基于结构张量的数字图像修复技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数字图像修复是指采用计算机程序或软件对图像中信息完全丢失的区域进行自动修正的一系列图像处理技术,其本质是根据不完全信息重建完全信息,并保证修复痕迹不易被察觉。该技术的主要目标是恢复破损的绘画/照片以及移除/替换选定的对象。另外,该技术在图像插值、图像放大及超分辨、无线传输中的错误隐藏等方面具有很高的应用价值。
     经过十多年的发展,数字图像修复技术已经形成了一套比较完整的理论体系,其研究主要包括:针对小面积破损的变分泛函\PDE(Partial Differential Equation,偏微分方程)扩散修复模型、针对大面积破损的基于样本的修补方法和针对小波域信息丢失的小波域图像修复模型等。尽管这些方法都取得了长足的发展,得到了较好的修复效果,但仍存在一些问题亟需解决,比如:利用变分泛函\PDE模型修复小尺度图像细节或进行纹理修复、在小波域修复模型中自适应地控制图像的几何正则性、补全大面积破损的图像,等等。
     针对以上问题,本文以结构张量为主线,结合其他新兴的理论、方法,围绕数字图像修复技术进行了一系列的研究。结构张量作为一种有效的图像分析工具,在图像处理和计算机视觉等领域中起着关键和重要的作用。本文将结构张量与其他理论、方法相结合,针对不同的应用需求,提出了效果更优的图像修复方法。论文主要工作及贡献如下:
     1.深入探讨了数字图像修复技术的基本原理与研究现状,对主要的修复方法进行了归类总结,并指出了各自的适用范围及优缺点;研究了结构张量和张量扩散的基本原理,详细分析了张量扩散所具有的各向异性及其在扩散过程中能够保留图像结构连续性的优良性能。在此基础上,系统研究了结构张量的总体框架,重点对其应用领域做了归纳分析,着重指出了可将结构张量和张量扩散应用于图像修复的不同方面,为后续研究奠定了基础。
     2.针对现有小波域图像修复模型在自适应正则和噪声抑制等方面存在的不足,提出了一种基于张量扩散的小波域图像修复模型(TDWI)。该混合模型将结构自适应各向异性正则与小波表示结合起来,在像素域中通过张量扩散来控制图像的几何正则性,而在小波域中修复丢失和被损坏的小波系数。同时,依据变分法推导该能量泛函对应的Euler-Lagrange方程,并据此分析TDWI模型的几何正则性能。由于在其正则项中采用了矩阵表示的结构张量,使得其扩散核的形状能够根据图像的局部特征自适应地变化,包括尖锐边缘、角及各向同性区域,因此TDWI模型能够更加自适应和准确地控制像素域的几何正则性,并对噪声具有更强的鲁棒性。最后,针对所建立的混合模型,采用了一种更加有效的迭代解法,进而给出了TDWI模型的数值实现方案。实验结果表明,针对一系列不同的丢失情况,TDWI模型具有更好的修复效果和更高的抗噪性能。
     3.针对传统整数阶扩散PDE在处理小尺度图像细节及结构特征方面存在的不足,根据噪声是否存在的不同情况,提出了两种基于分数阶张量扩散的数字图像修复模型(FTDII)。FTDII模型将分数阶微积分与张量扩散相结合,既继承了张量扩散的各向异性,又因分数阶微积分的特性而能更好地处理小尺度图像特征。同时,依据分数阶泛函理论,推导两种变分模型对应的Euler-Lagrange方程。在数值实现过程中,利用移位的Grümwald-Letnikov(the Shifted G-L)分数阶微积分定义,推导分数阶梯度在x+、x-、y+和y-四个方向的离散模板,进而根据推得的Euler-Lagrange方程设计出所提模型的数值算法。对各种测试图像的仿真结果表明,所提的两种FTDII模型对图像细节及结构特征具有更好的修复效果,所得修复结果的视觉质量优于传统的张量扩散修复模型。
     4.针对传统结构张量在提取图像低层(low-level)纹理特征方面存在的不足,提出了一种基于改进的非局部结构张量的纹理修复算法,以修复小面积破损的结构性纹理图像。根据结构性纹理所具有的特性,改进传统的结构张量。首先,我们采用分数阶结构张量(Fractional-order Structure Tensor,FST)取代传统的整数阶结构张量,从而能够更好地处理复杂的类分形纹理细节。其次,为了避免混叠现象导致的小尺度纹理细节信息的丢失,FST的采样率必须加倍。从频域分析的角度对其原因进行了解释说明,并采用移位的G-L定义推导计算整点处和半点处的分数阶导数值,以实现采样率加倍的操作。第三,针对纹理的非局部特性,利用张量数据的自相似冗余信息对过采样的FST(Oversampled FST,OFST)进行非局部滤波。最后,将改进的结构张量(Nonlocal regularized OFST,NOFST)插入各向异性PDE中,并设计出利用该PDE进行纹理修复的数值实现方案。实验结果表明,改进的结构张量能够很好地提取图像的低层纹理细节和结构特征;将其插入PDE中能够相当有效地修复小面积破损的结构性纹理图像。
     5.针对现有的基于样本的图像修复方法在搜索匹配过程中存在的不足,提出了一种结构测度约束下的基于加权分形的数字图像修复算法。首先,对选定的定义域块进行几何变换和同构变换,构造码本,利用图像的自相似性来“丰富”搜索匹配范围;然后,计算各向异性非线性结构张量,得到局部结构测度,据此构造已知点的归一化权系数;第三,在亮度变换过程中,为待修复块与码本块之间的误差能量函数引入两类约束条件,并通过最小化约束能量函数,导出新的亮度变换参数。引入的这两类约束为:一是待修复块与码本块在已知像素点上的加权一致性约束,权重为得到的归一化权系数;二是待修复块的邻域块与码本块在丢失像素点上的相似性约束。最后,采用约束能量最小的估计块来填补待修复块。实验表明,该方法能够很好地补全破损的几何结构,并使得新填充区域与源区域保持很好的一致性,其修复结果的主观质量和客观评价指标都得到了显著提高。
Digital image inpainting technology refers to automatically modifying a damagedimage, portions of whose information is lost or corrupted completely, by using computerprogram or software. Its essence is to rebuild complete information based on incompleteone in a non-detectable way. The technology mainly aims at retouching the damageddrawings/photographs and removing the unwished targets. In addition, the technologyhas found broad applications in image super-resolution and zooming, image interpo-lation, error concealment in wireless transmission, and so on.
     After several years’ development, digital image inpainting technology has formed arelatively complete system. It includes variational functional or PDE (Partial Differen-tial Equation) based inpainting models which are suitable to inpaint small-sizedscratches, exemplar-based completion methods which are very good at completing thelarge objects and wavelet inpainting models which are targeting at the case of waveletinformation loss. Although they have gained great developments, there exist someproblems which need to be solved, for example, inpainting small-scale details or textureimages by using variational functional or PDE based models, adaptively controlling thegeometric regularity in wavelet inpainting model, completing large holes, etc.
     According to the above issues, the dissertation mainly does researches on digitalimage inpainting taking the structure tensor (ST) as the main line and incorporatingother newly emerging theories or methods. ST is an effective tool for image analysisand plays a key and important role in image processing and computer vision. Accordingto different repair requirements, the dissertation proposes better image inpaintingalgorithms by combining ST with other theories or methods. The main research workand contributions are as follows.
     1. In-depth investigation is conducted on the basic principle and research statusof digital image inpainting. The main inpainting methods are classified andsummarized, and the existing problems are expounded. The basic principles ofST and TD are studied and their anisotropism and good performance ofretaining the continuity of image structures in the diffusion process areanalysed in detail. Based on the above, the overall framework of ST isestablished systematically, which outlines its theory and applications in imageprocessing and specifically highlights its application in image inpainting, thusestablishes research foundations for the later chapters.
     2. The abilities of the existing wavelet inpainting models for adaptive regularization and restraining noise are poor. To solve the problem, a newwavelet inpainting model based on tensor diffusion (TDWI) is proposed. Thehybrid model is built by combining structure-adaptive anisotropicregularization with wavelet representation, which controls the geometricregularity in pixel domain while restores the missing or damaged waveletcoefficients in wavelet domain. Its associated Euler-Lagrange equation isdeduced to analyze its regularity performance. Due to using matrix-valued STin the regularization term, the shape of diffusion kernel changes adaptivelyaccording to the image features, including sharp edges, corners andhomogeneous regions. Therefore, the TDWI model controls the geometricregularity in the pixel domain more adaptively and accurately and gives betterrobustness to noise. In addition, for the established hybrid model, an effectiveand proper iterative numerical solution is applied to improve the computation,and then the numerical scheme for the TDWI model is given. Experimentalresults on a variety of loss scenarios are given to demonstrate the advantagesof our proposed model.
     3. Fine scale features cannot be recovered satisfactorily by the traditionalinteger-order inpainting models. In order to solve this problem, depending onwhether or not noise needs to be eliminated in the image, two novel imageinpainting models based on fractional-order tensor diffusion (FTDII) arepresented. The proposed models integrates fractional calculus with tensordiffusion, not only inheriting the anisotropism of tensor diffusion, but alsodealing with better image details owing to the characteristics of fractionalcalculus. Meanwhile, according to the fractional functional theory, theirassociated Euler-Lagrange equations are deduced. In the procedure ofnumerical implementation, the discrete templates of fractional derivative infour directions are deduced according to the shifted Grümwald-Letnikov (theShifted G-L) fractional calculas definition. And then, according to the derivedEuler-Lagrange equations, a numerical scheme for the FTDII models is given.According to the experimental results on various testing images, the proposedFTDII models demonstrate superior inpainting performance to the originalinteger-order ones based on classic calculus.
     4. The ability of the traditional ST of extracting low-level texture feature is poor,focusing on which a texture inpainting algorithm based on an improved nonlocal ST is proposed to repair structural texture image. According to thecharacteristics of this kind of image, an improved ST with three modificationsis put forward. Firstly, fractional-order structure tensor (FST) is employed toreplace the traditional ST to deal with better complex fractal-like texturedetails. Secondly, in order to avoid aliasing, the sampling rate of FST must bedoubled. The reason is expounded from the perspective of frequency-domainanalysis and the operation is implemented by computing the fractional-orderderivative image at both integer and half-integer positions according to theshifted G-L definition. Thirdly, in consideration of the nonlocal property, anonlocal filtering is performed on the resulting oversampled FST (OFST) byutilizing the redundant infromation of the tensor data. Lastly, the resultingnonlocal filtered OFST (NOFST) is inserted into the anisotropic PDE whosenumerical implementation scheme is given to perform texture inpainting. Theexperimental results show that, for structural texture images, the improved STperforms particularly well in extracting low-level texture and structure featuresand the proposed inpainting algorithm is not only quite efficient in recoveringnon-homogeneous structures, but particularly efficient in the restitution of thetexture regions.
     5. In order to overcome the defects of the existing exemplar-based methods in theprocedure of searching and matching, an image completion algorithm based onweighted fractal under the structure-measurement constraint is presented.Firstly, the selected domain blocks were transformed by geometricaltransformation and isomorphic transformation. Using the resulting blocks, thecodebook was constructed and then served as the ‘enriched’ searching scope.Secondly, by computing the anisotropic nonlinear ST (NLST), the localstructure measurement was obtained, according to which the normalizedweight map was constructed. Thirdly, during the luminance transformation, itstwo parameters are derived through minimizing a constrained energy functionbetween the target patch and each codebook patch. In the constrained energyfunction, two types of constraints are introduced: one is the weightedconsistency constraint between the codebook patch and the target patch overthe already known pixels where the weight patch is obtained from the weightmap, the other is the neighborhood similarity constraint between the codebookpatch and the weighted mean of the neighboring patches over the missing pixels. Lastly, the target patch is filled in using the estimated patch with theminimum constrained energy. The experimental results show that comparedwith the existing congeneric algorithms, the proposed one preserves better thecontinuity of the broken structure and forces the newly filled area to be moreconsistent with the source area. Therefore, the restored results are improvedboth subjectively and objectively.
引文
[1] émile-Male Gilberte. The Restorer's Handbook of Easel Painting,1976.
    [2] Manuel M Oliveira, Brian Bowen, Richard McKenna, et al. Fast digital imageinpainting. In Proceedings of the International Conference on Visualization,Imaging and Image Processing,2001, Marbella, Spain, pp:106-107.
    [3] Marcelo Bertalmio, Guillermo Sapiro, Vicent Caselles, et al. Image inpainting. InProceedings of SIGGRAPH2000,2000: ACM Press, pp:417-424.
    [4] Sivitil K. A digital fix for damaged artwork[EB/OL], in Discovery Magazine,2002.
    [5]聂栋栋.数字图像和视频修复理论及其算法研究.上海交通大学博士学位论文:上海,2007.
    [6]贺红娟,陈棣湘,赵建强等.用于微损伤定量评估的多变量非线性插值算法.传感技术学报,2012,25(12):1696-1700.
    [7] Kappeler T, Topalov P. On nonlinear interpolation. arXiv preprint arXiv:1306.5721,2013.
    [8] Nixon M S, Aguado A S. Feature Extraction and Image Processing for ComputerVision.Academic Press,2012.
    [9] Choi S I, Oh J, Choi C H, et al. Input variable selection for feature extraction inclassification problems. Signal Processing,2012,92(3), pp:636-648.
    [10] Chan T. F, Shen J, Zhou H. Toral variation wavelet inpainting. Journal ofMathematical Imaging and Vision,2006,25(1), pp:107-125.
    [11] Patwardhan K A, Sapiro G. Projection based image and video inpainting usingwavelets. In Proceedings of International Conference on Image Processing (ICIP2003),2003: IEEE, pp:857-860.
    [12] Yen-Liang C, Hsieh C T, Chih-Hsu H S U. Progressive image inpainting based onwavelet transform. IEICE Transactions on Fundamentals of Electronics,Communications and Computer Sciences,2005,88(10), pp:2826-2834.
    [13] Wu J, Ruan Q. Object removal by cross isophotes exemplar-based inpainting. InProceedings of18th International Conference on Pattern Recognition (ICPR2006),2006: IEEE, pp:810-813.
    [14] Tschumperle D, Deriche R. Vector-valued image regularization with PDEs: Acommon framework for different applications. IEEE Transactions on PatternAnalysis and Machine Intelligence,2005,27(4), pp:506-517.
    [15] Bernardo J M, Smith AF M. Bayesian theory (Vol.405).2009, USA: Wiley.
    [16] Box G E P, Tiao G C. Bayesian inference in statistical analysis.2011: Wiley-Interscience.
    [17] Yasuda M, Ohkubo J, Tanaka K. Digital image inpainting based on markovrandom field. In Proceedings of International Conference on ComputationalIntelligence for Modelling, Control and Automation and International Conferenceon Intelligent Agents, Web Technologies and Internet Commerce,2005, Austra:IEEE, pp:747-752.
    [18] Ganapathi V, Vickrey D, Duchi J, et al. Constrained approximate maximumentropy learning of markov random fields. ArXiv preprint arXiv:1206.3257,2012.
    [19] Efros A. A, Freeman W. T. Image quilting for texture synthesis and transfer. InProceedings of28th Annual Conference on Computer Graphics and InteractiveTechniques,2001, USA: ACM, pp:341-346.
    [20] Efros A. A, Leung T K. Texture synthesis by non-parametric sampling. InProceedings of7th IEEE International Conference on Computer Vision,1999:IEEE, pp:1033-1038.
    [21] Islam S M, Das S, Ghosh S, et al. An adaptive differential evolution algorithmwith novel mutation and crossover strategies for global numerical optimization.IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,2012,42(2), pp:482-500.
    [22] Pardalos P P M. Nonlinear analysis and variational problems (Vol.35).2010:Springer.
    [23] Mordukhovich B S. Variational analysis and generalized differentiation, I: Basictheory, II:Applications. Control and Cybernetics,2006,35(2).
    [24] Chan T F, Shen J. Mathematical Models for Local Non-Texture Inpainting. SIAMJournal onApplied Mathematics,2001,62(3), pp:1019-1043.
    [25] Chan T F, Shen J. Non-texture inpainting by curvature driven diffusion (CDD).Journal of Visual Communication and Image Representation,2001,12(4), pp:436-449.
    [26] Chan T F, Kang S H, Shen J. Euler's elastica and curvature based inpainting.SIAM Journal onApplied Mathematics,2002,63(2), pp:564-592.
    [27] Esedoglu S, Shen J. Digital image inpainting by the Mumford-Shah-Euler imagemodel. European Journal of Applied Mathematics,2002,13, pp:353-370.
    [28] Bertozzi A L, Esedoglu S, Gillette A. Inpainting of binary images using theCahn-Hilliard equation. IEEE Transactions on Image Processing,2007,16(1), pp:285-291.
    [29] Bertalmio M, Bertozzi A L, Sapiro G. Navier-stokes, fluid dynamics, and imageand video inpainting. In Proceedings of the IEEE Computer Society Conferenceon Computer Vision and Pattern Recognition (CVPR2001),2001: IEEE, pp:355-362.
    [30]张红英.数字图像修复技术的研究与应用.电子科技大学博士学位论文:成都,2006.
    [31] Mumford D, Shah J. Optimal approximations by piecewise smooth functions andassociated variational problems. Communications on pure and appliedmathematics,1989.42(5): pp.577-685.
    [32] Gali I, Weickert J, Welk M, et al. Image compression with anisotropic diffusion.Journal of Mathematical Imaging and Vision,2008,31(2-3), pp:255-269.
    [33] Tschumperlé D. Fast anisotropic smoothing of multi-valued images usingcurvature-preserving PDE's. International Journal of Computer Vision,2006,68(1), pp:65-82.
    [34] Auroux D, Masmoudi M. A one-shot inpainting algorithm based on thetopological asymptotic analysis. Computational and Applied Mathematics,2006,25(2-3), pp:1-17.
    [35] Bo Li, Qifeng Zhang, Baojun Li, et al. Nonlocal Total Variation Image Inpaintingin DCT Domain. Journal of Information&Computational Science,2010,7(10),pp:2013-2020.
    [36] Andy C. Yau, Xue-Cheng Tai, MichaelK Ng. L0-Norm and Total Variation forWavelet Inpainting. In Proceedings of the2nd International Conference on ScaleSpace and Variational Methods in Computer Vision,2009: IEEE, pp:539-551.
    [37] Chan T. F, Shen J, Zhou H. Total variation wavelet inpainting. Journal ofMathematical Imaging and Vision,2006,25(1), pp:107-125.
    [38] Xiaoqun Zhang, Tony F. Chan. Wavelet Inpainting by Nonlocal Total Variation.Inverse Problems and Imaging,2010,4(1), pp:1-20.
    [39] Rane S D, Remus J, Sapiro G. Wavelet-domain reconstruction of lost blocks inwireless image transmission and packet-switched networks. In Proceedings ofIEEE International Conference on Image processing (ICIP),2002, pp:309-312.
    [40] Criminisi A, Pérez P, Toyama K. Region filling and object removal byexemplar-based image inpainting. IEEE Transactions on image processing,2004,13(9), pp:1200-1212.
    [41] Guo B, Shum H, Xu Y Q. Chaos mosaic: Fast and memory efficient texturesynthesis, in ACM Transactions on Graphics (SIGGRAPH01)2000, Microsoftresearch paper: USA.
    [42] Kim V G, Lipman Y, Funkhouser T A. Symmetry-guided texture synthesis andmanipulation. ACM Trans. Graph.,2012,31(3):22.
    [43] Wong A, Orchard J. A Nonlocal-means Approach to Exemplar-based Inpainting.In Proceedings of International Conference on Image Processing,2008, San Diego,California, pp:2600-2603.
    [44]张显全,高志卉.一种块匹配的图像修复算法.光电子激光,2012,23(4), pp:805-811.
    [45] Ni K Y. Variational PDE-based image segmentation and inpainting withapplications in computer graphics. University of California: California, LosAngeles,2008.
    [46] Bertalmio M, Vese L, Sapiro G, Osher S. Simultaneous Structure and TextureImage Inpainting. IEEE Transactionson on Image Proeessing,2003,12(8), pp:882-889.
    [47] KEDAR Shrestha, Qin Chuan. Layered Image inpainting based on imagedecomposition. Journal of Shanghai University (English Edition),2007,11(6), pp:580-584.
    [48] Dobrosotskaya J. A, Bertozzi A. L. A wavelet-laplace variational technique forimage deconvolution and inpainting. IEEE Transactions on Image Processing,2008,17(5), pp:657-663.
    [49] Cai J, Chan R, Shen Z. A framelet-based image inpainting algorithm. Applied andComputational Harmonic Analysis,2008,24(2), pp:131-149.
    [50] Papandreou G, Maragos P, Kokaram A. Image inpainting with a wavelet domainhidden markov tree model. In Proceedings of IEEE International Conference onAcoustics, Speech and Signal Processing,2008, Las Vegas: IEEE, pp:773-776.
    [51] Chan R H, Wen Y, Yip A. M. A fast optimization transfer algorithm for imageinpainting in wavelet domains. IEEE Transactionsons on Image Processing,2009,18(7), pp:1467-1476.
    [52]秦川,黄素娟,王朔中.自适应偏心窗口平滑滤波图像修复.计算机工程,2008,34(5), pp:213-215.
    [53] Mairal J, Elad M, Sapiro G. Sparse Representation for Color Image Restoration.IEEE Trans. Image Processing,2008,17(1), pp:53-69.
    [54] Shen B, Hu W, Zhang Y, et al. Image Inpainting via Sparse Representation. InProceedings of IEEE International Conference on Acoustics, Speech and SignalProcessing,2009, Taipei, Taiwan: IEEE, pp:697-700.
    [55]周春霞,吴锡生.基于方差和边缘插值的邻近点图像修复算法.计算机工程与应用,2008,44(14), pp:184-186.
    [56]屈磊,韦穗,梁栋.快速自适应模板图像修复算法.中国图象图形学报,2007,13(1), pp:24-28.
    [57] Alexandru T. An image inpainting technique based on the fast marching method.Journal of Graphics Tools,2004,9(1), pp:25-36.
    [58] Zhang Y, Xiao J, Mubarak S. Region completion in a single image,2004.
    [59] Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removalalgorithms. Physica D,1992,60(1-4), pp:259-268.
    [60] Chambolle A. Finite-differences discretizations of the Mumford-Shah functional.ESAIM: Mathematical Modelling and Numerical Analysis,1999,33(2): pp.261-288.
    [61]张晴.基于样本的数字图像修复技术研究.华东理工大学博士学位论文:上海,2012.
    [62]邵肖伟,刘证凯,宋壁.一种基于TV模型的自适应图像修复方法.电路与系统学报,2004,9(2), pp:113-117.
    [63] Tsai A, Yezzi J A, Willsky A S. Curve evolution implementation of theMumford-Shah functional for image segmentation, denoising, interpolation andmagnification. IEEE Transactions on Image proeessing,2001,10(8), pp:1169-2156.
    [64] Weickert J. Anisotropic Diffusion in Image Processing. International Journal ofComputer Vision.1998, Stuttgart: B. G. Teubner.
    [65] Brox T, Weickert J, Burgeth B, et al. Nonlinear structure tensors. Image andVision Computing,2006,24(1), pp:41-55.
    [66] Bai J, Feng X C. Fractional-order anisotropic diffusion for image denoising. IEEETransactions on Image Processing,2007,16(10), pp:2492-2502.
    [67]张军.基于分数阶变分PDE的图像建模与去噪算法研究.南京理工大学博士学位论文:南京,2010.
    [68]蒋伟.基于分数阶偏微分方程的图像去噪新模型.计算机应用,2011,31(3),pp:753-756.
    [69]杨柱中,周激流,黄梅等.用分数阶微分提取图像边缘.计算机工程与应用,2007,43(35), pp:15-18.
    [70]何春,叶永强,姜斌等.一种基于分数阶次微积分模板的新型边缘检测方法.自动化学报,2012,38(5), pp:776-787.
    [71] Hu X, Li Y. A New Variational Model for Image Denoising Based onFractional-order Derivative. In Proceedings of International Conference onSystems and Informatics (ICSAI2012),2012, Yantai, China: IEEE, pp:1820-1824.
    [72] Pu Y F, Zhou J L, Yuan X. Fractional Differential Mask: A FractionalDifferential-Based Approach for Multiscale Texture Enhancement. IEEETransactions on Image Processing,2010,19(2), pp:491-511.
    [73] Chung F R K. Spectral Graph Theory. In Proceedings of CBMS RegionalConference Series in Mathematics, No.92,1997.
    [74] Peyré G, Bougleux S, Cohen L. Non-local regularization of inverse problems. InProceedings of Computer Vision-ECCV,2008, Berlin Heidelberg: Springer, pp:57-68.
    [75] Gilboa G, Osher S. Nonlocal operators with applications to image processing.Multiscale Modeling&Simulation,2008,7(3), pp:1005-1028.
    [76] Jung M, Bresson X, Chan T F, et al. Nonlocal Mumford-Shah Regularizers forColor Image Restoration. IEEE Transactions on Image Processing,2011,20(6), pp:1583-1598.
    [77] Li L, Yu H. Nonlocal Curvature-Driven Diffusion Model for Image Inpainting. InProceedings of the5th International Conference on Information Assurance andSecurity,2009: IEEE, pp:513-516.
    [78] Skodras A N, Christopoulos C A, Ebrahimi T. JPEG2000: The upcoming stillimage compression standard. In Proceedings of the11th Portuguese Conferenceon Pattern Recognition,2000, Porto, Portugal, pp:359-366.
    [79] Chang E Y. An image coding and reconstruction scheme for mobile computing. InProceedings of Interactive Distributed Multimedia Systems and Telecommuni-cation Services,1998, Berlin Heidelberg: Springer, pp:137-148.
    [80] Hemami S S. Digital image coding for robust multimedia transmission. InProceedings of Multimedia Communications and Video Coding,1996, NewYork,US: Springer, pp:491-498.
    [81] Chan T F, Shen J, Zhou H-M. Total variation wavelet inpainting. Joural ofmathematical imaging and vision,2006,25(1), pp:107-125.
    [82] Drori I, Cohen-Or D, Yeshurun H. Fragment-based image completion. ACMTransactions on Graphics (TOG),2003,22(3), pp:303-312.
    [83] Borikar S, Biswas K K, Pattanaik S. Fast algorithm for completion of images withnatural scenes, in CS Technical Report,2004, University of Central Florida.
    [84] Tang F, Ying Y, Wang J, et al. A novel texture synthesis based algorithm for objectremoval in photographs. In Proceedings of Ninth Asian Computing ScienceConference,2004, ChiangMai, Thailand, pp:248-258.
    [85] Choi J H, Hahm C H. An exemplar-based image inpainting method with searchregion prior. In Proceedings of IEEE2nd Global Conference on ConsumerElectronics, IEEE,2013, pp:68-71.
    [86] Wu J Y, Ruan Q Q. A novel exemplar-based image completion model. Journal ofInformation Science and Engineering,2009,25(2), pp:481-497.
    [87] Nie D, Ma L, Xiao S. Similarity based image inpainting method. In Proceedingsof12th International Conference on Multi-Media Modelling,2006, Beijing: IEEE,pp:344-347.
    [88] Shih T K, Chang R C, Lu L C, et al. Multi-layer inpainting on Chinese artworkrestoration applications. In Proceedings of IEEE International Conference onMultimedia and Expo,2004, pp:21-24.
    [89] Shih T K, Tang N C, Hwang J N. Exemplar-based video inpainting without ghostshadow artifacts by maintaining temporal continuity. IEEE Transactions onCircuits and Systems for Video Technology,2009,19(3), pp:347-360.
    [90] Rane S D, Sapiro G, Bertalmio M. Structure and texture filling-in of missingimage blocks in wireless transmission and compression applications. IEEETransactions on Image Proeessing,2003,12(3), pp:296-303.
    [91] Patwardhan K A, Sapiro G, Bertalmio M. Video inpainting of occluding andoccluded objects. In Proceedings of IEEE International Conference on ImageProcessing (ICIP),2005, pp:69-72.
    [92] Kumar S, Biswas M, Belongie S J, et al. Spatio-temporal texture synthesis andimage inpainting for video applications. In Proceedings of IEEE InternationalConference on Image Processing(ICIP),2005, pp:85-88.
    [93] Zhang H Y, Peng Q C. Image Compression Scheme Based on HarmonicInpainting Model. Opto-Electronic Engineering,2006,33(10), pp:125-131.
    [94] Masnou S. Disocclusion: A Variational Approach Using Level Lines. IEEETransactions on Image Processing,2002,11(2), pp:68-76.
    [95] Ma M, Au O C, Chan S H G, et al. Edge-Directed Error Concealment. IEEETransactions on Circuits and Systems for Video Technology,2010,20(3), pp:382-395.
    [96] Wu G L, Chen C Y, Chien S Y. Algorithm and architecture design of imageinpainting engine for video error concealment applications. IEEE Transactions onCircuits and Systems for Video Technology,2011,21(6), pp:792-803.
    [97] F rstner W, Gülch E. A fast operator for detection and precise location of distinctpoints, corners and centres of circular features. In Proceedings of ISPRSIntercommission Conference on Fast Processing of Photogrammetric Data,1987,pp:281-305.
    [98] Lindeberg T. Scale-Space Theory in Computer Vision,1994: Kluwer, Boston.
    [99] Rao A R, Schunck B G. Computing oriented texture fields. In Proceedings ofCVGIP: Graphical Models and Image Processing,1991, pp:157-185.
    [100]Weickert J, Schn rr C. A Theoretical Framework for Convex Regularizers inPDE-Based Computation of Image Motion. International Journal of ComputerVision,2001,45(3), pp:245-264.
    [101]郑钰辉,朱立新,韦志辉等.总变差去噪方法中结合局部结构信息的自适应保真项.计算机辅助设计与图形学学报,2008,20(4), pp:506-511.
    [102]郑钰辉,潘瑜,王平安等.基于迹的非线性结构张量.计算机辅助设计与图形学学报,2008,20(2), pp:259-266.
    [103]J hne B. Spatio-temporal image processing. Lecture Notes in Computer Science.Vol.751, Berlin: Springer,1993.
    [104]Di Zenzo S. A note on the gradient of a multi-image. Computer Vision, Graphics,and Image Processing,1986,33(1), pp:116-125.
    [105]Goldlücke B. Introduction to Image Processing on the GPU,2012, HeidelbergCollaboratory for Image Processing.
    [106]Aubert G, Kornprobst P. Mathematical problems in image processing: partialdifferential equations and the calculus of variations.2000, New York: Springer.
    [107]邵文泽,韦志辉.基于结构张量图像建模方法的滤波性能研究.电子学报,2011,20(7), pp:1556-1562.
    [108]Medioni G, Lee M S, Tang C K. A computational framework for segmentation andgrouping.2000: Elsevier.
    [109]Tong W S, Tang C K, Mordohai P, et al. First order augmentation to tensor votingfor boundary inference and multiscale analysis in3D. IEEE Transactions onPattern Analysis and Machine Intelligence,2004,26(5), pp:594-611.
    [110] K the U. Edge and Junction Detection with an Improved Structure Tensor. InProceedings of25th DAGM Symposium,2003, Magdeburg, Germany: Springer,pp:25-32.
    [111] Bigun J, Granlund G H, Wiklund J. Multidimensional orientation estimation withapplications to texture analysis and optical flow. IEEE Transactions on PatternAnalysis and Machine Intelligence,1991,13(8), pp:775-790.
    [112] Lucas B D, Kanade T. An iterative image registration technique with anapplication to stereo vision. In Proceedings of the Seventh International JointConference onArtificial Intelligence,1981, Vancouver, Canada, pp:674-679.
    [113]苗春利.基于结构张量的图像融合.河南理工大学硕士学位论文:焦作,2010.
    [114]赵文达,赵建,续志军.基于结构张量的变分多源图像融合.物理学报,2013,62(21):214204-214204.
    [115]郭圣文.一种基于结构张量的图像特征检测与增强方法.中国医学物理学杂志,2006,23(2), pp:89-92.
    [116]钟勇,王岚.基于结构张量的三维地震图像增强方法.计算机工程与设计,2011,32(3), pp:1010-1013.
    [117]谢成.结合结构张量的图像去噪及其增强的研究.华中科技大学硕士学位论文:武汉,2009.
    [118] Weickert J. Applications of nonlinear diffusion in image processing and computervision.Acta Mathematica Universitatis Comenianae,2001,70(1), pp:33-50.
    [119]刘奎,苏本跃,赵晓静.基于结构张量的图像修复方法.计算机应用,2011,31(10), pp:2711-2713.
    [120]王利,陈允杰,汤杨等.相关扩散方程在图像修补中的应用.中国图象图形学报,2009,14(1), pp:71-76.
    [121]Chan T F, Shen J J. Variational image inpainting. Communications on pure andapplied mathematics,2005,58(5), pp:579-619.
    [122]Hemami S S, Gray R M. Subband coded image reconstruction for lossy packetnetworks. In Proceedings of Signal Recovery Techniques for Image and VideoCompression and Transmission,1998: Springer US, pp:99-131.
    [123]Park J W, Lee S U. Recovery of corrupted image data based on the NURBSinterpolation. IEEE Transactions on Circuits and Systems for Video Technology,1999,9(7), pp:1003-1008.
    [124]Cheng M Y, Huang H Y, Su AW Y. A NURBS-based error concealment techniquefor corrupted images from packet loss. In Proceedings of2002InternationalConference on Image Processing,2002: IEEE, pp:705-708.
    [125]Ross B. A brief history and exposition of the fundamental theory of fractionalcalculus. In Proceedings of Fractional calculus and its applications,1975, BerlinHeidelberg: Springer, pp:1-36.
    [126]Kulish V V, Lage J L. Application of fractional calculus to fluid mechanics.Journal of fluids engineering,2002,124(3), pp:803-806.
    [127]Vinagre B M, Petrá I, Podlubny I, et al. Using fractional order adjustment rulesand fractional order reference models in model-reference adaptive control.Nonlinear Dynamics,2002,29(1-4), pp:269-279.
    [128]Engheia N. On the role of fractional calculus in electromagnetic theory. IEEEAntennas and Propagation Magazine,1997,39(4), pp:35-46.
    [129]Zhang Y, Pu Y F, Hu J R, et al. A Class of Fractional-Order Variational ImageInpainting Models. Applied Mathematics&Information Sciences,2012,6(2), pp:299-306.
    [130]黄果,许黎,陈庆利等.基于空间分数阶偏微分方程的图像去噪模型研究.四川大学学报(工程科学版),2012,44(2), pp:91-97.
    [131]蒲亦非.将分数阶微分演算引入数字图像处理.四川大学学报(工程科学版),2007,39(3), pp:124-132.
    [132]Cuesta E, Codes J F. Image processing by means of a linear integro-differentialequation. In Proceedings of the3rd IASTED International Conference onVisualization, Imaging, and Image Processing,2003, pp:438-442.
    [133]Didas S, Burgeth B, Imiya A, et al. Regularity and scale-space properties offractional high order linear filtering. In Proceedings of Scale Space and PDEMethods in Computer Vision,2005, Berlin Heidelberg: Springer, pp:13-25.
    [134]Duits R, Felsberg M, Florack L, et al. α scale spaces on a bounded domain. InProceedings of the4th International Conference on Scale Spaces,2003, BerlinHeidelberg: Springer, pp:494-510.
    [135]Pu Y F, Wang W X, Zhou J L, et al. Fractional differential approach to detectingtextural features of digital image and its fractional differential filterimplementation. Science in China Series F: Information Sciences,2008,51(9), pp:1319-1339.
    [136]汪凯宇,肖亮,韦志辉.基于图像整体变分和分数阶奇异性提取的图像恢复模型.南京理工大学学报(自然科学版),2003,27(4), pp:400-404.
    [137]Ninness B. Estimation of1/f noise. IEEE Transactions on Information Theory,1998,44(1), pp:32-46.
    [138]Loverro A. Fractional calculus: history, definitions and applications for theengineer,2004, Department of Aerospace and Mechanical Engineering, NotreDame.
    [139]Unser M. Splines, a perfect fit for signal and image processing. IEEE signalprocessing magazine,1999,16(6), pp:22-38.
    [140]Unser M, Blu T. Fractional Splines and Wavelets. SIAM Review,2000,42(1), pp:43-67.
    [141]刘红毅,韦志辉.基于分数阶样条小波与IHS变换的图像融合.南京理工大学学报(自然科学版),2006,30(1), pp:82-84.
    [142]Zhang J, Wei Z, Xiao L. Adaptive fractional-order multi-scale method for imagedenoising. Journal of Mathematical Imaging and Vision,2012,43(1), pp:39-49.
    [143]Pu Y F. Research on application of fractional calculus to latest signal analysis andprocessing (in Chinese). Sichuan University: Chengdu,2006
    [144]Rodieck R W. Quantitative analysis of cat retinal ganglion cell response to visualstimuli. Vision Research,1965,5(11), pp:583-601.
    [145]黄果,许黎,蒲亦非.分数阶微积分在图像处理中的研究综述.计算机应用研究,2012,29(2), pp:414-420.
    [146]Zhang H Y, Peng Q C, Wu Y D. Digital Image Inpainting Algorithm for DamagedImages Based on Nonlinear Anisotropic Diffusion. Journal of Computer-AidedDesign&Computer Graphics,2006,18(10).
    [147]Tai X C, Osher S, Holm R. Image Inpainting Using a TV-Stokes Equation. ImageProcessing based on Partial Differential Equations.2006, Heidelberg: Springer.
    [148]Podlubny I, Chen Y Q. Adjoint fractional differential expressions and operators. InProceedings of the2007International Design Engineering Technical Conferences&Computers and Information in Engineering Conference,2007, pp:4-7.
    [149]郭柏灵,蒲学科,黄凤辉.分数阶偏微分方程及其数值解(Vol.1).2011,北京:科学出版社.
    [150]王大凯,彭进业.图像处理的偏微分方程方法.2008,北京:科学出版社.
    [151]Lieu L H, Vese L A. Image restoration and decomposition via bounded totalvariation and negative Hilbert-Sobolev spaces. Applied mathematics andOptimization,2008.58(2): pp.167-193.
    [152]刘晓民.纹理研究综述.计算机应用研究,2008,25(8), pp:2284-2288.
    [153]李斌.数字图像修复新方法的研究与应用.汕头大学硕士学位论文:汕头,2007.
    [154]Liu B B, Weng Y L, Wang J N, et al.方向场引导的纹理合成. Journal ofComputer Science and Technology,2013.28: pp.827-835.
    [155]周刚,彭群生.一种基于自适应块拼接的纹理合成方法.计算机工程与科学,2004.26(7): pp.56-59.
    [156]Heeger D J, Bergen J R. Pyramid-based texture analysis/synthesis. In Proceedingsof the22nd Annual Conference on Computer graphics and Interactive Techniques,1995:ACM, pp:229-238.
    [157]Igehy H, Pereira L. Image replacement through texture synthesis. In Proceedingsof the International Conference on Image Processing,1997: IEEE, pp:186-189.
    [158]Sun J, Yuan L, Jia J, et al. Image completion with structure propagation. ACMTransactions on Graphics (ToG),2005,24(3), pp:861-868.
    [159]Masnou S, Morel J. Level lines based disocclusion. In Proceedings of IEEEConference on Image Processing,1998: IEEE, pp:259-262.
    [160]Alex S.(Nonlocal) Total Variation in Medical Imaging.2011, Germany.
    [161]Yaroslavsky L P. Digital Picture Processing: An Introduction.1985: Springer.
    [162]Lee J S. Digital image smoothing and the sigma filter. Computer Vision,Graph-ics and Image Processing,1983,24, pp:255-269.
    [163]Buades A, Coll B, Morel J M. A review of image denoising algorithms, with anew one. Multiscale Modeling&Simulation,2005.4(2): pp.490-530.
    [164]Efros A A, Leung T K. Texture synthesis by non-parametric sampling, inProceedings of the7th IEEE International Conference on Computer Vision1999. p.1033-1038.
    [165]王坤成,邢顺来,李志斌.基于非局部平均滤波和快速行进法图像修补算法.计算机应用研究,2008,25(10), pp:3042-3044.
    [166]Martín-Herrero J. Anisotropic diffusion in the hypercube. IEEE Transactions onGeoscience and Remote Sensing,2007,45(5), pp:1386-1398.
    [167]Wexler Y, Shechtman E, Irani M. Space-time video completion. In Proceedings ofthe2004IEEE Computer Society Conference on Computer Vision and PatternRecognition,2004: IEEE, pp:120-127.
    [168]Zhang H Y, Peng Q C, Wu Y D. Image completion algorithm based on texturesynthesis. Journal of Systems Engineering and Electronics,2007,18(2), pp:385-391.
    [169]Wohlberg B. Inpainting by Joint Optimization of Linear Combinations ofExemplars. IEEE signal processing letters,2011,18(1), pp:75-78.
    [170]Cheng W H, Hsieh C W, Lin S K, et al. Robust algorithm for exemplar-basedimage inpainting. In Proceedings of the International Conference on ComputerGraphics, Imaging and Visualization,2005, Beijing, China, pp:64-69.
    [171]Xu J, Lin Y. Realization of Fractal Affine Transformation. Journal of ShanghaiUniversity (English Edition),2001,5(1), pp:31-34.
    [172]Wang Z, Bovik A C, Sheikh H R, et al. Image Quality Assessment: From errorvisibility to structural similarity. IEEE Trans. Image Processing,2004,13(4), pp:600-612.
    [173]Chang R C, Sie Y L, Chou S M, et al. Photo defect detection for image inpainting.In Proceedings of7th IEEE Intemational Symposium on Multimedia,2005, pp:12-14.
    [174]Chuang YY, Curless B, Salesin D H, et al. ABayesian approach to digital matting.In Proceedings of IEEE Computer Soeiety's Computer Vision and PatternRecognition,2001, Hawaii, USA, pp:264-271.