半导体纳米材料的生长仿真与物理特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,在单芯片上集成纳米功能单元的能力成为衡量半导体纳米技术发展的一个重要标志。半导体纳米结构(量子点、量子环、纳米线等)功能单元相关的生长制备技术、量子物理效应以及潜在的光电器件应用研究因此成为了凝聚态物理以及半导体纳米技术领域的研究热点。
     本论文依托课题组承担的国家高技术研究发展计划(批准号:2009AA03Z405)、国家自然科学基金(批准号:60644004),紧密围绕半导体纳米材料(量子点和量子环)的生长机制以及量子点在器件集成中的物理特性展开相关的理论研究。取得的主要成果如下:
     1建立了半导体自组织量子点在Stanski-Kastanov模式下生长的动力学蒙特卡罗仿真模型。基于动力学蒙特卡罗仿真模型研究了生长参数(温度、沉积速率、生长停顿时间等)对量子点生长质量(均匀性)的影响。
     2在动力学蒙特卡罗模型的基础上,建立了基于结构衬底的生长仿真模型。研究了方形和圆形单纳米洞对原子扩散行为的影响,发现原子倾向于在纳米洞侧壁上聚集;通过对比发现,由于原子台阶的分布差异,原子更倾向于向方形纳米洞中扩散。研究了不同原子之间的结合能对量子点组分分布的影响规律,原子结合能的差异会影响原子岛中不同原子的混合程度。
     3建立基于动力学蒙特卡罗的量子环自组织生长模型,通过设计衬底中量子点的不同埋藏条件(量子点数量、量子点半高比),实现了对自组织外延量子环的生长尺寸和位置的调控,进一步可以实现了实现双量子环以及多量子环分子的生长。
     4利用有限元方法(FEM)研究了应变补偿层对InAs/GaAs量子点尺寸的补偿作用以及补偿层对相邻两层量子点垂直对准概率的影响。从生长均匀性角度出发,提出了包括补偿位置和补偿浓度的优化补偿方案。在此基础上,研究了不同位置的应变补偿层对量子点电子和空穴的能级以及波函数分布影响的规律。
     5利用有限元方法研究了半导体纳米薄膜与衬底的相互作用,得到了薄膜厚度与衬底可比时衬底的弯曲曲率与薄膜衬底厚度比之间的关系。为了考虑原子细节,建立了基于原子势函数方法的仿真模型,并结合能量最小化原理对量子点和超薄衬底系统进行了几何优化。通过对不同尺寸的金子塔、半球形量子点系统的几何优化,得出超薄衬底的非线性弯曲与量子点形状和尺寸的关系。
     6基于有效质量近似理论和有限元方法建立了机械外力与量子点系统相互作用的模型。研究了不同方向和大小的机械外力对InAs/GaAs半导体量子点中应变、带边的影响,以及最终对电子和空穴能级的影响的规律,为实验上实现外力调控量子点发光波长提供了理论依据。
The ability of integration of nanoscale functional unit on a single chip has become an important symbol of semiconductor technology development in recent decades. The research of the growth techniques, quantum physics effects and penitential applications in devices of semiconductor nanostructure (quantum dots(QDs), quantum rings(QRs), nanowires(NWs)) become the frontier in condensed matter physics and semiconductor nanotechnology.
     Supported by the National High Technology Research and Development Program of China (Grant No.2009AA03Z405), the National Natural Science Foundation of China (Grant No.60644004), this dissertation focuses on the theoretical simulation on self-organization growth mechanism of semiconductor QDs and QRs,as well as the physical characteristics of semiconductor QDs inthedevice integrations. This thesis covers the following six main contributions:
     1Three-dimensional kinetic Monte Carlo (KMC) simulation model of semiconductor quantum dots self-organization growth in the Stanski-Kastanov mode is established. The effects of growth parameters (temperature, deposition rate, growth parameters, growth interruption time) on the quantum dot growth quality (uniformity) are investigated.
     2The model with structured substrate is developed based on the previously KMC model. Atomic diffusion behavior on structured substrate with different shape single nanohole is studied, and atom is preferred to nucleate on the sidewall of the nanohole. By comparing the results, atom is likely to diffuse into the square nanohole due to the distributionof the atomic steps. The effects of atomic bonding energy on QDs composition distribution is also investigated, difference of the atomic bonding energy effects the mixture of atoms in the islands.
     3Self-organized growth model based on Kinetic Monte Carlo is established. Through the design of buried conditions (the number of quantum dots, quantum dot semi-height ratio) in substrate, controlling the size and location of the self-organized epitaxial quantum ring is achieved. Besides above, quantum rings molecular can be also achieved.
     4The impact of the strain compensation layer on size of InAs/GaAs QDs,as well as vertical alignment probability of QDs in neighbor layers, is discussed by using finite element method (FEM). From the view of growth uniformity QDs, optimal concentration and position of strain compensation layer is proposed. Besides above, the engery level and wave function distribution of electron and heavy hole in QDs with strain compensation layer at different location is obtained.
     5Interaction of semiconductor nano films and substrates is investigated by using finite element method. The relationship between the ratio of the film and substrate thickness and the bending curvature of the substrate is discussed.In order to consider the atomic details, simulation model based on the atomic potential function (APF) method is developed, the geometry of quantum dots and ultra-thin substrate system is optimized with energy minimization method. The different size of pyramid, hemispherical quantum dots and substrate are optimized using the APF method. And the influence of size and shape of QDs on nonlinear bending of the ultra-thin substrate is obtained.
     6The interaction model of the mechanical force and the quantum dot system is established by finite elements method combining with effective mass approximation theory. Strain, band edge, electron and heavy hole energy level in the InAs/GaAs QDs under mechanical force with various directions is discussed. Our results provide a theoretical basis for tailoring emission wavelength by using the mechanical forceactively.
引文
[1]F. Schwierz, "Graphene transistors",Nature Nanotech.,5,2010,487-496
    [2]王占国,陈涌海,叶小玲,纳米半导体技术,化学工业出版社,2006
    [3]G. W. Hanson著,侯士敏,高旻,梁学磊译,纳电子学基础,清华大学出版社,2009
    [4]Zh. I. Alferov, V. B. Khalfin, R. F. Kazarindov, "Possible development of a rectifier for very high current densities on the bases of a p-i-n structure with heterojunctions", Sov. Phys. Semicond.1, 1967,358
    [5]L. Esaki, R. Tsu, "Superlattice and Negative Conductivity in Semiconductors", IBM Res. Notes, 1969,RC-2418
    [6]Y. Takahashi, M. Nagase, H. Namatsu, et al., "Fabrication technique for Si single-electron transistor operating at room-temperature", Electron. Lett.,31,1995,136
    [7]T. A. Fulton, G. J. Dolan, "Observation of single-electron charging effects in small tunnel junctions", Phys. Rev. Lett.,59,1987,109
    [8]L. S. Kuzmin, K. K. Likharev, "Direct experimental observation of discrete correlated Single-electron tunneling", JETP Lett.,5,1987,49
    [9]R. Sehoelkopf, P. Wahlgren, A. Kozhevnikov, "The radio-requeney single-electron transistor (RF-SET):A fast and ultrasensitive Electrometer", Science,280,1998,123
    [10]Y. Arakawa, H. Sakaki, M. Nishioka, et al., "Spontaneous emission characteristics of quantum well lasers in strong magnetic-fields-An approach to quantum-well-box light-source", Jpn. J. Appl. Phys.,22,1983, L804
    [11]N. Kirstaedter, N. N. Ledentsov, M. Grundmann, et al., "Low-threshold, large TO injection-laser emission from InGaAs quantum dots", Eletron. Lett.,30,1994,1416
    [12]Z. I. Alferov, N. Y. Gordeev, S. V. Zaitsev, et al., "A low-threshold injection heterojunction laser based on quantum dots, produced by gas-phase epitaxy from organometallic compounds", Semiconductors,30,1996,197
    [13]G. T. Liu, A. Stintz, H. Li, et al., "The influence of quantum-well composition on the performance of quantum dot lasers using InAs/InGaAs dots-in-a-well (DWELL) structures", IEEE J. Quantum Electron.,36,2000,1272
    [14]A. E. Zhukov, A. R. Kovsh, S. S. Mikhrin, et al., "3.9W CW power from sub-monolayer quantum dot diode laser", Electron. Lett.,35,1999,1845
    [15]Z. G. Wang, Y. H. Chen, F. Q. Liu, et al., "Self-assembled quantum dots, wires and quantum-dot lasers", J. Cryst. Growth,227,2001,1132
    [16]M. T. Choi, W. Lee, J. M. Kim, et al., "Ultrashort, high-power pulse generation from a master oscillator power amplifier based on external cavity mode locking of a quantum-dot two-section diode laser", Appl. Phys. Lett.,87,2005,221107
    [17]M. Butkus, K. G. Wilcox, J. Rautiainen, et al., "High-power quantum-dot-based semiconductor disk laser", Opt. Lett.,34,2009,1672
    [18]H. Y. Liu, D. T. Childs, T. J. Badcock, et al, "High-performance three-layer 1.3μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents", IEEE Photon. Tech. Lett.17,2005,1139
    [19]M. V. Maksimov, Y. M. Shernyakov, N. V. Kryzhanovskaya, et al, "High-power 1.5μm InAs-lnGaAs quantum dot lasers on GaAs substrates", Semiconductors 38,2004,732
    [20]P. J. Schlosser, J. E. Hastie, S. Calvez, et al, "InP/AlGalnP quantum dot semiconductor disk lasers for CW TEM00 emission at 716-755nm", Opt. Express 17,2009,21782
    [21]K. Tanabe, D. Guimard, D. Bordel, et al, "Electrically pumped 1.3μm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer", Opt. Express 18,2010,10604
    [22]H. D. Kim, W. G. Jeong, J. H. Lee, et al, "Continuous-wave operation of 1.5μm inGaAs/InGaAsP/InP quantum dot lasers at room temperature", Appl. Phys. Lett.87,2005,083110
    [23]P. Chen, Q. Gong, C. F. Cao, et al, "High performance external cavity InAs/InP quantum dot lasers", Appl. Phys. Lett.98,2011,121102
    [24]K. Tachibana, T. Someya, Y. Arakawa, et al., "Room-temperature lasing oscillation in an InGaN self-assembled quantum dot laser", Appl. Phys. Lett.,75,1999,2605
    [25]J. Renner, L. Worschech, A. Forchel, et al., "CdSe quantum dot microdisk laser", Appl. Phys. Lett.,89,2006,231104
    [26]M. Klude, T. Passow, H. Heinke, et al., "Electro-optical characterization of CdSe quantum dot laser diodes", Phys. Status. Solidi B,229,2002,1029
    [27]C. Z. Tang, Z. C. Niu, Q. Han, et al, "Design and analysis of 1.3μm GaAs-based quantum dot vertical-cavity surface-emitting lasers", Acta. Physica. Sinica,54,2005,3651
    [28]V. Ryzhii, "The theory of quantum-dot infrared phototransistors", Semicond. Sci. Technol.,11, 1996,759
    [29]KIM E T,MADHUKAR A,YE Z,et al. "High detectivity InAs quantum dot infrared photodetectors".Appl. Phys. Lett,84(17),2006,3277-3278
    [30]K. W. Berryman, S. A. Lyon, M. Segev, "Mid-infrared photoconductivity in InAs quantum dots", Appl. Phys. Lett.,70,1997,1861
    [31]J. SZAFRANIEC, S. TSAO, W. ZHANG,et al.,"High-detectivity quantum-dot infrared photodetectors grown by metalorganicchemical vapor deposition", Appl. Plays. Lett,88,2006, 121102-121104
    [32]S. D. Gunapala, S. V. Bandara, C. J. Hill,et al. "Demonstration of 640×512 pixels long-wavelength infrared(LWIR)quantum dot infrared photodetector(QDIP)imaging focal plane array", Infrared Physics & Technology,50,2007,149-155
    [33]J. Phillips, "Evaluation of the fundamental properties of quantum dot infrared detectors", J. Appl. Phys.,91,2002,4590-4594
    [34]W. Q. Ma, Y. W. Sun, X. J. Yang,et al., "Self-organized hexagonal ordering of quantum dot arrays", Nanotechnology,17,2006,5765-5768
    [35]W. Q Ma, Y. W. Sun, X. J. Yang,et al., "Enhanced infrared absorption of spatially ordered quantum dot arrays", Infrared Phys & Technology,50,2007,162-165
    [36]Chun-Chieh. Chang, Yagya. D. Sharma, Yong-Sung. Kim, et al., "A Surface Plasmon Enhanced Infrared Photodetector Based on InAs Quantum Dots", Nano. Lett.,10,2010,1704-1709
    [37]E. U. Rafailov, P. Loza-Alvarez, W. Sibbett, et al., "Amplification of femtosecond pulse over by 18 dB in a quantum-dot semiconductor optical amplifier", IEEE Photon. Tech. Lett.15,2003,1023
    [38]Z. Bakonyi, H. Su, G. Onishchukov. et al, "High-gain quantum-dot semiconductor optical amplifier for 1300 nm", IEEE J. Quantum Electron.39,2003,1409
    [39]S. Dommers, W. Temnov, U. Woggon, et al., "Complete ground state gain recovery after ultrashort double pulse in quantum dot based semiconductor optical amplifier". Appl. Phys. Lett.90, 2007,033508
    [40]T. Vallaitis, C. Koos, R. Bonk, et al., "Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier", Opt. Express,16,2008,170
    [41]C. Meuer, C. Schmidt-Langhorst, H. Schmeckebier, et al., "40Gb/s wavelength conversion via four-wave mixing in a quantum-dot semiconductor optical amplifier", Opt. Express,19,2011,3788
    [42]C. Becher, A. Kiraz, P. Michler, et al., "Nonclassical radiation from a single self-assemble InAs quantum dot", Phys. Rev. B,63,2000, R121312
    [43]J. P. Reithmaier, G. Sek, A. Loffler, et al., "Strong coupling in a single quantum dot-semiconductor microcavity system", Nature,432,2004,197
    [44]D. Englund, D. Fattal, E. Waks, et al., "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal", Phys. Rev. Lett.,95,2005,013904
    [45]W. H. Chang, W. Y. Chen, H. S. Chang, et al., "Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities", Phys. Rev. Lett.,96,2006 117401
    [46]L. Balet, M. Francardi, A. Gerardino N. Chauvin, et al., "Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths", Appl. Phys. Lett.,91,2007,123115
    [47]T. Lund-Hansen, S. Stobbe, B. Julsgaard, et al., "Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide", Phys. Rev. Lett., 101,2008,113903
    [48]F. Suarez, D. Granados, M. L. Dotor, et al., "Laser devices with stacked layers of InGaAs/GaAs quantum rings'", Nanotechnolgy,15,2004, S126
    [49]H. S. Ling, S. Y. Wang, C. P. Lee, et al., "Characteristics of In(Ga)As quantum ring infrared photodetectors", J. Appl. Phys.,105,2009,034504
    [50]P. Fp"ldi O. Kalman, M. G. Benedict, et al., "Networks of quantum nanorings:programmable spintronic devices", Nano Lett.,8,2008,2556-2558
    [51]G. W.Hanson著,侯士敏,高旻,梁学磊译,纳电子学基础,清华大学出版社,2009
    [52]M. Herman, W. Richter, H. Sitter, "Epitaxy Physical Foundation and Technicallmplementation' Springer-Verlag, Berlin, New York,2004
    [53]S. Franchi, G. Trevisi, L. Seravalli, P. Frigeri,"Quantum dot nanostructuresand molecular beam epitaxy", Progress in Crystal Growth and Characterization of Materials,47,2003,166
    [54]V. A. Shchukin, N. N. Ledentsov, D. Bimberg, "Epitaxy of Nanostructures", Springer, Berlin, 2004
    [55]E. Steimetz, J.-T. Zettler, F. Schienle, et al., "In-situ Monitoring of InAs-on-GaAs Quantum Dot Formation in MOVPEby Reflectance-Anisotropy-Spectroscopy and Ellipsometry", Appl. Surf. Science,107,1996,203
    [56]M. Hanke, M. Schmidbauer, D. Grigoriev, et al., "SiGe/Si(001) Stranski-Krastanow islands by liquid-phaseepitaxy:Diffuse x-ray scattering versus growth observations", Phys. Rev. B,69,2004, 075317
    [57]R. Notzel, "Lateral Alignment of Epitaxial Quantum Dots", ed. By O. G.Schmidt, Springer Series on Nanoscience and Technology, Springer, Berlin Heidelberg New York,2006,305
    [58]R. Notzel, K. H. Ploog,"Diffusion and incorporation:shape evolution during overgrowth on structured substrates", J. Ctyst. Growth,8,2001,227-228
    [59]R. Leon, S. Chaparro, S. R. Johnson, et al.,"Dislocation-induced spatial ordering of InAs quantum dots:Effects on optical properties", J. Appl. Phys.,91,2002,5826
    [60]H. Welsch, T. Kipp, Ch. Heyn, et al., "Lateral self-arrangement of self-assembled InAs quantum dots by anintentional-induced dislocation network", J. Cryst. Growth,301,2007,759-761
    [61]C. Zhao,Y. H. Chen, C. X. Cui, et al., "Quantum-dot growth simulation on periodic stress of substrate", J. Chem. Phys.,123,2005,094708
    [62]D. Englund, D. Fattal, E. Waks, et al., "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal", Phys. Rev. Lett.95,2005,013904
    [63]S. Noda, "Seeking the Ultimate Nanolaser", Science,314,2006,260-261
    [64]A. Badolato, K. Hennessy, M. Atature, et al., "Deterministic coupling of single quantum dots to single nanocavity modes", Science,308,2005,1158
    [65]K. Hennessy, A. Badolato, P. M. Petroff, et al., "Positioning photonic crystal cavities to single InAs quantum dots", Photonics and Nanostructures,2,2004,65-72
    [66]K. Hennessy, A. Badolato, M. Winger, et al., "Quantum nature of a strongly coupled single quantum dot-cavity system", Nature,445,2007,896
    [67]Nakamura Y, Schmidt O G, Jin-Phillipp N Y, et al., "Vertical alignment of laterally ordered InAs and InGaAs quantum dot arrays on patterned (001) GaAs substrates", J. Cryst. Growth,242,2002, 339
    [68]S. Watanabe, E. Pelucchi, B. Dwir, et al., "Site-and energy-controlled pyramidal quantum dot heterostructures", Physica E,25,2004,288-297
    [69]Kiravittaya S, Rastelli A, Schmidt O G, "Self-assembled InAs quantum dots on patterned GaAs (001) substrates:Formation and shape evolution", Appl. Phys.Lett.,87,2005,243112
    [70]Song H Z, Nakata Y, Okada Y, et al., "Growth process of quantum dots precisely controlled by an AFM-assisted technique", Physica E,21,2004,625-630
    [71]N.V. Medhekar, V. Hegadekatte, V. B. Shenoy, "Composition Maps in Self-Assembled Alloy Quantum Dots",Phys. Rev. Lett.,100,2008,106104
    [72]G. Medeiros-Ribeiro, A. M. Kamins,T. I. Kamins,et al., "Shape transition of germanium nanocrystals on a silicon(001) surface from pyramids to domes", Science,279,1998,353-355
    [73]F. M. Ross, R. M. Tromp, M. C. Reuter, "Transition states between pyramids and domes duringGe/Si island growth", Science,286,1999,1931-1934
    [74]Medeiros-Ribeiro, G. Bratkovski, A. M. Kamins, et al., "Shape transition of germanium nanocrystals on a silicon(001) surface from pyramids to domes", Science279(5349),1998,353-355
    [75]G. Medeiros-Ribeiro, R. Stanley. Williams, "Thermodynamics of Coherently-Strained GexSi1-x Nanocrystals on Si(001):Alloy Composition and Island Formation", Nano Lett.,7,2007,223-226
    [76]N.V. Medhekar, V. Hegadekatte, V. B. Shenoy,"Composition Maps in Self-Assembled Alloy Quantum Dots",Phys. Rev. Lett.,100,2008,106104
    [77]H. Eisele, A. Lenz, R. Heitz, et al., "Change of InAs/GaAs quantum dot shape and composition during capping", J. Appl. Phys.,104,2008,124301
    [78]I. Martin-Bragad, Victor. Moroz, "Facet formation during solid phase epitaxy regrowth:A lattice kineticMonte Carlo model", Appl. Phys. Lett.,95,2009,123123
    [79]X. Niu, G. B. Stringfellow, F. Liu, "Phase separation in strained epitaxial InGaN islands", Appl. Phys. Lett.,99,2011,213102
    [80]S. Zheng, W. G. Zhu, Y. F. Gao, et al., "Kinetic Monte Carlo simulations of nanocolumn formation in twocomponentepitaxial growth", Appl. Phys. Lett.,96,2010,071913
    [81]V. B. Shenoy, "Evolution of morphology and composition in three-dimensional fullyfaceted strained alloy crystals", J. Mech. Phys. Solids,59,2011,1121-1130
    [82]N.V. Medhekar, V. Hegadekatte, V. B. Shenoy, "Composition Maps in Self-Assembled Alloy Quantum Dots", Phys. Rev. Lett.,100,2008,106104
    [83]G. Vastola, V. B. Shenoy, J. Guo, et al., "Coupled evolution of composition and morphology in a faceted three-dimensional quantum dot", Phys. Rev. B,84,2011,035432
    [84]J. M. Garcia, G. M. Ribeiro, K. Schmidt, et al., "Intermixing and shape changes during the formation of InAsself-assembled quantum dots", Appl. Phys. Lett.,71,1997,2014
    [85]D. Granados, J. M. Garcia, "In(Ga)As self-assembled quantum ring formation by molecular beam epitaxy", Appl. Phys. Lett.,82,2003,2401
    [86]P. Offermans, P. M. Koenraad, J. H. Wolter, et al., "Atomic-scale structure of self-assembled In(Ga)As quantum rings in GaAs", Appl.Phys. Lett.,87,2005,131902
    [87]G. Z. Jia, J. H. Yao, Y. C. Shu, et al., "Quantum rings formed in InAs QDs annealing process", Appl. Surf. Sci.,255,2009,4452
    [88]J. Cui, Q. He, X. M. Jiang, et al., "Self-assembled SiGe quantum rings grown on Si(001) by molecular beam epitaxy", Appl. Phys. Lett.,83,2003,2907
    [89]F. H. Li, Z. S. Tao, J. Qin, et al., "Shape preservation of self-assembled SiGe quantum rings during Si capping", Nanotechnology,18,2007,115708
    [90]J. Sormunen, J. Riikonen, T. Hakkarainen, et al., "Evolution of self-assembled InAs/InP island into quantum rings", Jpn. J. Appl. Phys.,44,2005,1323
    [91]R. Timm, H. Eisele, A. Lenz, et al., "Self-organized formation of GaSb/GaAs quantum rings", Phys. Rev. Lett.,101,2008,256101
    [92]R. Timm, A. Lenz, H. Eisele, et al., "Quantum ring formation and antimony segregation in GaSb/GaAs nanostructures", J. Vac. Sci. Technol. B,26,2008,1492
    [93]X. Tan, X. L. Li, G. W. Yang, "Theoretical strategy for self-assembly of quantum rings", Phys. Rev. B,77,2008,245322
    [94]J. Yang,P. Bhattacharya,Z. Mi, "High-Performance Ino.5Gao.5As/GaAs QuantumDot Lasers on Silicon With Multiple-Layer Quantum-Dot Dislocation Filters", IEEE Trans. on Electr. Dev.,54, 2007,2849
    [95]R. Beanland, J. P. R. David, A. M. Sanchez, "Quantum dots in strained layers-preventing relaxation through theprecipitate hardening effect", J. App. Phys.104,2008,123502
    [96]A. Lenz, H. Eisele, R. Timm, et al., "Nanovoids in InGaAs/GaAs quantum dots observed by cross-sectionalscanning tunneling microscopy", Appl. Phys. Lett.,85,2004,3849-3850
    [97]M.Z. Peng, L.W. Guo, J. Zhang, et al., "Reducing dislocations of Al-rich AlGaN by combining AINbufferand AlN/Al0.8Ga0.2N Superlattices", J. Crys. Growth,310,2008,1088-1092
    [98]N.N. Ledentsov, A.R. Kovsh, V.A. Shchukin, et al., "Novel In-Plane Semiconductor Lasers V", Proc. of SPIE,6133,2006,61330S
    [99]Z. Mi, J. Yang, P. Bhattacharya,et al., "Self-organised quantum dots as dislocation filters:the case of GaAs-based lasers on silicon", Electr. Lett.,42,2006,121
    [100]R. Beanland,J. P. R. David, A. M. Sanchez, "Structural analysis of life tested 1.3μm quantum dot lasers", J. Appl. Phys.,104,2008,123502
    [1]S. W. Ellaway, D. A. Faux, "On the elastic properties of InAs under hydrostatic pressure", Phys. Stat. Sol. b,235,2003,437-440
    [2]N.Metropolis, "The beginning of the Monte Carlo method", Los Alamos Science, Special Issue, 1987,125-130
    [3]N.Metropolis, A. W. Rosenbluth,M. N. Rosenbluth, et al.,"Fast simulated annealing", J.Chem.Phys.,21,1953,1087
    [4]R. Gordon, "Self-consistent molecular orbital methods. XII. further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules", J. Chem.Phys.,48,1968,1408
    [5]K. Nishio, T. Morishita, W. Shinoda, et al., "Molecular dynamics simulation of icosahedral Si quantum dot formation from liquid droplets", Phys. Rev. B,72,2005,245321
    [6]F. F. Abraham, G. W. White, "Kinetic Monte Carlo simulations with minimal searching", J.Appl.Phys.,41,1970,1841
    [7]C. S. Kohliand, M. B. Ives," Computer simulation of crystal growth", J. Cryst. Growth,16,1972, 123
    [8]G. H. Gilmer, "Growth on imperfect crystal faces:I. Monte-Carlo growth rates", J. Cryst. Growth. 35,1976,15
    [9]M. Bowker, D. A. King," Adsorbate diffusion on single crystal surfaces:I. The influence of lateral interactions", Surf. Sci.,71,1978,583
    [10]D. A. Reed, G. Ehrlich, "Surface diffusion, atomic jump rates and thermodynamics", Surf. Sci., 105,1981,603
    [11]P. A. Rikvold, "Simulations of a stochastic model for cluster growth on a square lattice", Phys. Rev. A,1982,647
    [12]K. Binder, "Monte Carlo Methods in Statistical Physics", Springer Verlag, Berlin, Heidelberg, New York,1979
    [13]T. Ala-Nissika, R. Ferrandos, S. C. Ying, "Collective and single particle diffusion on surfaces", Adv. in Phys.,51,2002,949
    [14]K. Fichthom, W. Weinberg, "Theoretical foundations of dynamical Monte Carlo simulations", J. Chem. Phys.,95,1991,1090
    [15]A. B. Bortz, M. H. Kalos, J. L. Lebowitz, "A new algorithm for Monte Carlo simulations of Ising spin systems", J. Comp. Phys.,17,1975,10
    [16]K. Fichthorn, W. Weinberg, "Theoretical foundations of dynamical Monte Carlosimulations", J. Chem. Phys.,95,1991,1090
    [17]W. W. Mullins, "Theory of thermal grooving", J. Appl. phys.,28,1957,333-339
    [18]S. F. Edwards, D. R. Wilkinson,"The surface statistics of a granular aggregate", Proc. R. Soc. Lond.A,381,1982,1780
    [19]M. Kardar, G. Parisi, Y.-C. Zhang, "Dynamic scaling of growing interfaces",Phys. Rev. Lett.,56, 1986,889
    [20]J. W. Cahn., J. E. Hilliard, "Free energy of a nonuniform system Ⅰ:interfacial free energy", J. Chem. Phys.,28,1957,258-267
    [21]S. M. Allen., J. W. Cahn., "A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening", ActaMetall.,27,1979,1085-1095
    [22]Kobayashi. R, "Simulations of three dimensional dendrites Pattern Formation in Complex Dissipative Systems", ed S Kai (Singapore:World Scientific),1992,121-128
    [23]R. Kobayashi, "Modeling and numerical simulations of dendritic crystal growth", Physica D,63, 1993,410-423
    [24]S. M. Wise, W. C. Johnson, "Numerical simulations of pattern-directed phase decomposition in a stressed, binary thin film", J. Appl. Phys.,94,2003,889-898
    [25]C. Gugenberger, R. Spatschek, K. Kassner, "Comparison of phase-field models for surface diffusion", Phys. Rev. E,78,2008,016703
    [26]H. Ramanarayan, N. V. Medhekar, V. B. Shenoy, "Microstructural evolution of strained hetcroepitaxial multilayers", Appl. Phys. Lett.,92,2008,173107
    [27]R. Zhu, E. Pan, P. W. Chung, "Fast multiscale kinetic Monte Carlo simulations of three-dimensional self-assembled quantum dotislands", Phys. Rev. B.,75,2007,205339
    [28]R. L. Schwoebel, E. J. Shipsey, "Step motion on crystal surfaces", J. Appl. Phys.,37,1966, 3682
    [29]G. Ehrlich, F. G. Hudda, "Atomic View of Surface Self-Diffusion:Tungsten onTungsten", J. Chem. Phys.,44,1966,1039
    [30]P. Poloczek, G. Sek, J. Misiewicz, et al., "Optical properties of low-strained InGaAs/GaAs quantum dot structures at the two-dimensional--three-dimensional growth transition", J. Appl. Phys., 100,2006,013503
    [31]F. Arciprete, E. Placidi, V. Sessi, et al., "How kinetics drives the two-to three-dimensional transition in semiconductor strained heterostructures:The case of InAs/GaAs (001)", Appl. Phys. Lett.89,2006,041904
    [32]R. Zhu, E. Pan, P. W. Chung, "Fast multiscale kinetic Monte Carlo simulations of three-dimensional self-assembled quantum dot islands", Phys. Rev. B.,75,2007,205339
    [33]W. Lee, J-M. Myoung, Y-H. Yoo, and H. Shin, "Effect of elastic anisotropy on the strain fields and band edges in stacked InAs/GaAs quantum dot nanostructures", Solid State Commun.,132, 2004,135
    [34]S. S. Quek, G. R. Liu, "Effects of elastic anisotropy on the self-organized ordering of quantum dot Superlattices", Nanotechnology 14,2003,752
    [35]L. H. Friedman, J. Xu, "Feasibility study for thermal-field directed self-assembly of heteroepitaxial quantum dots", Appl. Phys. Lett.,88,2006,093105
    [36]W. T. Tekalign, B. J. Spencer, "Evolution equation for a thin epitaxial film on a deformable substrate", J. Appl. Phys.,96,2004,5505-5512,
    [37]Y. Tu, J. Tersoff, Coarsening, Mixing, et al., "The Complex Evolution of Epitaxial Islands",98, 2007,096103
    [38]O. Caha, V. Holy, Kevin. E. Bassler, "Nonlinear Evolution of Surface Morphology in InAs/AlAs Superlattices via Surface Diffusion", Phys. Rev. Lett.,96,2006,136102
    [39]R. J. Asaro, W. A. Tiller, "Interface morphology development during stress corrosion cracking: PartⅠ. Via surface diffusion", Metallurgical Transactions,3,1972,1789-1796,1972
    [40]M. A. Grinfeld, "Instability of interface between nonhydrostatically stressed elastic body and melts", Doklady Akademii Nauk Sssr,290,1986,1358-1363
    [41]D. J. Srolovitz, "On the stability of surfaces of stressed solids", Acta Metallurgica,37,1989, 621-625
    [42]W. H. Yang, D. J. Srolovitz, "Crack-like surface instabilities in stressed solids", Physical Review Letters,71,1993,1593-1596
    [43]W. H. Yang, D.J. Srolovitz, "Surface-morphology evolution in stressedsolids surfacediffusion controlled crack initiation", J. Mech. Phys. Solids,42,1994,1551-1574
    [44]B.J. Spencer, D.I. Meiron, "Nonlinear evolution of the stress-driven morphological instability in a 2-dimensional semi-infinite solid", Acta MetallurgicaEt Materialia,42,1994,3629-3641
    [45]Y. Xiang, W. N. E,"Nonlinear evolution equation for the stress-drivenmorphological instability", J. Appl. Phys.,91,2002,9414-9422
    [46]R.H. Torii, S. Balibar, "Helium crystals under stress-the Grinfeldinstability", J. Low Temp. Phys.,89,1992,391-400
    [47]J. Berrehar, C. Caroli, C. Lapersonnemeyer,et al., "Surface patternson singlecrystal films under uniaxialstress experimentalevidencefor the Grinfeld instability", Phys. Rev. B,46,1992, 13487-13495
    [48]Y. H. Tu, J. Tersoff, "Coarsening, Mixing, and Motion:The Complex Evolution of Epitaxial Islands", Phys. Rev. Lett.,98,2007,096103
    [49]L. B. Feund, "Dislocation mechanisms of relaxation in strained epitaxial films", Materials Research Bulletin,17,1992,52-60
    [50]D.J. Eaglesham, M. Cerullo, "Dislocation-free stranski-krastanow growth of ge on si (100)" Phys. Rev. Lett.,64,1990,1943-1946
    [51]R.V. Kukta, L.B. Freund, "Minimum energy configuration of epitaxial material clusters on a lattice-mismatched substrate", J. Mech. Phys. Solids,45,1997,1835-1860
    [52]Y.W. Zhang, A.F. Bower, "Numerical simulations of island formation in a coherent strained epitaxial thin film system", J. Mech. Phys. Solids,47(11),1999,2273-2297
    [53]B.J. Spencer, "Asymptotic derivation of the glued-wetting-layer model and contact-angle condition for Stranski-Krastanow islands". Phys. Rev. B,59,1999,2011-2017
    [54]B.J. Spencer, S.H. Davis, P.W. Voorhees, "Morphological instability in epitaxially strained dislocation-free solid films nonlinear evolution", Phys. Rev. B.,47,1993,9760-9777
    [55]Y.W. Zhang, A.F. Bower, "Three-dimensional analysis of shape transitions in strainedheteroepitaxial islands", Appl. Phys. Lett.,78,2001,2706-2708
    [56]Z.G. Suo, Z.Y. Zhang, "Epitaxial films stabilized by long-range forces",Phys. Rev. B.,58,1998, 5116-5120
    [57]W. T. Tekalign, B. J. Spencer, "Evolution equation for a thin epitaxial film on a deformable substrate", J. Appl. Phys.,96,2004,1015
    [58]L. H. Friedman, J. Xu, "Feasibility study for thermal-field directed self-assembly of heteroepitaxial quantum dots", Appl. Phys. Lett.,88,2006,093105
    [59]A.A. Golovin, S. H. Davis, P.W. Voorhees, "Self-organization of quantum dots in epitaxially strained solid films", Phys. Rev. E.,68,2003,056203
    [1]Kaminskii, A.Y., Suris,R.A., "Smoothing of crystal surfaces duringgrowth interruption", Appl. Surf. Sci.,104/105,1996,312-316
    [2]E. Pan, M. Sun, P. W. Chung, et al., "Three-dimensional kinetic Monte Carlo simulation of prepatternedquantum-dot island growth", Appl. Phys. Lett.,91,2007,193110
    [3]S.F. Hopp and A. Heuer, "Kinetic Monte Carlo study of nucleation processes on patterned surfaces",133,2010,204101
    [4]R. Xiang, M. T. Lung, and C. H. Lam, "Layer-by-layer nucleation mechanism for quantum dot formation in strained heteroepitaxy",Phys. Rev. E,82,2010,021601
    [5]A. J. Shields, "Semiconductor quantum light sources", Nat. Photonics,1,2007,215
    [6]E. Peter, P. Senellart, D. Martrou, et. al, J. Bloch, "Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity", Phys. Rev. Lett.,95,2005,067401
    [7]J.P. Reithmaier, G. Sek, A.Loffler, et al., "Strong coupling in a single quantumdotsemiconductor microcavity system", Nature,432,2004,197
    [8]D. Englund, A. Faraon, I. Fushman, et al., "Controlling cavity reflectivity with a single quantum dot", Nature,450,2007,857
    [9]J. Y. Lee, M. J.Noordhoek, P.Smereka, et al., "Filling of hole arrays with InAs quantum dots" Nanotechnology,20,2009,285305
    [10]R. Zhu, E. Pan,P. W. Chung, Fast multiscale kinetic Monte Carlo simulations of threedimensional self-assembled quantum dotislands,Phys. Rev. B,75,2007,205339
    [1]Y. Arakawa, H. Sakaki, "Multidimensional quantum well laser and temperature dependence of its threshold current", Appl. Phys. Lett.,40,1982,939
    [2]A. Luque, A. Marti,"Increasing the Efficiency of Ideal Solar Cells by Photon Induced Transitions at Intermediate Levels", Phys. Rev. Lett.,78,1997,5014
    [3]J. Ishii-Hayase, K. Akahane, N. Yamamoto, et al., "Optical properties of stacked InAs self-organized quantum dots on InP (311) B", J. of Crys. Growth,318,2006,119
    [4]M. Sugawara, H. Ebe, N. Hatori, et al., "Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers", Phys. Rev. B,69,2004,235332
    [5]R. Oshima, Y. Nakamura, A. Takata, Y. Okada, "Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells",Appl. Phys. Lett.,310,2008,2234
    [6]R. Oshima, A. Takata,Y. Okada, "Strain-compensated InAs/GaNAs quantum dots for use in high-efficiency solar cells", Appl. Phys. Lett.,93,2008,083111
    [7]N. Nuntawong, Y. C. Xin, S. Birudavolu, et al., "Quantum dot lasers based on a stacked and strain-compensated active region grown by metal-organic chemical vapor deposition", Appl. Phys. Lett.,86,2005,193115
    [8]G. S. Solomon, J. A. Trezza, A. F. Marshall, et al., "Vertically aligned and electronically coupled growth induced InAs islands in GaAs", Phys.Rev. Lett.,76,1996,952
    [9]Z. R. Wasilewski, S. Fafard, and J. P. McCaffrey, "Size and shape engineering of vertically stacked self-assembled quantum dots", J. Cryst. Growth 201,1999,1131
    [10]X.-D. Wang, N. Liu, C. K. Shih, et al., "Spatial correlation-anticorrelation in strain-driven self-assembled InGaAs quantum dots", Appl. Phys. Lett.,85,2004,1356
    [11]Liu Y. M., Yu Z. Y., Ren X. M, "Influence of strain-reducing layer on strain distribution of self-organized InAs/GaAs quantum dot and redshift of photoluminescence wavelength", Chin. Phys. Lett.,25,2008,1850
    [12]E. C. Le Ru, P. Howe, T. S. Jones, and R. Murray, "Strain-engineered InAs/GaAs quantum dots for long-wavelength emission", Phys. Rev. B,67,2003,165303
    [13]K. Akahane, N. Yamamoto, S. Gozu, et al., "1.5 μm emission from InAs quantum dots with InGaAsSb strain-reducing layer grown on GaAs substrates", Physica E,32,2006,81
    [14]Lin C. H., Pai W. W., Chang F. Y., et al., "Comparative study of InAs quantum dots with different InGaAs capping methods", Appl. Phys. Lett.,90,2007,063102
    [15]R. RoBbach, W.-M.Schulz, M.Reischle, et al., "Growth of red InP/GaInP quantum dots on a low density InAs/GaAs island seed layer by MOVPE", J. Crys. Growth,310,2008,5089
    [16]Liu Y. M., Yu Z. Y. Ren X. M., et al.,"Self-organized GaN/AIN hexagonal quantum-dots:strain distribution and electronic structure", Chin. Phys. B,17,2008,3471
    [17]A.D.Andreev, E.P.O'Reily, "Theory of the electronic structure of GaN/AIN hexagonal quantum dots", Phys. Rev. B,62,2000,15851
    [18]J. Tatebayashi, N. Nuntawong, Y.C. Xin, et al., "Ground-state lasing of stacked InAs/GaAs quantum dots with GaP strain-compensation layers grown by metal organic chemical vapor deposition", Appl. Phys. Lett.,88,2006,221107.
    [19]W.Zhang,K.Uesugi,I.Suemune, "The application of an InGaAs/GaAsN strain-compensated superlattice to InAs quantum dots",J.Appl. Phys.,99,2006,103103
    [20]R. Suzuki, T. Miyamoto, T. Sengoku, et al., "Reduction of spacer layer thickness of InAs quantum dots using GaNAs strain compensation layer", Appl. Phys. Lett.,92,2008,141110
    [21]J. Tatebayashi, N. Nuntawong, P. S. Wong, et al, "Strain compensation technique in self-assembled InAs/GaAs quantum dots for applications to photonic devices", J. Phys. D.,42,2009, 073002
    [22]Liu Y. M., Yu Z. Y. and Huang Y. Z, "Effect of the longitudinal and transverse stacking period of InAs/GaAs quantum dots on the distribution of strain field", Acta Phys. Sin.,55,2006,5023(in Chinese)
    [23]J. Tersoff, C. Teichert and M. G. Lagally, "Self-Organization in Growth of Quantum Dot Superlattices", Phy. Rev. Lett.,76,1996,1675-1678
    [24]F. Liu, S. E. Davenport, H. M. Evans, et al., "Self-Organized Replication of 3D Coherent Island Size and Shape in Multilayer Heteroepitaxial Films", Phy. Rev. Lett.,82,1999,2528-2531
    [25]V. Holy, G. Springholz, M. Pinczolits, et al., "Strain Induced Vertical and Lateral Correlations in Quantum Dot Superlattices", Phy. Rev. Lett.,83,1999,356-359
    [26]Q. Xie, A.Madhakar, P. Chen, et al., "Vertically self-organized InAs quantum box islands on GaAs (100)", Phys. Rev. Lett.,75,1995,2542
    [1]O. G. Schmidt and K. Eberl, "Nanotechnology:Thin solid films roll up into nanotubes", Nature London 410,2001,168
    [2]C. Deneke, C. Muller, N. Y. Jin-Phllipp, and O. G. Schmidt, "Diameter scalability of rolled-up In (Ga) As/GaAs nanotubes,Semicond. Sci. Technol.17,2002,1278
    [3]F. Liu, P. Rugheimer, D. E. Savage, and M. G. Lagally, "Response of a strained semiconductor structure,"Nature,416,2002,498
    [4]F. Liu, M. Huang, P. P. Rugheimer, D. E. Savage, et al., "Nanostressors and the nanomechanical response of a thin silicon film on an insulator", Phys. Rev. Lett.,89,2002,136101
    [5]P. A. Flinn, D. S. Gardner, and W. D. Nix,"Measurement and interpretation of stress in aluminum-based metallization as a function of thermal history", IEEE Trans. Electron Devices,34, 1987,689
    [6]L. B. Freund, "Some elementary connections between curvature and mismatch strain in compositionally graded thin films", J. Cryst. Growth,132,1993,341
    [7]Y. C. Tsui and T. W. Clyne, "An analytical model for predicting residual stresses in progressively deposited coatings Part 1:Planar geometry", Thin Solid Films,306,1997,23
    [8]G. G. Stoney, "The Tension of Metallic Films Deposited by Electrolysis", Proc. R. Soc. London, Ser.A,82,1909,172-175
    [9]L. B. Freund, and S. Suresh,"Thin Film Materials:Stress, Defect Formationand Surface Evolution", Cambridge University Press, Cambridge, U.K.,2004
    [10]A. Wikstrom, P. Gudmundson, and S. Suresh,"Thermoelastic Analysisof Periodic Thin Lines Deposited on a Substrate", J. Mech. Phys. Solids,47,1999,1113-1130
    [11]Ohring M. "The Material Science of Thin Films ", San Diego:Academic Press,1992
    [12]S. Vicknesh, F. Li, and Z. Mi, "Optical microcavities on Si formed by self-assembled InGaAs/GaAs quantum dot microtubes", Appl. Phys. Lett.,94,2009,081101
    [13]Pryor C, Kim J, Wang L W, Williamson A J, Zunger A, "Comparison of two methods for describing the strain profiles in quantum dots", J. Appl. Phys.83.1998,2548
    [14]H. Balamane, T. Halicioglu, and W. A. Tiller, "Comparative study of silicon empirical interatomic potentials", Phys. Rev. B 46,1992,2250
    [15]Q. X. Pei, C. Lu, Y. Y. Wang, "Effect of elastic anisotropy on the elastic fields and vertical alignment of quantum dots", J. Appl. Phys.,93,2003,1487
    [16]M. A. Makeev, W. B. Yu, A. Madhukar, "Atomic scale stresses and strains in Ge/Si (001) nanopixels:An atomistic simulation study", J. Appl. Phys.,96,2004,4429
    [17]M. A. Makeev, A. Madhukar, "Simulations of atomic level stresses in systems of buried Ge/Si islands", Phys. Rev. Lett.86,2001,5542
    [18]Makeev M A, Madhukar A, "Large-scale atomistic simulations of atomic displacements, stresses, and strains in nanoscale mesas:Effect of mesa edges, corners, and interfaces", Appl. Phys. Lett.,81,2002,3789
    [19]Jiang H T, Singh J, "Strain distribution and electronic spectra of InAs/GaAs self-assembled dots: An eight-band study", Phys. Rev. B,56,1997,4696
    [20]Levesque A, Shtinkov R A, Masut R A, "Self-Organization of InAs/InP Quantum Dot Multilayers:Pseudophase Diagram Describing the Transition from Aligned to Antialigned Structures", Phys. Rev. Lett.100,2008,046101
    [21]M. A. Migliorato, D. Powell, S. L. Liew, et al., "Influence of composition on the piezoelectric effect and on the conduction band energy levels of InGaAs/GaAs quantum dots", J.Appl. Phys.,96, 2004,5169
    [22]P. Keating,"Effect of invariance requirements on the elastic strain energy of crystals with application to the diamond structure", Phys. Rev.145,1966,637
    [23]H. Feng,Z. Y. Yu, Y. M. Liu, "Nonlinear bending of ultrathin substrate by quantum dots". (Submitted)
    [1]H. Gotoh, H. Kamada, T. Saitoh, et al., Electric-field-induced anisotropy of excitonic optical properties in semiconductor quantum dots, J. Appl. Phys.,94,2003,342-347
    [2]N.S. Simonovic, R.G. Nazmitdinov," idden symmetries of two-electron quantum dots in a magnetic field", Phys. Rev. B,67,2003,041305
    [3]Y. M. Liu, H. M. Lu," An investigation of magnetic field effects on energy states for nanoscale InAs/GaAs quantum rings and dots", IEICE TRANSACTIONS ON ELECTRONICS, E86C, 2003,466-473
    [4]W. Jaskolski, M. Zielinski, G. W. Bryant,et al., "Strain effects on the electronic structure of strongly coupled self-assembled InAs/GaAs quantum dots:Tight-binding approach", Phys. Rev. B, 74,2006,195339
    [5]S. Lee, L. Jonsson, J. W. Wilkins, et al.,"Electron-hole correlations in semiconductor quantum dots with tight-binding wave functions", Phys. Rev. B,63,2001,195318
    [6]A1. L. Efros and A. L. Efros,"Interband absorption of light in a semiconductor sphere", Sov. Phys. Semicond.,16,1982,772-775
    [7]N.F.Borrelli, D.W.Hall, H.J.Holland,etal., Quantum confinement of semiconducting microcrystallites in glass, J.Appl.phys.,61,1987,5399
    [8]L. X. He, G. Bester, A. Zunger, "Prediction of an excitonic ground state in InAs/InSb quantum dots", Phys. Rev. Lett.,94,2005,016801
    [9]M. Gong, K. Duan, C. F. Li, et al., "Electronic structure of self-assembled InAs/InP quantum dots: Comparison with self-assembled InAs/GaAs quantum dots", Phys. Rev. B,77,2008,045326
    [10]B. Reusch, H. Grabert, "Unrestricted Hartree-Fock for quantum dots",Phys. Rev. B 68,2003, 045309
    [11]M. Califano, P. Harrison, "Composition, volume, and aspect ratio dependence of the strain distribution, band lineups and electron effective masses in self-assembled pyramidal In1-xGaxAs/GaAs and SixGe1-x/Si quantum dots", J. Appl. Phys.,91,2002,389