碳纳米材料的制备及有机功能化修饰的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于碳纳米管在力学、电学、热学和光学等多方面的优异性能,从其被发现之日起,就已经引起了物理、化学及材料等学科的极大兴趣。目前,对于碳纳米管在应用方面的研究已取得了较大的进展,然而距人们的所期待值仍有很大的差距。从相关的研究进展来看,如何进一步开发实用、廉价的大量碳纳米管合成工艺以及如何实现碳纳米管的可控制备仍是当前最为重要的发展方向之一,与此同时,如何实现定向碳纳米管的低成本工业化生产也是当前急需解决的问题。本论文从CVD法制备碳纳米管入手,开发出了一种能高产率制备高质量多壁碳纳米管的高效催化剂,同时利用喷雾热解法系统地研究了定向碳纳米管的制备工艺,此外,针对碳纳米管在溶剂中难溶解以及在复合材料基体中难分散这一难题,还开展对多壁碳纳米管进行有机功能化修饰的研究。研究具有基础性和前瞻性,兼具重要的理论意义和应用前景。
     第一,采用溶胶-凝胶法制备出Ni/Mo/Mg三金属催化剂,并将其应用于CVD中试反应炉中,以乙炔为碳源,在750℃下,高效地制备出高质量、高纯度的多壁碳纳米管,在反应35min后,所得到碳纳米管的质量接近初始催化剂质量的10倍。SEM和TEM结果显示该样品中碳纳米管长度大约在50μm左右,管径在30~35nm之间。
     第二,以溶胶-凝胶法制备的Fe/Mg/Mo三金属作为催化剂,甲烷为碳源,在化学气相沉积反应炉中制备出了纯度较高单壁碳纳米管。此外,通过调节催化剂配比和改变其它工艺条件,由石墨层状结构组成的碳纳米带也被成功合成,电镜观察结果显示该纳米带的厚度约为10nm,宽度为几百纳米,长度在100μm的数量级。
     第三,采用喷雾热解法,以二甲苯为碳源,二茂铁为催化剂,通过调节各种实验工艺参数,得到了高质量定向碳纳米管的最佳生长环境,并对定向碳纳米管的生长机制做了较为系统、深入的探讨。与此同时,还制备了超长碳纳米管束(8.2mm)、“波浪式”碳纳米管阵列、碳微/纳米球和由这些碳球组成的碳球链。
     第四,通过选用戊烷、己烷、庚烷、辛烷、苯、甲苯、二甲苯和环己烷八种有机溶剂作为碳源来制备定向碳纳米管,可以发现,二甲苯、正庚烷和环己烷都是制备高质量定向碳纳米管的理想前驱体;此外,在对比分析由这些碳源所得产物的表面形貌和微观结构后,发现当选用直链烷烃制备碳纳米管时,其产物的表面形貌和微观结构主要是受其碳源先驱体热学性能(标准生成焓和吉布斯自由能)的影响;而当选用芳香烷烃制备碳纳米管时,其所得产物的形貌特征和微观结构主要取决于芳香烃自身的热分解机制,这些发现将为定向碳纳米管朝规模化、可控化方向制备提供重要的科学依据。
     第五,采用酸化法对CVD法制备的多壁碳纳米管进行化学纯化处理,并利用甲醛的亲电性能和多壁碳纳米管进行反应,成功在多壁碳纳米管的表面引入了羟甲基官能团,使多壁碳纳米管在水中的分散性明显改善,然后在此基础上通过酯化反应把马来酸酐和聚丙烯酸分别接枝在多壁碳纳米管的表面,提高了多壁碳纳米管在溶剂中的分散性能,为制备高性能的碳纳米管/聚合物复合材料打下了基础。
     第六,采用原位悬浮液聚合法,得到了聚酰亚胺非共价包覆的碳纳米管,此修饰后的碳纳米管的热稳定性能较修饰前有显著提高;另外,通过选用聚乙二醇-200做为分散剂,获得了一种单分散、高含量的碳纳米管/聚酰亚胺复合材料,碳纳米管的质量百分含量达到了43%,这对于制备其他碳纳米管/聚合物基复合材料有着十分重要的意义。
Since their discovery in 1991, carbon nanotubes (CNTs) have attracted much attention in various disciplines such as physics, chemistry, biology, and material science due to their unique structural, mechanical, electronic and thermal properties. So far, plenty of progress on CNTs related studies has been achieved. However, many challenges for large-scale applications of CNTs still exist. On the basis of the present research advancement, the high-yield and controllable production of high-quality CNTs at low cost is still an important developing aim. In addition, it is also a very intractable problem to achieve the industrial production of aligned CNTs. In this dissertation, we firstly develop a new kind of catalyst with great efficiency for the mass production of CNTs by CVD. The synthetic route of the aligned CNTs has been systemically investigated by spray pyrolysis method. Moreover, the organic functionalization of CNTs is developed to improve the dispersibility of CNTs and to enhance the chemical compatibility between CNTs and matrix material. The research is fundamental and pioneering, and is of great significance on the theory and application potential.
     Firstly, the Ni/Mo/Mg catalysts with high activity and efficiency were synthesized by sol-gel method. CNTs with high quality were obtained on the catalyst at 750℃by decomposition of acetylene. After reaction of 30min, the yield of synthesized CNTs is closed to 10 times of the pristine catalyst. The results of SEM and TEM show that the CNTs with hollow and multi-walled structure possess a relatively uniform diameter of about 30~35nm, and their length is about 50μm.
     Secondly, single-walled carbon nanotubes(SWNTs) were prepared by decomposition of CH4 at 900℃on Fe/Mg/Mo catalyst in a CVD reaction furnace. Moreover, carbon nanobelts made of graphite layers were successfully synthesized by adjusting the experimental parameters. The SEM and TEM results reveal that the nanobelts have the thickness of approximate 10nm, the width of several hundreds nanometer, and the length of several hundreds micron.
     Thirdly, the aligned CNTs with high quality were synthesized by spray pyrolysis of ferrocene/xylene solutions and their growth mechanism was also discussed based on the experimental phenomena and results. Furthermore, ultralong aligned CNT bundles (8.2mm), wave-like CNT arrays, carbon spheres and chains were also obtained in the spray pyrolysis method.
     Fourthly, by selecting some homologous series, including three aromatic hydrocarbons, four straight-chained alkanes, and a cyclane, as carbon sources, we systemically and comparatively investigated the relationship between properties of precursory carbon source and quality of aligned CNTs in a similar growth condition. It is found that the thermodynamic properties of precursory carbon sources such as Gibbs free energy and formation enthalpy play decisive roles in the morphology and structure of the nanotube samples in four straight-chained alkanes, while for three aromatic hydrocarbons, the decomposition mechanism rather than the thermodynamic property strongly influences the quality of the products. The results of SEM, HRTEM and Raman reveal that the aligned CNTs obtained from them have different nanotube parameters such as diameter and degree of graphitization. We find also that xylene, n-heptane and cyclohexane are favored for the growth of aligned CNTs with high quality and yield. These will be very helpful for the controllable preparation of aligned CNTs at relatively low cost in the spray pyrolysis method.
     Fifthly, by using eletrophilicity of formaldehyde, multi -walled carbon nanotubes (MWNTs) were methylolated and then grafted by maleic anhydride. The IR spectra showed that there were many hydroxyl and methylene groups on the surface of the methylolated MWCNTs(MWNTs-OH). Some ester and methylene groups appeared on the MWNTs grafted by maleic anhydride(MWNTs-MAH). The dispersion of MWNTs-OH in water was improved significantly and the dispersion of the MWNTs-MAH in xylene was enhanced remarkably. Moreover, the graft functionalization with poly (acrylic acid) (PAA) was also carried out for the MWCNTs-OH and MWNTs-PAA composites have been formed. The IR and TEM results show presence of covalent band and so-called“core-shell”structures for MWNTs-PAA. The MWNTs-PAA exhibits excellent solubility in water, which is significant to explore the potential application of carbon nanotube in biological and medical systems.
     Finally, MWNTs were functionalized with polyimide (PI) via an in-situ polymerization. The TEM and SEM images show that the functionalized MWNTs were wrapped by PI. The TGA and DSC results indicate that the thermal stability of the functionalized MWNTs with PI was improved. In addition, using polyethylene glycol-200 as processing aids, we successfully prepared CNTs-reinforced polyimide composite with well-dispersed and high-loading of CNTs. The content of CNTs in composite can arrive at 43 wt %. The preparation process will give birth to a promising strategy for the production of CNTs/polymer composite materials.
引文
[1] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56-58
    [2] Saito R, Fujita M, Resselhaus G D, et al. Electronic structure of chiral grapheme tubules. Applied Physics Letters, 1992, 60(18): 2204-2206
    [3] Dresselhaus M S, resselhaus G D, Saito R. Physics of carbon nanotubes. Carbon, 1995, 33(7): 883-891
    [4] Iijima S, Brabec C, Maiti A, et al. Structural flexibility of carbon nanotubes. Journal of Chemical Physics, 1996, 104(5): 2089-2092
    [5] Narddelli M B, YaKobson B I, Bernholc J. Mechanism of strain release in carbon nanotubes. Physical Review B, 1998, 57(8): 4277-4280
    [6] Berber S, Kyum K, Tomanek D. Unusually high thermal conductivity of carbon nanotubes. Physical Review Letters, 2000, 84(20): 4613-4619
    [7] Ajayan P M, Schadler L S, Giannaris C, et al. Single-walled carbon nanotube-polymer composites: strength and weakness. Advanced Materials, 2000, 12(10): 750-753
    [8] Kroto H W, Heath J R, Brien S, et al. C60: Buckminsterfullerene. Nature, 1985, 318(6042): 162-163
    [9] Krastschmer W, Lamb L D, Fortiropoulos K, et al. Solid C60: a new form of carbon. Nature, 1990, 347(6291): 354-358
    [10] Krishnan A, Dujardin E, Treacy M J. Graphitic cones and the nucleation of curved carbon surfaces. Nature, 1997, 388(6641): 451-454
    [11] Shekhar S, Rodney S R, Donald C L, et al. Radial single-layer nanotubes. Nature, 1993, 366(6456): 637-637
    [12] Jacobsen R L, Monthilux M. Carbon beads with protruding cones. Nature, 1997, 385(6613): 211-212
    [13] Yahachi S, Takehisa M. Carbon nano-cages created as cubes. Nature, 1998, 392(6673): 237-238
    [14] Ugarte D. Curling and closure of graphitic networks under electron-beam irradiation. Nature, 1992, 359(6397): 707-709
    [15] Zhang G Y, Jiang X, Wang E. Tubular graphite cones. Science, 2003, 300(5618): 472-474
    [16]王茂章.碳的多样性及碳质材料的开发.新型碳材料, 1995, 4(1): 1-12
    [17] Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993, 363(6430): 603-605
    [18] Bethune D S, Kiang C H, Devries M S, et al. Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature, 1993, 363(6430): 605-607
    [19] Dresselhaus M S, Dresselhaus G, Saito R. Physics of carbon nanotubes. Carbon, 1995, 33(7): 883-891
    [20] Saito R, Fujita M, Dresselhaus G, et al. Electronic structure of chiral grapheme tubules. Applied Physics Letters, 1992, 60(18): 2204-2206
    [21] Andreas T, Roland L, Pavel N, et al. Crystalline ropes of metallic carbon nanotubes. Science, 1996, 273(11): 483-487
    [22] Journet C, Maser W K, Bernier P, et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 1997, 388(11): 756-758
    [23] Eugene G G, Thomas W. Mechanism of carbon nanotube formation in the arc discharge. Physical Review B, 1995, 52(18): 2083-2089
    [24] Puretzky A A, Geohegan D B, Fan X, et al. Dynamics of single-wall carbon nanotube synthesis by laser vaporization. Applied Physics A, 2000, 70(13): 153-160
    [25] Scott C D, Arepalli S, Nikolaev P. Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Applied Physics A, 2001, 72(22): 573-580
    [26] Cheng H M, Li F, Su G, et al. Large-scale and low-cost synthesis of single- walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Applied Physics Letters, 1998, 72(25): 3282-3284
    [27] Young S P, Young C C, Keun S K. High yield purification of multiwalled carbon nanotubes by selective oxidation during thermal annealing. Carbon, 2001, 39(5): 655-661
    [28] Li W Z, Xie S S, Qian L X, et al. Large-scale synthesis of aligned carbon nanotubes. Science, 1996, 274(5293): 1701-1703
    [29] Nikolaev P, Bronikowski M J, Bradley R K, et al. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chemical Physics Letters, 1999, 313(2): 91-97
    [30] Nerushev S, Dittmar R E, Morjan, et al. Particle size dependence and model for iron-catalyzed growth of carbon nanotubes by thermal chemical vapor deposition. Journal of Applied Physics, 2003, 93(7): 4185-4190
    [31] Amelinckx S, Zhang X B, Bernaerts D, et al. A formation mechanism forcatalytically grown helix-shaped graphite nanotubes. Science, 1994, 265(5172): 635-639
    [32] Hsu W K, Terrones M, Hare J P, et al. Electrolytic formation of carbon nanostructures. Chemical Physics Letters, 1996, 262(8): 161-166
    [33] Li Y L, Yu Y D, Liang Y. A novel method for synthesis of carbon nanotubes: low temperature solid pyrolysis. Journal of Materials Research, 1997, 12(7): 1678-1680
    [34] Chen Y, Gerald J F, Chadderton L T. Nanoporous carbon produced by ball milling. Applied Physics Letters, 1999, 74(19): 2782-2874
    [35] Vander W R, Ticich T M, Curtis V E. Diffusion flame synthesis of single-walled carbon nanotubes. Chemical Physics Letters, 2000, 323(3): 217-223
    [36] Ebbessen T W, Ajayan P M. Large-scale synthesis of carbon nanotubes. Nature, 1992, 358(6383): 220-222
    [37] Ishigami M, Cumings J, Zettl A, et al. A simple method for the continuous production of carbon nanotubes. Chemical Physics Letters, 2000, 319(6): 457-459
    [38] Rodriguez N M, Kim M S, Baker R T K. Carbon nanofibers: A unique catalyst support medium. Journal of Physical Chemistry, 1994, 98(2): 13108-13111
    [39]朱宏伟,慈立杰,梁吉.浮游催化法半连续制取碳纳米管的研究.新型碳材料, 2000, 15(1):48-51
    [40]刘宝春,唐水花,余作龙等.利用沸腾床反应器制备碳纳米管.催化学报, 2001, 22(2):151-153
    [41] Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes. Science, 1996, 273(5274): 483-487
    [42] Journet C, Master W K. Controlled production of aligned-nanotube bundles. Nature, 1997, 388(6643): 52-55
    [43] Liu C, Cong H T, Cheng H M, et al. Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method. Carbon, 1999, 37(11): 1865-1868
    [44] Guo T, Nikolaev P, Rinzler A G, et al. Self-assembly of tubular fullerenes. Journal of Physical Chemistry, 1995, 99(27): 10694-10697
    [45] Yudasaka M, Komatsu T, Ichihashi T, et al. Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal. Chemical Physics Letters, 1997, 278(3): 102-106
    [46] Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbonnanotubes. Science, 1996, 273(5274): 483-487
    [47] Ajayan P M, Stephan O, Colliex C, et al. Alligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science, 1994, 265(5276): 1212-1274
    [48] Heer W A, Bacsa, W S, Chatelain A, et al. Aligned Carbon Nanotubes Films: Production and Optical and Electronic Properties. Science, 1995, 268(5212): 845-847
    [49] Pan H, Guo Z X. Carbon nanotubols from mechanochemical reaction. Nano Letters, 2003, 3(1): 29-32
    [50] Fan S S, Chapline M G, Franklin N R, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 1999, 283 (5401):512-514
    [51] Che G, Lakshmi B B, Martin C R, et al. Chemical vapor deposition based synthesis of carbon nanotubes and nanofibers using a template method. Chemistry of Materials, 1998, 10(1): 260-267
    [52]居艳,李凤仪,魏任重等.多孔氧化铝模板法制备取向碳纳米管阵列的研究进展.现代化工, 2004, 24(4): 272
    [53] Ren Z F, Huang Z P, Xu J W, et al. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science, 1998, 282 (5391): 1105-1107
    [54] Sen R, Govindaraj A, Rao C R, et al. Filled and hollow carbon nanotubes obtained by the decomposition of metal containing free p recursor molecules. Chemistry of Materials, 1997, 9(10): 2078-2081
    [55] Sen R, Govindaraj A, Rao C R. Carbon nanotubes by themetallocene route. Chemical Physics Letters, 1997, 267(3): 276-280
    [56] Andrews R, Jacques D, Rao A M, et al. Continuous p roduction of aligned carbon nanotubes: a step closer to commercial realization. Chemical Physics Letters, 1999, 303 (526): 467-474
    [57] Li X S, Cao A Y, Jung Y J, et al, Bottom-Up Growth of Carbon Nanotube Multilayers: Unprecedented Growth. Nano Letters, 2005, 5(10): 1997-2000
    [58] Wei B Q, Vajtai R, Jung Y, et al. Organized assembly of carbon nanotubes cunning refinements help to customize the architecture of nanotube structures. Nature, 2002, 416 (6880): 495-496
    [59] Tsang S C, Chen Y K, Green M H, et al. A simple chemical method of opening and filling carbon nanotube. Nature, 1994,372(6502):159-162
    [60] Lago R M, Tsang S C, Green M H, et al. Filling carbon nanotubes with amallpalladium metal crystallites: the effect of surface acid groups. Chemical communications, 1995, 13(10): 1355-1356
    [61] Hiura H, Ebbesen T W, Tanigaki K. Opening and purification of carbon nanotubes in high yields. Advanced Materials, 1995, 7(3): 275-276
    [62] Chen Y, Haddon R C, Smalley R E, et al. Chemical attachment of organic functional groups to single-walled carbon nanotube materials. Journal of Materials Research, 1998, 13(9): 2423-2431
    [63] Liu J, Rinzler A G, Smalley R E, et al. Fullerene pipes. Science, 1998, 280(5367):1253-1256
    [64]李博,廉永福,施祖进等.单层碳纳米管的化学修饰.高等学校化学学报, 2000,21(11):1663-1666
    [65] Sun Y, Wilson R, Schuster D I. High dissolution and strong light emission of carbon nanotubes dissolved in aniline. Journal of the American Chemical Society, 2001, 123(22): 5348-5349
    [66] Liu Z F, Shen Z Y, Zhu T. Organizing single-walled carbon nanotubes on gold using a wet chemical self-assembling technique. Langmuir, 2000, 16(8): 3569-3573
    [67] Wu B, Zhang J, Liu Z F. Chemical alignment of oxidative nanotubes on silver surface. Journal of Physical Chemistry B, 2001, 105(22): 5075-5078
    [68] Coleman J, Dalton A, Curran S, et al. Noncovalent functionalization of nanotubes. Advanced Materials, 2000, 12(3): 213-216
    [69] Tang B Z, Xu H. Preparation, Alignment and Optical Propertiesof Soluble Poly(phenylacetylene)-Wrapped Carbon Nanotube. Macromolecules, 1999, 32(8): 2569-2576
    [70] Huang S M, Mau A H, Turney T W, et al. Patterned Growth of Well-Aligned Carbon Nanotubes: A Soft-Lithographic Approach. Journal of Physical Chemistry B, 2000, 104(10): 2193-2196
    [71] Huang S M, Dai L M, Mau A H. Patterned Growth and Contact Transfer of Well-Aligned Carbon Nanotube Films. Journal of Physical Chemistry B, 1999, 103(21): 4223-4227
    [72] Balavoine F, Schultz P, Mioskowski C, et al. Helical crystallization of proteins on carbon nanotubes: a first step towards the development of new biosensors. Angewandte Chemie International Edition, 1999, 38(13): 1912-1915
    [73] Chen R J, Zhang Y, Wang D, et al. Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobilization. Journal of theAmerican Chemical Society, 2001, 123(16): 3838-3839
    [74] Hassanien A, Gao M, Tokumoto M, et al. Scanning tunneling microscopy of aligned coaxial nanowires of polyaniline passivated carbon nanotubes. Chemical Physics Letters, 2001,(342): 479-484
    [75] Jia Z J, Wang Z Y, Xu C L, et al. Study on poly(methyl methacrylate)/carbon nanotube composites. Material Science and Engineering A, 1999, 271(2): 395-400
    [76] Sandler J, Shaffer M P, Prasse T, et al. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer, 1999, 40(21): 5967-5971
    [77] Petra P, Bhattacharyya A R, Janke A. Melt mixing of polycarbonate with multiwalled carbon nanotubes: microscopic studies on the state of dispersion. European Polymer Journal, 2004, 40(1): 137-148
    [78] Andrews R, Jacques D, Rao A M, et al. Nanotube composite carbon fibers. Applied Physics Letters, 1999, 75(9): 1329-1331
    [79] Ago H, Petritsch K, Shaffer M P, et al. Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Advanced Materials, 1999, 11(15): 1281-1285
    [80] Coleman J N, Curren S, Dalton A B, et al. Percolation-dominated conductivity in a conjugated-polymer-carbon-nanotube composite. Physical Review B, 1998, 58(12): 7492-7495
    [81] Musa I, Baxendale M, Amaratunga L, et al. Properties of regioregular poly (3-octylthiophene)/multiwall carbon nanotube composites. Synthethic Materials, 1999, 102(3): 1250-1252
    [82] Harry J B, Francisco P, Edgar A O, et al. SWNT-flled thermoplastic and elastomeric composites prepared by miniemulsion polymerization. Nano Letters, 2002, 2(8): 802-805
    [83] Zhu J, Kim J D, Peng H Q, et al. Improving the Dispersion and Integration of Single-Walled Carbon Nanotubes in Epoxy Composites through Functionalization. Nano Letters, 2003, 3(8): 1107-1113
    [84] Jacob C K, Robert L S. Polypropylene fibers reinforced with carbon nanotubes. Journal of Applied Polymer Science, 2002, 86(8): 2079-2084
    [85] Martin C A, Sandler J W, Windle A H, et al. Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites. Polymer, 2005, 46(3): 877-886
    [86] Colbert P T,Zhang J,Mcclure S M,et al. Growth and sintering of fullerence nanotubes. Science, 1994, 266(5188): 1218-1233
    [87]陈晓红.热解法制备气相生长碳纤维和纳米碳管的研究:[博士学位论文].北京:北京化工大学, 1998, 12-13
    [88] Valetini L, Biagiotti J, Kenny J M, et al. Effects of single-walled carbon naotube on the crystallization behavior of polypropylene. Journal of Applied Polymer Science, 2003, 87(4): 708-713
    [89] Kaushal R, Nachiket R R, Kim D Y, et al. Enzyme-polymer-single walled carbon nanotube composites as biocatalytic films. Nano Letters, 2003, 3(6): 829-832
    [90] Gong X, Liu J, Baskaran S, et al. Surfactant-assisted processing of carbon nanotube/polymer composites. Chemistry of Materials, 2000, 12(4): 1049-1052
    [91] Arif A M, Nicholas A K, Maurizio P, et al. Molecular design of strong single-wall carbon nanotube/polyelectrolyte multilayer composites. Nature materials, 2002, 1(3): 190-194
    [92] Qian D, Dickey E C, Andrews R, et al. Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Applied Physics Letters, 2000, 76(20): 2868-2870
    [93]陈秀琴. CVD法制备微旋管状炭纤维的微观形貌.新型炭材, 2000, 15(3): 23-25
    [94]李天保,许并社,韩培德等.洋葱状富勒烯的CCDV法制备及其形貌特征.新型炭材料, 2005, 20(1): 23-27
    [95] Chen X Q, Motojima S J. The growth patterns and morphologies of carbon micro-coils produced by chemical vapor deposition. Carbon, 1999, 37(11): 1817-1823
    [96] Krishnan A, Dujardin E, Treacy M J, et al. Graphitic cones and the nucleation of curved carbon surfaces. Nature, 1997, 388(6641): 451-454
    [97] Ajayan P M, Nugent J M, Siegel R W, et al. Growth of carbon micro-trees Carbon deposition under extreme conditions causes tree-like structures to spring up. Nature, 2000, 404(6775): 243 -245
    [98]章海霞,王晓敏,王海英等. CVD电弧法制备洋葱状富勒烯的工艺研究.新型炭材料, 2004, 19(1): 64-61
    [99] Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides. Science, 2001, 291(5510): 1947-1949
    [100] Zhang J, Zhang L D. Intensive green light emission from MgO nanobelts.Chemical Physics Letters, 2002, 363(3): 293– 297
    [101]王积森,孙金全,鲍英等.氧化锰纳米带的合成研究.山东科技大学学报, 2003, 22(2): 27-32
    [102] Jeong J S, Lee J Y, Lee C J , et al. Synthesis and characterization of high-quality In2O3 nanobelts via catalyst-free growth using a simple physical vapor deposition at low temperature. Chemical Physics Letters, 2004, 384(4): 246-250
    [103] Boenm H P. Carbon form carbon monoxide disproportionation on nickel and iron catalysts morphological studies and possible growth mechanisms. Carbon, 1993, 11(6): 583-586
    [104] Murayama H, Maeda T. A novel form filamentous graphite. Nature, 1990, 345(28): 791-793
    [105]郑瑞廷,程国安,赵勇等.乙炔催化裂解制备碳纳米带及其结构表征.新型炭材料,2005, 20(4): 356-359
    [106] Liu J W, Shao M W, Tang Q. Synthesis of Carbon Nanotubes and Nanobelts through a Medial-Reduction Method. Journal of Physical Chemistry B, 2003, 107(26): 6329-6332
    [107] Kang Z H, Wang E B, Mao B D. Controllable Fabrication of Carbon Nanotube and Nanobelt with a Polyoxometalate-Assisted Mild Hydrothermal Process. Journal of the American Chemical Society, 2005, 127(18): 6534-6535
    [108] Qi Y X, Li M S, Bai Y J. Carbon nanobelts synthesized via chemical metathesis route. Materials Letters, 2007, 61(5): 1122-1124
    [109]沈曾民.新型碳材料.北京:化学工业出版社, 2003: 241-245
    [110] Serp P, Feurer R, Kalck P, et al. A chemical vapour deposition process for the production of carbon nanospheres. Carbon , 2001, 39(4): 621-62
    [111] Miao J Y, Dennis W H , Chang C C, et al. Uniform carbon spheres of high purity prepared on kaolin by CCVD. Diamond and Related Materials, 2003, 12(8): 1368-1372
    [112]许宗祥,林敬东,欧廷等.催化裂解C2H2制备空心碳球.物理化学学报, 2003, 9(11): 1035 -1038
    [113] Wang Z L, Kang Z C. Pairing of pentagonal and heptagonal carbon rings in the growth of nanosize carbon spheres synthesized by a mixed-valent oxide-catalytic carbonization process. Journal of Physical Chemistry B, 1996,100(45): 17725-17731
    [114] Yang X G, Li C, Wang W, et al. A chemical route from PTFE to amorphous carbon nanospheres in supercritical water. Chemical Communications, 2004,3(1): 342-343
    [115] Wang Q, Li H, Chen L Q, et al. Monodispersed hard carbon spherules with uniform nanopores. Carbon, 2001, 39(14): 2211-2214
    [116] Sun X M, Li Y D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angewandte Chemie International Edition, 2004, 43(5): 597-601
    [117] Yao J F, Wang H T, Liu J, et al. Preparation of colloidal microporous carbon spheres from furfuryl alcohol. Carbon, 2005, 43(8): 1709 -1715
    [118] Jang J, Lim B. Selective fabrication of carbon nanocapsules and mesocellular foams by surface-modiried colloidal silica templating. Advanced Materials, 2002, 19(13): 1390-1393
    [119] Chen X H, Xia J T, Peng J C, et al. Carbon nanotube metal-matrix composites prepared by electroless plating. Journal of Composite Science and Technology, 2000, 60(2): 301-307
    [120] Coleman J N, Dalton A B, Curran S, et al. Phase separation of carbon nanotube and turbostratic graphite using a functional organic polymer. Advanced Materials, 2000, 12(3): 213-217
    [121] Jin S P, Liu M Z, Chen S L, et al. Complexation between poly(acrylic acid) and poly(vinylyrrolidone): Influence of the molecular weight of poly(acrylic acid) and small molecule alt on the complexation. European Polymer Journal, 2005, 41(10): 2406-2415
    [122] Sawada H, Shindo K, Iidzuka J I, et al. Solubilization and applications of single-walled carbon nanotubes into aqueous and organic media by the use of nanometer size-controlled fluoralkyl end-capped oligomeric aggregates. European Polymer Journal, 2005, 41(10): 2232-2239
    [123] Cooper C A, Ravich D, Lips D, et al. Distribution and alignment of carbon nanotubes and nanofibrils in a polymer matrix. Journal of Composite Sicence and Technology, 2002, 62(3): 1105-1107
    [124] Yacaman M, Miki Y M, Rendon L. Catalytic growth of carbon microtubles with fullerene structure. Applied Physics Letters, 1993, 62(6): 657-659
    [125]徐东升,桂琳琳.以多孔硅为模板制备取向碳纳米管.中国科学B, 2000, 30(4): 289-291
    [126] Brito J L, Brabosa A L. Effect of phase composition of the oxidic precursor on the HDS activity of the sulfided molybdates of Fe(II), Co(II), and Ni(II). Journal of Catalysis, 1997, 171(2): 676-475
    [127] Cassell A M, Raymakers J A, Kong J. Large scale CVD synthesis of single-walled carbon nanotubes. Journal of Physical Chemistry B, 1999, 103(31): 6484-6492
    [128]李昱.纳米碳管的制备、表面修饰及其初步用于葡萄糖生物传感器的研究: [博士学位论文].浙江:浙江大学, 2005: 35-45
    [129] Li Y, Zhang X B, Tao Y, et al. Mass production of high quality multi-walled carbon nanotube bundles on a Ni/Mo/MgO catalyst. Carbon, 2005, 43(2): 295-301
    [130] Li Y, Zhang X B, Tao Y, et al. Single phase MgMoO4 as catalyst for synthesis of bundled multi-walled carbon nanotubes by CVD. Carbon, 2005, 43(6): 1325-1328
    [131] Kitiyanan B, Alvarez W E, Harwell J H et al. Controlled production of single-wall carbon nanotubes by catalytic decomposition of on CO bimetallic Co-Mo catalysts. Chemical Physics Letters, 2000, 317(4): 497-503
    [132] Basca R R, Laurent C, Peigney A, et al. High specific surface area carbon nanotubes from catalytic chemical vapor deposition process. Chemical Physics Letters, 2000, 323(5): 566-571
    [133] Sinnott S B, Andrews R, Qian D, et al. Model of carbon nanotube growth through chemical vapor deposition. Chemical Physics Letters, 1999, 315(1): 25-29
    [134] Tang S, Zhong Z, Xiong Z, et al. Controlled Growth of Single-Walled Carbon Nanotubes by Catalytic Decomposition of CH4 Over Mo/Co/Mgo Catalysts. Chemical Physics Letters, 2001, 350(1): 19-26
    [135] Wang Y, Serrano S, Santiago A. Raman characterization of carbon nanofibers prepared using electrospinning. Synthetic Metals, 2003, 138(2): 423-427
    [136] Lee C J, Lee T J, Park J. Carbon nanofibers grown on sodalime glass at 500 using thermal chemical vapor deposition. Chemical Physics Letters, 2001, 340(5): 413-418
    [137]王茂发,邹小平,程进等.催化燃烧法合成碳纳米线.微电子技术, 2007, 7(1): 129-131
    [138]张勇,唐元洪,裴立宅等.纳米碳纤维的批量制备和应用.高科技纤维与应用, 2005, 2(1): 20-25
    [139]唐元洪,张勇.类金刚石碳纳米线的制备及生长机理.中国有色金属学报, 2004, 14(9): 1461-1465
    [140] Bachilo S M, Strano M S, Kitterll R H. et al. Struture-assigned optical apectra ofsingle-walled carbon nanotubes. Science, 2002, 298(5602): 2361-2363
    [141] Sauvajol J L, Anglaret S R, Alvarez L. Phonons in single wall carbon nanotube bundles. Carbon, 2002, 40(10): 1697-1714
    [142] Zheng L X, Connell M J, Doorn S K, et al. Ultralong single-wall carbon nanotubes. Nature Materials, 2004, 3(10): 673-676
    [143] Hata K, Futaba D N, Mizuno K, et al. Water-assisted highly efficient synthesis of impurity-free single-waited carbon nanotubes. Science, 2004, 306(5700): 1362-1364
    [144] Eres G, Puretzky A A, Geohegan D B, et al. In situ control of the catalyst efficiency in chemical vapor deposition of vertically aligned carbon nanotubes on predeposited metal catalyst films. Applied Physics Letters, 2004, 84(10): 1759-1764
    [145] Christen H M, Puretzky A A, Cui H, et al. Rapid growth of long, vertically aligned carbon nanotubes through efficient catalyst optimization using metal film gradients. Nano Letters, 2004, 4(10): 1939-1942
    [146] Li Q W, Zhang X F, DePaula R F, et al. Sustained growth of ultralong carbon nanotube arrays for fiber spinning. Advanced Materials, 2006, 18(23): 3160-3163
    [147] Yun Y H, Shanov V, Tu Y, et al. Growth mechanism of long aligned multiwall carbon nanotube arrays by water-assisted chemical vapor deposition. Journal of Physical Chemistry B, 2006, 110(47): 23920-23925
    [148] Li X S, Ci L, Kar S, et al. Densified aligned carbon nanotube films via vapor phase infiltration of carbon. Carbon, 2007, 45(4): 847-851
    [149] Andrews R, Jacques D, Rao A M, et al. Continuous production of aligned carbon nanotubes: a step closer to commercial realization. Chemical Physics Letters, 1999, 303(5): 467-474
    [150] Deck C P, Vecchio K. Growth mechanism of vapor phase CVD-grown multi-walled carbon nanotubes. Carbon, 2005, 43(12): 2608-2617
    [151] Zhang X F, Cao A Y, Wei B Q, et al. Rapid growth of well-aligned carbon nanotube arrays. Chemical Physics Letters, 2002, 362(3): 285-290
    [152] Reina A, Hofmann M, Zhu D, et al. Growth mechanism of long and horizontally aligned carbon nanotubes by chemical vapor deposition. Journal of Physical Chemistry C, 2007, 111(20): 7292-7297
    [153] Tapaszto L, Kertesz K, Vertesy Z, et al. Diameter and morphology dependence on experimental conditions of carbon nanotube arrays grown by spray pyrolysis.Carbon, 2005, 43(5): 970-977
    [154] Yang Z, Chen XH, Nie HG, et al. Direct synthesis of ultralong carbon nanotube bundles by spray pyrolysis and investigation of growth mechanism, Nanotechnology, 2008,19(25): 5606-5613
    [155] Luo C X, Liu L, Jiang K L, et al. Growth mechanism of Y-Junctions and related carbon nanotube junctions synthesized by Au-catalyzed chemical vapor deposition.Carbon, 2008, 46(3): 440-444
    [156] Zhang H, Cao G P, Wang Z Y, et al. Influence of hydrogen pretreatment condition on the morphology of Fe/Al2O3 catalyst film and growth of millimeter-long carbon nanotube array. Journal of Physical Chemistry C, 2008, 112(12): 4524-4530
    [157] Bronikowski M J. Longer nanotubes at lower temperatures: The influence of effective activation energies on carbon nanotube growth by thermal chemical vapor deposition. Journal of Physical Chemistry C, 2007, 111(48): 17705-17712
    [158] Huang J Y, Ding F, Jiao K, et al. Self-templated growth of carbon-nanotube walls at high temperatures. Small, 2007, 3(10): 1735-1739
    [159] Chen Y, Wang B, Li L J, et al. Effect of different carbon sources on the growth of single-walled carbon nanotube from MCM-41 containing nickel. Carbon, 2007, 45(11): 2217-2228
    [160] Jiang Z W, Song R J, Bi W G, et al. Polypropylene as a carbon source for the synthesis of multi-walled carbon nanotubes via catalytic combustion. Carbon, 2007, 45(2): 449-458
    [161] Montoro L A, Corio P, Rosolen J M. A comparative study of alcohols and ketones as carbon precursor for multi-walled carbon nanotube growth. Carbon, 2007, 45(6): 1234-1241
    [162] VivekchandS R C, Cele L M, Deepak F L. Carbon nanotubes by nebulized spray pyrolysis. Chemical Physics Letters, 2004, 386(4): 313-318
    [163]邹仁鋆.石油化工裂解原理与技术.北京:化学工业出版社, 1982: 67-74
    [164] Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science, 1997, 277(5334): 1971-1975
    [165] Ball P. Materials science-The perfect nanotube. Nature, 1996, 382(6588): 207-207
    [166] Zou Y G, Liu B B, Yao M G, et al. Raman spectroscopy study of carbon nanotube peapods excited by near-IR laser under high pressure. Physical Review B, 2007,76(19): 195417-195422
    [167] Zhang R, Baxendale M, Peijs T. Universal resistivity-strain dependence of carbon nanotube/polymer composites. Physical Review B, 2007, 76(19): 195433-195437
    [168] Sun Y, Sun J R, Liu M, et al. Mechanical strength of carbon nanotube-nickel nanocomposites. Nanotechnology, 2007, 18(20): 5704-5713
    [169] Xu G D, Zhu B, Han Y, et al. Covalent functionalization of multi-walled carbon nanotube surfaces by conjugated polyfluorenes. Polymer, 2007, 48(26): 7510-7515
    [170] Chen Y C, Raravikar N R, Schadler L S, et al. Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 mm. Applied Physics Letters, 2002, 81(6): 975-978
    [171] Colomer J F, Stephan C, Lefrant S, et al. Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method. Chemical Physics Letters, 2000, 317(1): 83-89
    [172] Chen J, Hamon MA, Hu H, et al. Solution properties of single-walled carbon nanotubes. Science, 1998, 282(5386): 95-98
    [173] Endo M, Takeuchi K, Kobori K, et al. Pyrolytic carbon nanotubes from vapor-grown carbon fibers. Carbon,1995, 33(7): 873-880
    [174] Stephan C, Ngugen T P, Lahr B. Single-walled carbon nanotubes under the influence of dynamic coordination and supramolecular chemistry. Synthetic Metals, 2000, 2(1): 139-143
    [175] Chen P, Zhang H B, Lin G D, et al. Growth of carbon nanotubes by catalytic decomposition of CH4 or CO on a Ni-MgO catalyst. Carbon, 1997, 35(11): 1495-1501
    [176] Nuria F A, Kaempgen M, Skakalova V, et al. Synthesis and characterication of carbon naotube-conducting polymer thin films. Diamond and Related Materials, 2004, 13(2): 256-260
    [177]杨植,陈小华,刘云泉等.碳纳米管的羟甲基化及其马来酸酐接枝研究.化学学报, 2006, 64(3): 203-207
    [178]陈小华,陈传盛,孙磊等.碳纳米管的表面修饰及其在水中的分散性能研究.湖南大学校报, 2004, 5(1): 19-22
    [179] Liu Y Q, Gao L. A study of the electrical properties of carbon nanotube-NiFe2O4 composites: Effect of the surface treatment of the carbon nanotubes. Carbon, 2005, 43(1): 47-52
    [180]李文华.碳纳米管的修饰及改性聚丙烯复合材料的研究: [湖南大学博士学位论文].长沙:湖南大学材料科学与工程学院, 2008: 85-90
    [181] Chen X H, Chen C S, Chen Q, et al. Non-destructive purification of multi-walled carbon nanotubes produced by catalyzed CVD. Materials Letters, 2002, 57(3): 734-738
    [182] Li Y, Zhang X B, Geise H J, et al. Behavior of Ni-doped MgMoO4 single-phase catalysts for synthesis of multiwalled carbon nanotube bundles. Chemical Vapor Depostion, 2007, 13(1): 30-36
    [183] Li Y, Zhang X B, Shen L H, et al. Controlling the diameters in large-scale synthesis of single-walled carbon nanotubes by catalytic decomposition of CH4. Chemical Physics Letters, 2004, 398(3): 276-282
    [184] Li J X, Grennberg H. Microwave-assisted covalent sidewall functionalization of multiwalled carbon nanotubes. Chemical-A European Journal, 2006, 12(14): 3869-3875
    [185] Chen C S, Chen X H, Xu L S, et al. Modification of multi-walled carbon nanotube with fatty acid and their tribological properties as lubricant additive. Carbon, 2005, 43(8): 1660-1666
    [186] Guo T, Nikolaev P, Rinzler A G, et al. Self assembly of tubular fullerenes. Jouranl of Physical Chemistry, 1995, 99(27): 10694-10697
    [187] Zhang H Y, Ding Y, Wu C Y, et al. The effect of laser power on the formation of carbon nanotubes prepared in CO2 continuous wave laser ablation at room temperature. Physics B, 2003, 325(1): 224-229
    [188] Biro L P, Mark G I, Gyulai J, et al. AFM and STM investigation of carbon nanotubes produced by high energy ion irradiation of graphite. Nuclear Instruments and Methods in Physics Research B, 1999, 147(1): 142-147
    [189] Chernozatonskii L A, Kosakovskaja I J, Fedorov E A, et al. New carbon tubelite-orderd film structure of multi-layer nanotubes. Physics Letters A, 1995, 197(1): 40-43
    [190] Anglaret E, Bendiab N, Guillard T, et al. Raman characterization of single wall carbon nanotubes prepared by solar energy route. Carbon, 1998, 36(12): 1815-1820
    [191] Star A, Stoddart J F, Steuerman D, et al. Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angrewandte Chemie International Edition, 2001, 40(9): 1721-1725
    [192] Connell M J, Boul P J. Reversible water-solubilization of single-walled carbonnanotubes by polymer. Chemical Physics Letters, 2001, 342(4): 265-271
    [193] Yang D Q, Rochette J F, Sacher E. Spectroscopic Evidence for - Interaction between Poly(diallyl dimethylammonium) Chloride and Multiwalled Carbon Nanotubes. Journal of Physical Chemistry B, 2005, 109(10): 4481-4484
    [194] Ahn T, Kim M, Choe S. Hydrogen-Bonding Strength in the Blends of Polybenzimidazole with BTDA- and DSDA-Based Polyimides. Macromolecules, 1997, 30(11): 3369-3374
    [195] Gordon L T, Lon J M. Unexpected thermal conversion of hydroxy-containing polyimides to polybenzoxazoles. Polymer, 1999, 40(12): 3463-3468
    [196] Han H, Chung H, Gryte C C, et al. Effects of precursor origins on water sorption behaviors of various aromatic polyimides in thin films. Polymer, 1999, 40(10): 2681-2685
    [197] Ounaies Z, Park C, Wise K E, et al. Electrical properties of single wall carbon nanotube reinforced polyimide composites. Journal of Composites Science and Technology, 2003, 63(11): 1637-1646
    [198] Jason J G, Zhang D, Li Q, et al. Multiwalled Carbon Nanotubes with Chemically Grafted Polyetherimides. Journal of the American Chemical Society, 2005, 127(28): 9984-9985
    [199] Cai H, Yan F Y, Xue Q J. Investigate of tribological properties of polymide/carbon nanotube nanocomposites. Materials Science and Engineering A, 2004, 364(2): 94-100
    [200] Hill D, Lin Y, Qu L W, et al. Functionalization of carbon nanotubes with derivatized polyimide. Macromolecules, 2005, 38(18): 7670-7675
    [201] Qu L W, Lin Y, Hill D, et al. Polyimide-functionalized carbon nanotubes for nanocomposite thin films. Abstracts of Papers of the American Chemical Society, 2005, 229(3): 923-925
    [202] Zhou X, Zhou J, Yang Z C. Strain energy and Young`s modulus of single-wall carbon nanotubes calculated from electronic energy-band theory. Physical Review B, 2000, 62(20): 13692-13696
    [203] Bower C, Rosen R, Jin L. Deformation of carbon nanotube in nanotube-polymer composites. Applied Physics Letters, 1999, 74(22): 3317-3319
    [204] Berber S,Kyum K,Tomanek D. Unusually high thermal conductivity of carbon nanotubes. Physical Review Letters, 2000, 84(20): 4613-4616
    [205]陈传胜.有机小分子修饰碳纳米管及复合镀层的研究: [湖南大学博士学位论文].长沙:湖南大学材料科学与工程学院, 2006: 24-25
    [206] Graff R A, Swanson P W, Baik B S, et al. Achieving individual-nanotube dispersion at high loading in single-walled carbon nanotube composites. Advanced Materials, 2005, 17(8): 980-984
    [207] Tan P H, Zhang S L, Yue K T. Comparative raman study of carbon nanotube prepared by D.C. arc sischarge and catalytic methods. Journal of Raman Spectrum, 1997, 28(2): 269-275
    [208] Xia H S, Wang Q, Qiu G H. Polymer-encapsulated carbon nanotubes prepared through ultrasonically initiated in situ emulsion polymerization. Chemistry of Materials, 2003, 15(20): 3879-3886