用于锂离子电池的锡基纳米结构电极的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着便携式电子设备、电动汽车、可植入医疗设备对电池性能要求的不断提高,开发高容量、长寿命的电池越来越迫切。锂离子电池的整体性能主要取决于电池材料,所以开发新型的电池材料是提高电池性能的关键。目前,商品化的锂离子电池负极主要采用石墨材料,而石墨负极材料的理论比容量并不高(只有372mAh/g)。锡作为锂离子电池负极材料具有低的充放电电位和高的理论比容量而受到广泛的关注。它的理论比容量为994mAh/g,几乎是石墨的三倍,但是锡的应用却受到很大的限制,因为锡与锂合金化过程中,体积膨胀率很大(超过360%),引起电极材料的粉化和电接触变坏,进而导致容量急剧衰减。
     为了改善锡用作锂离子电池负极材料的循环性能,必须对电极结构进行改进。人们对锡合金用作锂离子电池负极材料进行了广泛的研究。相对于纯锡,这些合金材料具有更好的循环性能和更长的循环寿命,但是经过较长的充放电循环后,容量还是会急剧衰减。
     与薄膜和体状材料相比,使用三维纳米棒阵列结构电极能有效改善电池的循环性能和倍率性能,这一点已从人们制备出的Si, SnO2, Co3O4, TiO2等纳米棒结构电极得到证实。
     本课题通过氧化铝模板辅助生长方法制备了用于锂离子电池的锡基纳米棒阵列电极。通过扫描电子显微镜,能谱色散X射线分析,X射线衍射分析等手段对锡基纳米棒电极进行了形貌和成份表征。扫描电子显微镜观察显示铜集流体表面均匀分布着锡基纳米棒阵列,纳米棒平均直径约250 nm。通过循环伏安和恒流充放电方法对锡基纳米棒电极的电化学性能进行了表征,结果表明使用锡镍合金纳米棒阵列结构电极得到了良好的倍率性能和循环性能。
     课题首先对纯锡纳米棒阵列电极进行了研究。相对锡平面薄膜电极,锡纳米棒阵列电极表现出更好的循环性能和倍率性能。电化学性能的提高可能是由我们设计的三维纳米棒阵列电极结构所致。锡纳米棒阵列电极具有短的锂离子扩散路径,与电解质有大的接触界面,物质传输、电荷传输迅速,可以减小极化,提高充放电倍率,也提高了活性材料利用率。另外,锡纳米棒阵列电极能够在一定程度上缓冲金属锡负极材料与锂合金化过程中引起的体积膨胀。但是,锡纳米棒电极循环性能的提高是相当有限的,10次充放电循环以后,锡纳米棒电极的容量出现大幅度的剧烈衰减。
     然后我们对锡镍合金纳米棒阵列电极进行了研究。相对锡镍合金平面薄膜电极,纯锡平面薄膜电极和纯锡纳米棒阵列电极,锡镍合金纳米棒电极表现出更好的循环性能和倍率性能。三维纳米棒阵列结构可以很好的缓冲锡基材料在充放电过程中大的体积变化,改善循环性能。另外,锡镍合金中的非活性相镍可以对活性相锡起到分散缓冲的作用,一定程度上能提高锡基材料的循环性能。
     最后,我们研究了锡含量对锡镍合金电极电化学性能的影响。结果显示,30次循环内,锡含量为30%的锡镍合金纳米棒阵列电极表现出比较好的综合电化学性能。
There is great interest in developing rechargeable lithium ion batteries with higher energy capacity and longer cycle life for application in portable electronic devices, electric vehicles and implantable medical devices. Sn is an attractive anode material for lithium ion batteries, because it has a low discharge potential and a high theoretical charge capacity (994mAh/g). Although this is nearly three times existing graphite anodes, Sn anodes have limited application because of large volume change up to 360% in the process of insertion and extraction of lithium ion which results in pulverization and capacity fading.
     In order to improve the performance of cyclability, modification of the electrode structure is a vital factor. Extensive attention has been conducted on tin based intermetallic compounds. These materials exhibited longer cyclability than that of pure Sn. However, long-term cycle will still result in rapid capacity loss.
     The concept of using three-dimensional nanorod array materials has been demonstrated with Si, SnO2, Co3O4, TiO2, and has shown improvement in the rate capability and cycling performance compared to film and bulk materials.
     In this paper, we report our investigation of a new Sn based nanorod electrode, which is expected to accommodate large strain and shorten the Li-ion diffusion length. Sn based nanorods were deposited onto copper current collectors by an anodic aluminum oxide (AAO) template-assisted growth method. Using such electrodes, we achieved good cycling performance and improvement in rate capability compared to planar electrodes.
     First, the pure tin nanorod array electrode was studied. Compared with the tin planar thin film electrode, the tin nanorod array electrode exhibited better cycle performance and rate capability. The improvement of the electrochemical performance is due to our design of three-dimensional nanorod array electrode structure. Tin nanorod array electrode has a short Lithium ion diffusion distance, and allows for fast surface reaction resulting from large electrode/electrolyte interface area. In addition, the small nanorod diameter allows for better accommodation of the large volume change of metallic anode materials occurring in the process of charge and discharge. However, the improvement of tin nanorod array electrode is quite limited. The capacity of tin nanorod electrode decays dramatically, after 10 charge-discharge cycles.
     Then, we studied the Sn-Ni alloy nanorod electrode. Compared with the Sn-Ni alloy planar thin film electrode, pure Sn planar thin film electrode, and pure Sn nanorod electrode, Sn-Ni alloy nanorod electrode showed better cycle performance and rate capability. The nanorod array structure is able to allow for better accommodation of the large volume change of metallic anode materials occurring in the process of charge and discharge, and the inactive element Ni can buffer the large volume change and as a barrier against the aggregation of Sn into large grains during Li-ion insertion and extraction process. The two factors both contribute to the improvement of cycle performance.
     Finally, the effect of concentration of Sn on the electrochemical performance of the Sn-Ni alloy nanorod alloy electrode was investigated. The results showed that the Sn-Ni alloy nanorod electrode with 70% Sn content exhibited the best overall electrochemical performance.
引文
[1]郭炳锟,徐徽,王先友,肖立新.锂离子电池[M].长沙:中南大学出版社,2002:291.
    [2]王凤飞,王新庆,杨冰,李振华,王淼.锂离子电池负极材料的研究进展[J].纳米技术精密工程,2004,2(3):192-195.
    [3]郭炳锟,李新海,杨松青.化学电源[M].中南工业大学出版社,2000:315.
    [4]唐致远,潘丽珠,刘春燕.锂离子电池石墨负极材料镍包覆[J].电池,2002,32:194-196.
    [5]Xing W et al. Optimizing pyrolysis of sugar carbons for use as anodes material in lithium-ion batteries [J]. J. Electrochem Soc,1996,143(10):3046.
    [6]尹鸽平,王庆,程新群等.锂离子电池新型负极材料的研究进展[J].电池,1999,29(6):270-274.
    [7]吴宇平,万春荣,姜长印等.锂离子电池锂的氧化物负极材料的研究[J].化学通报,1998,24-26(10):24-26.
    [8]黄峰,周运鸿,袁正勇,孙聚堂.锂离子电池锡负极材料研究进展[J].电池,2002,32(5):298-300.
    [9]张利华,王剑华,郭玉忠,蒋训雄.锂离子电池负极Sn02的制备与电化学性能[J].有色金属,2008,60(1):7-10.
    [10]Zheng T et al. Hysteresis during lithium insertion in hydrogen containing carbons [J]. J. Electrochem Soc,1996,143(7):2137.
    [11]吴宇平,戴晓兵,马军旗等.锂离子电池—应用与实践[M].北京:化学工业出版社,2004:120-126.
    [12]Iijima S. Helica microtubules graphite carbon [J]. Nature,1991,354:56-58.
    [13]Yang Zhan-hong, Wu Hao-qing. Electrochemical intercalation of lithium into carbon nanotubes [J] Material Chemistry and Physices,2001,71:7-11.
    [14]吴国涛,王春生,齐仲甫等.巴基管嵌锂电极性能的研究[J].Electrochemistry(电化学),1998,4:313-317.
    [15]Lerox F, Metenier K, Gautier S, et al. Electrochemical insertion of lithium in catalytic multi-walled carbon nanotubes [J]. Journal of Power Sources,1999, 81/82:317-322.
    [16]Wu G T, Wang C S, Zhang X B, et al. Lithium inserting into CuO/carbon nanotubes [J]. Journal of Power Sources,1998,75:175-179.
    [17]Frederie lantelme, Arnaud Mantoux, Henri Groult, et al. Electrochemical study of phase transition processes in lithium insertion in V2O5 electrodes [J]. Journal of the Electrochemical Society,2003,150:A1 202-A1 208.
    [18]Yong-Top Kim, Sukumaran Gopukumar, Kwang-Bum Kim, et al. Performance of electrostatic spray-deposited vanadium pentoxide in lithium secondary cells [J]. Journal of Power Sources,2003,117:110-117.
    [19]Gao Xueping, Zhu Huaiyong, Pan Guiling, et al. Preparation and electrochemical characterization of anatase nanorodes for lithium-inserting electrode material [J]. J Phys Chem B,2004,108:2868-2872.
    [20]Yuan Zheng-yong, Huang Feng, Feng Chuan-qi, et al. Synthesis and electrochemical performance of nanosized Co3O4 [J]. Material Chemistry and Physics,2003,79:1-4.
    [21]李昌明,赵灵智,张仁元,李伟善,胡社军.锂离子电池锡基负极材料的研究进展[J].有色金属,208,60(3):43-47.
    [22]Wang L, Kitamura S, Obata K, et al. Multilayered Sn-Zn-Cu alloy thin-film as negative electrodes for advanced lithium-ion batteries [J]. J Power sources,2005, 141 (2):286-292.
    [23]左朋建,尹鸽平.锂离子电池Si-Mn/C负极材料的电化学性能[J].无机材料学报,2006,21(3):599-604.
    [24]苏树发,曹高劭,赵新兵.金属锑薄膜用作锂离子电池负极的研究[J].稀有金属材料与工程,2005,34(3):452-454.
    [25]Kim Y L, Lee H Y, Jang S W, et al. Nanostructured Ni3Sn2 thin film as anodes for thin film rechargeable lithium batteries [J]. Solid State Ionics,2003,160(3/4): 235-240.
    [26]蒲薇华,任建国,万春荣等.电沉积制备的锂离子电池Sn-Cu合金负极及性能研究[J].无机材料学报,2004,19(1):86-92.
    [27]Mukaibo H, Osaka T, Reale P, et al. Optimized Sn/Sn/Sb lithium storage materials [J]. J Power Sources,2004,132 (1/23):225-228.
    [28]Beaulieu L Y, Hewitt K C, Turner R L, et al. The electrochemical reaction of Li with amorphous Si-Sn alloys [J]. J Electrochem Soc,2003,150(2):A149-A156.
    [29]Yang S, Zavaliji P Y, Whittingham M S. Anodes for lithium batteries:tin revisited [J]. Electrochemistry Communications,2003,5(7):587-590.
    [30]Nam S C, Yoom Y S, Cho W I, et al. Reduction of irreversibility in the first charge of tin oxide thin film negative electrodes [J]. J Electrochem Soc,2001, 148(3):A220-A223.
    [31]Li Y N, Zhao S L, Oin Q Z. Nanocrystalline tin oxides and nickel oxide film anodes for Li-ion batteries [J]. J Power Sources,2003,114(1):113-120.
    [32]Brousse T, Crosnier O, Devaux X, et al. Advanced oxide and metal powders for negative electrodes in lithium-ion batteries [J]. Powder Technology,2002, 28(2/3):124-130.
    [33]吕成学,褚嘉宜,翟玉春等.锂离子电池锡基复合氧化物负极材料的研究[J].分子科学学报,2004,20(4):31-34.
    [34]舒杰,程新群,史鹏飞等.Cu-Sn-Sb三元复合电极的电化学性能研究[J]电源技术,2005,29(5):301-306.
    [35]Yin J, Wads M, Sakai T, et al. New Ag-Sn alloy anode materials for lithium-ion batteries [J]. J Electrochem Soc,2003,150(8):A1129-A1135.
    [36]Lee S J, Lee H Y, Jeong S H, et al. Performance of tin-containing thin-film anodes for rechargeable thin-film batteries [J]. J Power Sources,2002,111(2): 345-349.
    [37]Lee H Y, Jang S W, Lee S M, et al. Lithium storage properties of nanocrystalline Ni3Sn4 alloys prepared by mechanical alloying [J]. J Power Sources,2002, 112(1):8-12.
    [38]Cheng X Q, Shi P F. Electroless Cu-plated Ni3Sn4 alloy used as anode material for lithium ion battery [J]. Journal of Alloys and Compounds,2005,391(1/2): 241-244.
    [39]Yang J, Takeda Y, Imanishi N, et al. Ultrafine Sn and SnSb0.14 Powders for lithium storage matrices in lithium-ion batteries [J]. J Electrochem Soc,1999, 146 (11):4009-4013.
    [40]Li H, Li J Z. The studies on nanosized materials for lithium ion batteries [J]. Electrochemistry,2000,6(2):131-145.
    [41]Tamura N, Ohshita R, Fujitani S, et al. Advanced structures in electrodeposited tin base negative electrodes for lithium secondary batteries [J]. J Electrochem Soc,2003,150(6):A679-A683.
    [42]郑妙生,宋怀河,章颂云等.Sn/C复合材料的制备及其电化学性能[J].电源技术,2004,28(6):334-337.
    [43]Nam S C, Yoon Y S, Cho W I, et al. Enhancement of thin film tin oxide negative electrodes for lithium batteries [J]. Electrochemistry Communications,2001, 3(1):6-10.
    [44]Beaulieu L Y, Hewitt K C, Dahn J R, et al. The electrochemical reaction of Li with amorphous Si-Sn alloys [J]. J Electrochem Soc,2003,150(2):A149-A156.
    [45]Y. Idota, T. Kubota, A. Matsufuji, et al. Tin-Based Amorphous Oxide:A High-Capacity Lithium-Ion-Storage Material [J]. Science,1997,276 (5317): 1395-1397.
    [46]Y Wang, J Y Lee, H C Zeng. Polycrystalline SnO2 Nanotubes Prepared via Infiltration Casting of Nanocrystallites and Their Electrochemical Application [J] Chem. Mater.2005,17:3899-3903.
    [47]Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries [J]. Nature,2001,414(6861):359-367.
    [48]Courtney I A, Dahn J R. Electrochemical and in-situ X-ray diffraction studies of the reaction of lithium with tin oxide composite [J]. J Electrochem Soc,1997, 144(6):2045.
    [49]Brousse T, Retoux R. Thin-film crystalline SnO2-lithium electrode [J]. J Electrochem Soc,1998,145(1):1-4.
    [50]Whitehead A H, Elliott J M, Owen J R. Nanostructured tin for use as a negative electrode material in Li-ion batteries [J]. J Power Sources,1999,81-82(1/2): 33-38.
    [51]Wang Y, Sakamoto J, Huang C K, et al. Lithium-7 NMR investigation of electrochemical reaction of lithium with SnO [J]. Solid State Ionics,1998,110 (3/4):167-172.
    [52]Mohamedi M, Lee S J, Uchida I, et al. Amorphous tin oxide films:Preparation and characterization as an anode active material for lithium ion batteries [J]. Electrochimica Acta,2001,46(8):1161-1168.
    [53]F. S. Ke, L. Huang, H. H. Jiang, H. B. Wei, F. Z. Yang, S. G. Sun. Fabrication and properties of three-dimensional macroporous Sn-Ni alloy electrodes of high preferential (110) orientation for lithium ion batteries [J]. Electrochem. Commun, 2007,9:228-232.
    [54]N. Tamura, M. Fujimoto, M. Kamino, S. Fujitani. Mechanical stability of Sn-Co alloy anodes for lithium secondary batteries [J]. Electrochimica Acta,2004,49: 1949-1956.
    [55]M. Wachtler, M. Winter, J. O. Besenhard. Anodic materials for rechargeable Li-batteries [J] J. Power Sources,2002,105:151-160.
    [56]H. Mukaibo, T. Sumi, T. Yokoshima, T. Momma, T. Osaka Electrodeposited Sn-Ni Alloy Film as a High Capacity Anode Material for Lithium-Ion Secondary Batteries Electrochem [J]. Solid-State Lett,2003,6:A218-A220.
    [57]M. Winter, J.O. Besenhard. Electrochemical lithiation of tin and tin-based intermetallics and composites [J]. Electrochim Acta,1999,45:31-50.
    [58]C. K. Chan, H. L. Peng, G. Liu, K. Mcilwrath, X. F. Zhang, R. A. Huggins, Y. Cui. High-performance lithium battery anodes using silicon nanowires [J]. Nature Nanotechnology,2008,3:31-35.
    [59]N. C. Li, C. R. Martin, B. Scrosati Nanomaterial-based Li-ion battery electrodes [J]. J. Power Sources,2001,97-98:240-243.
    [60]M. S. Park, G. X. Wang, Y. M. Kang, D. Wexler, S. X. Dou, H. K. Liu. Preparation and Electrochemical Properties of SnO2 Nanowires for Apllication in Lithium-Ion Batteries [J]. Angew. Chem. Int. Ed.2007,46:750-753.
    [61]K. M. Shaju, F. Jiao, A. Debart, P. G. Bruce Mesoporous and nanowire CO3O4 as negative electrodes for rechargeable lithium batteries [J]. Phys. Chem. Chem. Phys.2007,9:1837-1842.
    [62]G. Armstrong, A. R. Armstrong, P. G. Bruce, P. Reale, B. Scrosati TiO2(B) Nanowires as an Improved Anode Material for Lithium-Ion Batteries Containing LiFePO4 or LiNi0.5Mn1.5O4 Cathodes and a Polymer Electrolyte [J]. Adv. Mater. 2006,18:2597-2600.
    [63]P. L. Taberna, S. Mitra, P. Poizot, P. Simon, J. M. Tarascon High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications [J]. Nature Materials 2006,5:567-573.
    [64]H. N. Duan, J. Gnanaraj, X. P. Chen, B. Q. Li, J. Y. Liang Fabrication and characterization of Fe3O4-based Cu nanostructured electrode for Li-ion battery [J]. J. Power Sources 2008,185:512-518.
    [65]J. W. Long, B. Dunn, D. R. Rolison, H. S. White Three-Dimensional Battery Architectures [J]. Chem. Rev.2004,104:4463-4492.
    [66]L. Bazin, S. Mitra, P. L. Taberna, P. Poizot, M. Gressier, M. J. Menu, A. Barnabe, P. Simon, J. M. Tarascon High rate capability pure Sn-based nano-architectured electrode assembly for rechargeable lithium batteries [J]. J. Power Sources 2009, 188:578-582.
    [67]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. M. Tarascon Nanosized transition-metal oxides as negative-electrode materials for lithium-ion batteries [J]. Nature 2000,407:496-499.
    [68]L. Y. Beaulieu, S. D. Beattie, T. D. Hatchard et al. The Electrochemical Reaction of Lithium with Tin Studied By In Situ AFM [J]. J. Electrochem. Soc.2003,150: A419-A424.
    [69]L. Y. Beaulieu, T. D. Hatchard, A. Bonakdarpour et al. Reaction of Li with Alloy Thin Films Studied by In Situ AFM [J]. J. Electrochem. Soc.2003,150: A1457-A1464.
    [70]T. Watanabe, T Hirose, K. Arai, M. Chikazawa Metastable phases formed in Ni-Sn electroplated alloy film [J]. J. Jpn. Inst. Met.1999,63:496-501.