzyme B (GraB) autonomously crosses the cell membrane and perforin initiates apoptosis and GraB nuclear localization. J. Exp. Med.1997; 185:855-866.
    59. Fehniger, T. A., Cai, S. F., Cao, X., Bredemeyer, A. J., Presti, R. M., French, A. R., Ley, T. J. Acquisition of murine NK cell cytotoxicity requires the translation of a pre-existing pool of granzyme B and perforin mRNAs. Immunity 2007; 26:798-811.
    60. Lanier, L. L. NK cell recognition. Annu. Rev. Immunol.2005; 23:225-274.
    61. Huntington, N. D., Legrand, N., Alves, N. L., Jaron, B., Weijer, K., Plet, A., Corcuff, E., Mortier, E., Jacques, Y, Spits, H., Di Santo, J. P. IL-15 trans-presentation promotes human NK cell development and differentiation in vivo. J. Exp. Med. 2009;206:25-34.
    62. Liu, K., Catalfamo, M., Li, Y, Henkart, P. A., Weng, N. P. IL-15 mimics T cell receptor crosslinking in the induction of cellular proliferation, gene expression, and cytotoxicity in CD8_ memory T cells. Proc. Natl. Acad. Sci. USA 2002;99:6192-6197.
    63. Brady, J., Hayakawa, Y, Smyth, M. J., Nutt, S. L. IL-21 induces the functional maturation of murine NK cells. J. Immunol.2004; 172:2048-2058.
    64. Pipkin, M. E., Ljutic, B., Cruz-Guilloty, F., Nouzova, M., Rao, A., Zuniga-Pflucker, J. C., Lichtenheld, M. G. Chromosome transfer activates and delineates a locus control region for perforin. Immunity 2007;26:29-41.
    65. Nakata, M., Smyth, M. J., Norihisa, Y, Kawasaki, A., Shinkai, Y, Okumura, K., Yagita, H. Constitutive expression of pore-forming protein in peripheral blood T cells: implication for their cytotoxic role in vivo. J. Exp. Med.1990; 172:1877-1880.
    66. Smith-Garvin, J. E., Koretzky, G. A., Jordan, M. S. T cell activation. Annu. Rev. Immunol.2009;27:591-619.
    67. Villadangos, J. A., Schnorrer, P. Intrinsic and cooperative antigenpresenting functions of dendritic cell substes in vivo. Nat. Rev. Immunol.2007;7:543-555.
    68. Janas, M. L., Groves, P., Kienzle, N., Kelso, A. IL-2 regulates perforin and granzyme gene expression in CD8_ T cells independently of its effects on survival and proliferation. J. Immunol.2005;175:8003-8010.
    69. Meng, Y., Harlin, H., O'Keefe, J. P., Gajewski, T. F. Induction of cytotoxic granules in human memory CD8_ T cell subsets requires cell cycle progression. J. Immunol.2006; 177:1981-1987.
    70. Tamang, D. L., Redelman, D., Alves, B. N., Vollger, L., Bethley, C., Hudig, D. Induction of granzyme B and T cell cytotoxic capacity by IL-2 or IL-15 without antigens:multiclonal responses that are extremely lytic if triggered and short-lived after cytokine withdrawal. Cytokine 2006;36:148-159.
    71. Zhang, J., Scordi, I., Smyth, M. J., Lichtenheld, M. G. Interleukin 2 receptor signaling regulates the perforin gene through signal transducer and activator of transcription (Stat)5 activation of two enhancers. J. Exp. Med.1999; 190:1297-1308.
    72. Phu, T., Haeryfar, S. M. M., Musgrave, B. L., Hoskin, D. W. Phosphatidylinositol 3-kinase inhibitors prevent mouse cytotoxic T-cell development in vitro. J. Leukoc. Biol.2001;69:803-814.
    73. Hernandez-Pigeon, H., Jean, C, Charruyer, A., Haure, M. J., Baudouin, C., Charveron, M., Quillet-Mary, A., Laurent, G. UVA induces granzyme B in human keratinocytes through MIF:implication in extracellular matrix remodeling. J. Biol. Chem.2007; 282:8157-8164.
    74. Hernandez-Pigeon, H., Jean, C., Charruyer, A., Haure, M. J., Titeux, M., Tonasso, L., Quillet-Mary, A., Baudouin, C., Charveron, M., Laurent, G. Human keratinocytes acquire cellular cytotoxicity under UV-B irradiation. Implication of granzyme B and perforin. J. Biol. Chem.2006;281:13525-13532.
    75. Jenkins, M. R., Trapani, J. A., Doherty, P. C., Turner, S. J. Granzyme K expressing cytotoxic T lymphocytes protects against influenza virus in granzyme AB_/_ mice. Viral Immunol.2008;21:341-346.
    76. Pardo, J., Wallich, R., Martin, P., Urban, C., Rongvaux, A., Flavell, R. A., Mullbacher, A., Borner, C., Simon, M. M. Granzyme B-induced cell death exerted by ex vivo CTL:discriminating requirements for cell death and some of its signs. Cell Death Differ.2008; 15:567-579.
    77. Regner, M., Pavlinovic, L., Koskinen, A., Young, N., Trapani, J. A., Mullbacher, A. Cutting edge:rapid and efficient in vivo cytotoxicity by cytotoxic T cells is independent of granzymes A and B. J. Immunol.2009; 183:37-40.
    78. Sutton, V. R., Waterhouse, N. J., Baran, K., Browne, K., Voskoboinik, I., Trapani, J. A. Measuring cell death mediated by cytotoxic lymphocytes or their granule effector molecules. Methods 2008;44:241-249.
    79. Voskoboinik, I., Sutton, V. R., Ciccone, A., House, C. M., Chia, J., Darcy, P. K., Yagita, H., Trapani, J. A. Perforin activity and immune homeostasis:the common A91V polymorphism in perforin results in both presynaptic and postsynaptic defects in function. Blood 2007; 110:1184-1190.
    80. Waterhouse, N. J., Sutton, V. R., Sedelies, K. A., Ciccone, A., Jenkins, M., Turner, S. J., Bird, P. I., Trapani, J. A. Cytotoxic T lymphocyteinduced killing in the absence of granzymes A and B is unique and distinct from both apoptosis and perforin-dependent lysis. J. Cell Biol.2006; 173:133-144.
    81. Johnson, B. J., Costelloe, E. O., Fitzpatrick, D. R., Haanen, J. B., Schumacher, T. N., Brown, L. E., Kelso, A. Single-cell perforin and granzyme expression reveals the anatomical localization of effector CD8-Tcells in influenza virus-infected mice. Proc. Natl. Acad. Sci. USA 2003;100:2657-2662.
    82. Kelso, A., Costelloe, E. O., Johnson, B. J., Groves, P., Buttigieg, K., Fitzpatrick, D. R. The genes for perforin, granzymes A-C and IFN are differentially expressed in single CD8(_) T cells during primary activation. Int. Immunol.2002;14:605-613.
    83. Mark J. Smyth, Kevin Y.T. Thia, Shayna E.A. Street, Duncan MacGregor, Dale I. Godfrey, and Joseph A. Trapani. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J Exp Med. Sep 2000; 192:755-760.
    84.Street SE, Trapani JA, MacGregor D, Smyth MJ. Suppression of lymphoma and epithelial malignancies effected by interferon gamma. J Exp Med.Jul 2002; 196:129-134.
    85. Gavin P. Dunn, Allen T. Bruce, Hiroaki Ikeda, Lloyd J. Old& Robert D. Schreiber. Cancer immunoediting:From immunosurveillance to tumor escape. Nat Immunol. 2002; 3:991-998.
    86.Robert Godal, Ulrich Keilholz, Lutz Uharek, Anne Letsch, Anne Marie Asemissen, Antonia Busse, Il-Kang Na, Eckhard Thiel, and Carmen Scheibenbogen.Lymphomas are sensitive to perforin-dependent cytotoxic pathways despite expression of PI-9 and overexpression of bcl-2.Blood, Apr 2006; 107:3205-3211.
    87.Ueda I, Kurokawa Y, Koike K, Ito S, Sakata A, Matsumora T, Fukushima T, Morimoto A, Ishii E, Imashuku S. Late-onset cases of familial hemophagocytic lymphohistiocytosis with missense perforin gene mutations. Am J Hematol.2007 Jun;82(6):427-32.
    1. Hinchey J,Chaves C,Appignani B, et al. A reversible posterior leukoencephalopat hy syndrome. [J] N Engl Med,1996,334 (8):494-500.
    2. Lee VH, Wijdicks EFM, Manno EM, Rabinstein AA. Clinical spectrum of reversible posterior leukoencephalopathy syndrome. Arch Neurol. 2008;65(2):205-210.
    3. C. Rowley, J. Onslow. Posterior reversible encephalopathy syndrome (PRES).International Journal of Obsteric Anesthesia2008;17(2):195-196.
    4. Reece DE, Frei-Lahr DA, Shepherd JD, et al. Neurologic complications in allogeneic bone marrow transplant patients receiving cyclosporin.Bone Marrow Transplant.1991;8:393-401.
    5. Zimmer WE, Hourihane JM, Wang HZ, et al. The effect of human leukocyte antigen disparity on cyclosporin neurotoxicity after allogeneic bone marrow transplantation. AJNR Am J Neuroradiol.1998; 19:601-608.
    6.Bartynski WS, Zeigler ZR, Shadduck RK, et al. Pretransplantation conditioning influence on the occurrence of cyclosporine or FK-506 neurotoxicity in allogeneic bone marrow transplantation. AJNR Am J Neuroradiol 2004;25:261-269
    7. Bartynski WS, Boardman JF. Distinct imaging patterns and lesion distribution in posterior reversible encephalopathy syndrome. AJNR Am J Neuroradiol 2007;28:1320-7.
    8. Bartynski WS, Zeigler ZR, Shadduck RK, et al. Variable incidence of cyclosporine and FK-506 neurotoxicity in hematopoietic malignancies and marrow conditions after allogeneic bone marrow transplantation. Neurocrit Care 2005;3:33-45
    9. Burt RK, Wilson WH. Conditioning (preparative) regimens. In:Burt RK, Deeg HJ, Lothian ST, Santos GW, eds. Bone Marrow Transplant. Georgetown, Tex: Landes Bioscience; 1996:94-108.
    10. Covarrubias DJ, Leutmer PH, Campeau NG. Posterior reversible encephalopathy syndrome:prognostic utility of quantitative diffusion-weighted MR images. AJNR Am J Neuroradiol.2002;23:1038-1048.
    11. Bartynski WS, Boardman JF, Zeigler ZR, et al. Posterior reversible encephalopathy syndrome (PRES) in infection, sepsis and shock.AJNR Am J Neuroradiol.2006;27(10):2179-2190.
    12. Walter S. Bartynski, Zella R. Zeigler, Richard K. Shadduck, et al.Pretransplantation Conditioning Influence on the Occurrence of Cyclosporine or FK-506 Neurotoxicity in Allogeneic Bone Marrow Transplantation American Journal of Neuroradiology 2004;25:(02)261-269
    13.王国文,程丹.环孢素A血药浓度的影响因素.实用药物与临床,2008;(01):38-40.
    14.Wilburn E. Reddick, John O. Glass, Kathleen J. Helton,et al.Prevalence of Leukoencephalopathy in Children Treated for Acute Lymphoblastic Leukemia with High-Dose Methotrexate.American Journal of Neuroradiology 2005;26(05):1263-1269.
    15.William Irvin, GiGi MacDonald, J. Keith Smith,et al.Dexamethasone-Induced Posterior Reversible Encephalopathy Syndrome.Journal of Clinical Oncology.2007;25(17):2484-2486.
    16 Greer ND. Voriconazole:t he newest t riazole antifungal agent [J]. Proc (Bayl Univ Med Cent),2003,16 (2):241-248.
    17.Aileen E. Boyd, Simon Modi, Susan J. Howard, et al.Adverse Reactions to Voriconazole.Clinical Infectious Diseases.2004;39(08):1241-1244
    18. Kochi S,Takanaga H,Matsuo H,et al. Effect of cyclosporin A or tacrolimus on the function of blood-brain barrier cells. Eur J Pharmacol 1999;372:287-295.
    19. Bartynski WS, Zeigler RZ, Shadduck RK, et al. Variable incidence of cyclosporine and FK-506 neurotoxicity in hematopoietic malignancies and marrow conditions after allogeneic bone marrow transplantation. Neurocritical Care 2005;3:33-45.
    20. Lin JT, Wang WJ, Fuh JL, et al. Prolonged reversible vasospasm in cyclosporin A-induced encephalopathy. AJNR Am J Neuroradiol 2003;24:102-04.
    21.S. Weidauer J. Gaa M. Sitzer,et al.Posterior encephalopathy with vasospasm:MRI and angiography.Neuroradiology 2003;45(12):869-876.
    22.Jon M. Sweany, MD,* Walter S. Bartynski, MD, and John F. Boardman, MD."Recurrent" Posterior Reversible Encephalopathy Syndrome:Report of 3 Cases-PRES Can Strike Twice! Journal of Computer Assisted Tomography 2007;31(01):148-156.
    23. Milia A, Moller J, Pilia G, et al. Spinal cord involvement during hypertensive encephalopathy:clinical and radiological findings. J Neurol 2008;255:142-3.
    24. B Lapuyade, I Sibon, S Jeanin,et al.Spinal cord involvement in posterior reversible encephalopathy syndrome J Neurol Neurosurg Psychiatry 2009;80(01):35.
    25. Wilburn E. Reddick, John O. Glass, Kathleen J. Helton, Prevalence of Leukoencephalopathy in Children Treated for Acute Lymphoblastic Leukemia with High-Dose Methotrexate. Am J Neuroradiol 2005;26(5):1263-1269.
    26. Cruz-Flores S, de Assis Aquino Gondim F, Leira EC. Brainstem involvement in hypertensive encephalopathy:clinical and radiological findings. Neurology 2004;62:1417-19.