激光捕获显微切割结合定量蛋白质组学技术筛选人肺鳞癌早期诊断标志物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肺癌是全球发病率和死亡率最高的恶性肿瘤。尽管肺癌的诊断和治疗水平已大大提高,但病人的生存率仍然很低,五年生存率低于15%。肺癌患者预后差的主要原因,一方面是由于肺癌发病机理仍然不是很清楚,另方面是缺乏有效的肺癌早期诊断标志物。因此,筛选肺癌早期诊断标志物对于提高疗效、改善预后具有重要意义。
     肺鳞癌起源于支气管上皮,是一个多基因参与、多阶段的复杂病理学过程。在致癌因素作用下,支气管上皮细胞的癌变过程一般要经过基底细胞增生、鳞状化生,进而进展为不典型增生、原位癌,再发展为浸润癌。为了筛选新的肺鳞癌早期诊断标志物,揭示肺鳞癌癌变的机制,我们首先采用激光捕获显微切割(laser capture microdissection, LCM)技术纯化正常支气管上皮组织、鳞状化生、不典型增生、原位癌、浸润癌组织,然后再用同位素标记相对和绝对定量(iTRAQ)技术结合二维液相色谱串联质谱(2D LC-MS/MS)鉴定支气管上皮癌变过程中各阶段的差异表达蛋白质。本研究共鉴定了102个差异表达蛋白质,在这些差异蛋白质中,有的在支气管上皮癌变过程中进行性上调,有的在支气管上皮癌变过程中进行性下调,有的呈阶段特异性改变。分层聚类分析显示:102个差异表达蛋白质聚集成8个簇,3大群。GO功能注释显示:第1群差异蛋白质主要涉及发育、凋亡、翻译和代谢等生物学过程;第2群差异蛋白质主要涉及器官发育、凋亡、对生物刺激的应答和肌动蛋白丝束的形成等生物学过程;第3群差异蛋白质主要涉及代谢、细胞凋亡、运输、细胞大分子定位、细胞增殖和体液免疫应答等生物学过程。KEGG通路分析显示:这三群差异蛋白质涉及与肿瘤相关的一些信号通路,如MAPK信号通路,凋亡、细胞周期、p53信号通路、以及ErbB信号通路等。同一群差异蛋白为共同调节蛋白,它们在支气管上皮癌变的过程中可能具有相似的生物学功能,并可能通过这些信号通路发挥作用,从而促使支气管上皮癌变。
     在102个差异蛋白质中,HSPB1的表达在支气管上皮癌变过程中呈进行性上调,GSTP1和CKB的表达在支气管上皮癌变过程中呈进行性下调。因此,我们选择HSPB1、GSTP1和CKB进行深入研究,采用Western blotting检测这三个蛋白质在支气管上皮癌变过程中各阶段组织中的表达,结果与蛋白质组学结果一致;采用免疫组织化学染色检测这三个蛋白质在石蜡包埋的正常支气管上皮、鳞状化生、不典型增生、原位癌、浸润癌组织标本中的表达,并且采用ROC曲线分析评估它们早期诊断肺鳞癌的能力,结果显示:三个蛋白组合判别正常支气管上皮和癌前病变的敏感性和特异性分别为96%和92%、判别正常支气管上皮和肺鳞癌的敏感性和特异性分别为99%和98%、判别癌前病变和肺鳞癌的敏感性和特异性分别为92%和91%,结果表明:HSPB1、GSTP1和CKB联合检测能区分正常支气管上皮、癌前病变和肺鳞癌。
     为探讨GSTP1在肺鳞癌发病中的作用,我们以永生化的人支气管上皮细胞株16HBE为研究对象,采用siRNA干扰技术建立了稳定沉默GSTP1表达的16HBE细胞系(16HBE/PLO.1-GSTP1-shRNA)及空白载体转染的对照细胞系;采用MTT细胞增殖测定、平板集落形成实验、软琼脂集落实验、流式细胞术和Hoechest33258染色等观察GSTP1表达沉默对苯并芘(B[a]P)转化16HBE细胞的影响。结果显示:与对照细胞比较,在B[a]P的诱导下,GSTP1表达沉默的16HBE细胞的增殖速度明显增快、平板集落数和软琼脂集落数均显著增加、细胞凋亡率显著减少。结果表明:GSTP1表达沉默显著增加16HBE细胞对B[a]P诱导细胞转化的敏感性。提示GSTP1表达下调参与了支气管上皮的癌变,GSTP1表达下调有望成为预测吸烟人群对肺鳞癌易感性的指标。
     本研究采用LCM结合定量蛋白质组学技术开展支气管上皮癌变各阶段组织的比较蛋白质组学研究,鉴定了102个支气管上皮癌变相关的蛋白质,深入挖掘了102个差异表达蛋白质的生物学功能以及涉及的信号通路;发现HSPB1、GSTP1和CKB联合检测对正常支气管上皮、肺鳞癌癌前病变和肺鳞癌组织具有良好的判别能力,HSPB1、GSTP1和CKB可作为肺鳞癌早期诊断的潜在标志物;首次发现GSTP1表达沉默增加支气管上皮细胞对化学致癌物B[a]P诱导细胞转化的敏感性,提示GSTP1表达下调在支气管上皮癌变中具有重要作用。
Lung cancer is the most frequently occurring malignancy with increasing incidence and is the leading cause of mortality in cancer-related deaths in China and worldwide. Although great improvement has been made in diagnosis and treatment of lung cancer, the overall patients' survival is still very low and less than15%. The poor prognosis of this cancer is mainly explained by the fact that the diagnosis is generally made only at advanced stages due to the lack of reliable, early diagnostic biomarkers and the limited understanding of its carcinogenic mechanisms. Therefore, identification of biomarkers for early detection of lung cancer is mandatory, in turn leading to more effective treatment and reduction of mortality.
     Lung squamous cell carcinoma (LSCC) originated from the bronchial epithelial cells is the most common histological type of lung cancer. It is known that carcinogenesis of LSCC is a multi-stage process and the result of multistep accumulation of genetic and epigenetic alterations. With exposure to environmental carcinogens, bronchial epithelial carcinogenesis often progresses in the following manner: hyperplasia, squamous metaplasia (SM), atypical hyperplasia (AH), cancer in situ(CIS) and invasive cancer. To discover novel biomarkers for early detection of human lung squamous cell cancer (LSCC) and explore possible mechanisms of LSCC carcinogenesis, iTRAQ-tagging combined with2D LC-MS/MS analysis was used to identify differentially expressed proteins in human bronchial epithelial carcinogenic process using laser capture microdissection-purified normal bronchial epithelium (NBE), squamous metaplasia (SM), atypical hyperplasia (AH), carcinoma in situ (CIS) and invasive LSCC. As a result,102differentially expressed proteins were identified. Among these differentially expressed proteins, some proteins are progressively upregulation, some proteins are progressively downregulation in human bronchial epithelial carcinogenic process, and the other proteins are upregulation or downregulation in a certain stage of the process of carcinogenesis. To get more insight on the biological significance of the differentially expressed proteins in bronchial epithelial carcinogenic process, hierarchical clustering was performed on102differentially expressed proteins. All differentially expressed proteins were hierarchically grouped into8clusters and3groups. GO analysis showed that Group1(clusters1and2) was dominated by proteins associated with development, apoptosis, translation and metabolic process, group2(clusters6) consisted of proteins related to biological processes in LSCC, such as multi-organism process, regulation and negative regulation of apoptosis, response to biotic stimulus and actin filament bundle formation, group3(clusters3,4,5,7and8) were enriched with catabolic process, cellular process, apoptosis, protein transport, localization, cell proliferation and humoral immune response. KEGG pathway analysis revealed that the proteins in3groups were involved in cancer-associated signaling pathways such as MAPK signaling pathway, apoptosis, cell cycle and p53signaling pathway, and ErbB signaling pathway. The proteins within the same cluster are co-regulated proteins, and may have similar biological functions during bronchial epithelial carcinogenesis. The differentially expressed proteins may play certain role in bronchial epithelial carcinogenesis by these signaling pathways.
     Among102differentially expressed proteins, HSPB1was progressively upregulation, GSTP1and CKB were progressively downregulation in human bronchial epithelial carcinogenic process. Therefore, we choose HSPB1, GSTP1, and CKB an in-depth study. The expression of these three proteins in various stage tissues of bronchial epithelial carcinogenesis were detected by Western blotting, the results were concordant with that of the proteomics. Immunohistochemistry was performed to detect the expression of the three proteins in an independent set of paraffin-embedded archival specimens including normal bronchial epithelium, squamous metaplasia, atypical hyperplasia, cancer in situ and invasive cancer, and their ability for early detection of LSCC was evaluated by receiver operating characteristic analysis. The results showed that the combined detection of HSPB1, GSTP1, and CKB could perfectly discriminate NBE from preneoplastic lesions (SM, AH and CIS) from invasive LSCC, achieving a sensitivity of96%and a specificity of92%in discriminating NBE from preneoplatic lesions, a sensitivity of99%and a specificity of98%in discriminating NBE from invasive LSCC, and a sensitivity of92%and a specificity of91%in discriminating preneoplatic lesions from invasive LSCC, respectively.
     To investigate the role of GSTP1in carcinogenesis of lung squamous cell carcinoma, we took immortalized human bronchial epithelial cell line16HBE as the study object, established a stable silencing GSTP1expression16HBE cell line (16HBE/PLO.1-GSTP1-shRNA) and the empty vector transfected control cell line using siRNA techlique, and then measured their susceptibility to carcinogen benzo(a)pyrene-induced cell transformation by MTT assay, anchorage dependent and independent colony formation assays, flow cytometry analysis and hoechst33258staining of apoptotic cells. The results showed that cell growth rate was significantly higher, the number of plate colonies and soft agar colonies was significantly increased, the rate of apoptosis was significantly reduced in6HBE cells with knockdown of GSTP1than in the control cells induced by B[a]P. Taken together, these results demonstrated that knockdown of GSTP1increased the susceptibility of human bronchial epithelial cell transformation induced by B[a]P, supporting that GSTP1downregulation involved in human bronchial epithelial carcinogenesis. GSTP1downregulation may be the susceptibility biomarker of prediction lung squamous cell carcinoma for smokers.
     In this study, Comparative Proteomics Analysis was performed in various stage tissues of bronchial epithelial carcinogenesis using LCM combined with quantitative proteomics technology. We identified102differentially expressed proteins and studied their biological functions and signaling pathway which were related to human bronchial epithelial carcinogenesis. The results demonstrated that the combined detection of HSPB1, GSTP1, and CKB could perfectly discriminate NBE from preneoplastic lesions (SM, AH and CIS) from invasive LSCC; GSTP1, HSPB1and CKB are novel potential biomarkers for early detection of LSCC. We first found that knockdown of GSTP1in6HBE cells can increase the sensitivity of bronchial epithelial cells to malignant transformation induced by chemical carcinogens B[a]P, GSTP1downregulation plays an important role in lung squamous carcinoma carcinogenesis.
引文
[1]Jemal A, Siegel R, Ward E, et al. Cancer statistics. [J]. CA Cancer J Clin,2006, 56(2):106-130.
    [2]Chiu Y L, Yu I T, Wong T W. Time trends of female lung cancer in Hong Kong: Age, period and birth cohort analysis. [J]. Int J Cancer,2004,111(3):424-430.
    [3]Lopez A D. Counting the dead in China measuring tobacco inpact in the developing world. [J]. BMJ,1998,317(170):1399-1400.
    [4]Sekido Y.Tumor markers for lung neoplasm. [J].Nippon Rinsho, 2002;60(5):229-232.
    [5]Tseng RC, Hsieh FJ, Hsu HS, et al. Minimal deletion regions in lung squamous cell carcinoma:association with abnormality of the DNA double-strand break repair genes and their applications on gene identification and prognostic biomarkers. [J]. Lung Cancer,2008;59(3):332-339.
    [6]Bai XY, Shen H. Mutational analysis of thyroid transcription factor-1 gene (TTF-1) in lung carcinomas. [J]. In Vitro Cell Dev Biol Anim, 2008;44(1):17-25.
    [7]Zhang H, Li N, Chen Y, et al. Protein profile of human lung squamous carcinoma cell line NCI-H226. [J].Biomed Environ Sci,2007;20(1):24-32.
    [8]Murphy L, Clynes M, Keenan J. Proteomic analysis to dissect mitoxantrone resistance-associated proteins in a squamous lung carcinoma. [J].Anticancer Res, 2007;27(3):1277-1284.
    [9]Seike M, Kondo T, Fujii K, et al. Proteomic signature of human cancer cells. [J]. Proteomics,2004;4(9):2776-2788.
    [10]Howard BA, Wang MZ, Campa MJ, et al. Identification and validation of a potential lung cancer serum biomarker detected by matrix-assisted laser desorption/ionization-time of flight spectra analysis. [J]. Proteomics, 2003;3(9):1720-1724.
    [11]Dowling P, O'Driscoll L, Meleady P, et al.2-D difference gel electrophoresis of the lung squamous cell carcinoma versus normal sera demonstrates consistent alterations in the levels of ten specific proteins. [J]. Electrophoresis, 2007;28(23):4302-4310.
    [12]Wu X, Xiao Z, Chen Z, et al. Differential analysis of two-dimension gel electrophoresis profiles from the normal-metaplasia-dysplasia-carcinoma tissue of human bronchial epithelium. [J]. Pathol Int,2004;54(10):765-773.
    [13]Li C, Xiao Z, Chen Z, et al. Proteome analysis of human lung squamous carcinoma. [J]. Proteomics,2006;6(2):547-558.
    [14]Li DJ, Deng G, Xiao ZQ, et al. Identificating 14-3-3 sigma as a lymph node metastasis-related protein in human lung squamous carcinoma. [J]. Cancer Lett, 2009;279(1):65-73.
    [15]Fang Yang, Zhi-qiang Xiao, Xiu-zhi Zhang, et al. Identification of Tumor Antigens in Human Lung Squamous Carcinoma by Serological Proteome Analysis. [J]. Journal of Proteome Research,2007; 6:751-758.
    [16]Cheng AL, Huang WG, Chen ZC, et al. Identification of novel nasopharyngeal carcinoma biomarkers by laser capture microdissection and proteomic analysis. [J]. Clin Cancer Res.2008;14(2):435-445.
    [17]Wu WW, Wang G, Baek SJ, et al. Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D Gel or LC MALDI TOF/TOF. [J]. J Proteome Res,2006,5(3):651-658.
    [18]DeSouza LV, Grigull J, Ghanny S, et al. Endometrial Carcinoma Biomarker Discovery and Verification Using Differentially Tagged Clinical Samples with Multidimensional Liquid Chromatography and Tandem Mass Spectrometry. [J]. Molecular & Cellular Proteomics,2007,6(7):1170-1182.
    [19]Chen Y, Choong LY, Lin Q, et al. Differential Expression of Novel Tyrosine Kinase Substrates during Breast Cancer Development. [J]. Molecular & Cellular Proteomics,2007,6 (12):2072-2087.
    [20]Elias JE, Gygi SP. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. [J]. Nat. Methods.2007; 4:207-214.
    [21]Hu Z, Mellor J, Wu J, DeLisi C. Vis ANT:an online visualization and analysis tool for biological interaction data. [J]. BMC Bioinformatics.2004;19:17
    [22]Hu Z, Mellor J, Wu J, et al. VisANT:data-integrating visual framework for biological networks and modules. [J].Nucleic Acids Res.2005;33(Web Server issue):W352-357.
    [23]Feng XP, Yi H, Li MY, et al. Identification of biomarkers for predicting nasopharyngeal carcinoma response to radiotherapy by proteomics. [J]. Cancer Res.2010;70(9):3450-3462.
    [24]Greenberg AK, Yee H, Rom WN. Preneoplastic lesions of the lung. [J]. Respir Res.2002;3:20.
    [25]Auerbach O, Hammond EC, Garfinkel L. Changes in bronchial epithelium in relation to cigarette smoking 1955-1966 VS 1970-1977. [J]. N Engl J Med. 1979;300:381-385.
    [26]Paul C, Manero F, Gonin S, et al.Hsp27 as a negative regulator of cytochrome C release. [J]. Mol Cell Biol.2002;22:816-834.
    [27]O'Callaghan-Sunol C, Gabai VL, Sherman MY. Hsp27 modulates p53 signaling and suppresses cellular senescence. [J]. Cancer Res.2007;67:11779-11788.
    [28]Calderwood SK, Khaleque MA, Sawyer DB, Ciocca DR.Heat shock proteins in cancer:chaperones of tumorigenesis. [J]. Trends Biochem. Sci.2006;31: 164-172.
    [29]Kim EH, Lee HJ, Lee DH, et al. Inhibition of heat shock protein 27-mediated resistance to DNA damaging agents by a novel PKC delta-V5 heptapeptide. [J]. Cancer Res.2007;67:6333-6341.
    [30]Garrido C, Fromentin A, Bonnotte B, et al. Heat shock protein 27 enhances the tumorigenicity of immunogenic rat colon carcinoma cell clones. Cancer Res. 1998;58:5495-5499.
    [31]Kamada M, So A, Muramaki M, et al. Hsp27 knockdown using nucleotide-based therapies inhibit tumor growth and enhance chemotherapy in human bladder cancer cells. [J]. Mol. Cancer Ther.2007;6:299-308.
    [32]Keshamouni VG, Michailidis G, Grasso CS, et al. Differential protein expression profiling by iTRAQ-2DLC-MS/MS of lung cancer cells undergoing epithelial-mesenchymal transition reveals a migratory/invasive phenotype. [J]. J Proteome Res,2006,5(5):1143-1154.
    [33]Guo H, Bai Y, Xu P, et al. Functional promoter-1271G>C variant of HSPB1 predicts lung cancer risk and survival. [J]. J Clin Oncol.2010 Apr 10;28(11):1928-1935.
    [34]Guo K, Kang N K, Li Y, et al. Regulation of HSPB1 on NF-KappaB pathway activation may be involved in metastatic hepatocellular carcinoma cells apoptosis. [J]. BMC Cancer,2009,9:100.
    [34]Hong Z, Zhang QY, Liu J, et al. Phosphoproteome study reveals Hsp27 as a novel signaling molecule involved in GDNF-induced neurite outgrowth. [J]. J Proteome Res,2009,8:2768-2787.
    [35]Zhu Z, Xu X, Yu Y, et al.Silencing heat shock protein 27 decreases metastatic behavior of human head and neck squamous cell cancer cells in vitro. [J]. Mol Pharm.2010;7(4):1283-1290.
    [36]Bruey JM, Ducasse C, Bonniaud P, et al.Hsp27 negatively regulates cell death by interacting with cytochrome c. [J]. Nat Cell Biol.2000 Sep;2(9):645-652.
    [37]Yao H, Zhang Z, Xiao Z, et al. Identification of metastasis associated proteins in human lung squamous carcinoma using two-dimensional difference gel electrophoresis and laser capture microdissection. [J]. Lung Cancer.2009; 65:41-48.
    [38]Lomnytska MI, Becker S, Bodin I, et al. Differential expression of ANXA6, HSP27, PRDX2, NCF2, and TPM4 during uterine cervix carcinogenesis: diagnostic and prognostic value. [J]. Br. J. Cancer.2011;104:110-119.
    [39]Kapranos N, Kominea A, Konstantinopoulos PA, et al. Expression of the 27-kDa heat shock protein (HSP27) in gastric carcinomas and adjacent normal, metaplastic, and dysplastic gastric mucosa, and its prognostic significance. [J]. J Cancer Res Clin Oncol.2002; 128:426-432.
    [40]Lindeman B, Skarpen E, Huitfeldt HS. Stress protein expression in rat liver during tumour promotion:induction of heat-shock protein 27 in hepatocytes exposed to 2-acetylaminofluorene. [J]. Carcinogenesis.1998;19:1559-1563.
    [41]O'Neill PA, Shaaban AM, West C R, et al. Increased risk of malignant progression in benign proliferating breast lesions defined by expression of heat shock protein 27. Br J Cancer.2004;90:182-188.
    [42]Gowell IG, Dixon KH, Pemble SE, et al. The structure of the human glutathione S-transferase Pi gene. [J]. Biochem J.1988,255(1):79-83.
    [43]Mutallip M, Nohata N, Hanazawa T, et al. Glutathione S-transferase P1(GSTP1) suppresses cell apoptosis and its regulation by miR-133a in head and neck squamous cell carcinoma (HNSCC). [J]. Int J Mol Med.2011;27(3):345-352.
    [44]Simic T, Savic-Radojevic A, Pljesa-Ercegovac M, et al. Glutathione S-transferases in kidney and urinary bladder tumors. [J]. Nat Rev Urol. 2009;6(5):281-289.
    [45]Tilandyova P, Kajo K, Kliment J, et al. Detection of DNA hypermethylation as a potential biomarker for prostate cancer. [J]. Klin Onkol.2010;23(5):293-299.
    [46]Kolfschoten GM, Hulscher TM, Pinedo HM, et al. Drug resistance features and S-phase fraction as possible determinants for drug response in a panel of human ovarian cancer xenografts. [J]. Br J Cancer 2000,83(7):921-927.
    [47]Yuan Y, Qian ZR, Sano T, et al. Reduction of GSTP1 expression by DNA methylation correlates with clinicopathological features in pituitary adenomas. [J]. Mod Pathol.2008;21(7):856-865.
    [48]Brabender J, Lord RV, Wickramasinghe K, et al. Glutathione S-transferase-pi expression is downregulated in patients with Barrett's esophagus and esophageal adenocarcinoma. [J]. J Gastrointest Surg.2002;6(3):359-367.
    [49]Foreback CC, Chu JW. Creatine kinase isoenzymes:electrophoretic and quantitative measurements. [J]. Crit Rev Clin Lab Sci.1981;15(3):187-230.
    [50]Wyss M, Smeitink J, Wevers RA, et al. Mitochondrial creatine kinase:a key enzyme of aerobic energy metabolism. [J]. Biochim Biophys Acta. 1992;1102(2):119-166.
    [51]Wallimann T, Wyss M, Brdiczka D, et al. Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands:the 'phosphocreatine circuit' for cellular energy homeostasis. [J]. Biochem J.1992;281 (Pt 1):21-40.
    [52]Bessman SP, Carpenter CL. The creatine-creatine phosphate energy shuttle. [J]. Annu Rev Biochem.1985;54:831-862.
    [53]Benger JC, Teshima I, Walter MA, et al. Localization and genetic linkage of the human immunoglobulin heavy chain genes and the creatine kinase brain (CKB) gene:identification of a hot spot for recombination. [J]. Genomics. 1991;9(4):614-622.
    [54]Glen A, Gan CS, Hamdy FC, et al. iTRAQ-facilitated proteomic analysis of human prostate cancer cells identifies proteins associated with progression. [J]. J Proteome Res,2008,7(3):897-907.
    [55]Tom R, Lauren T, Damien M, et al.Consequence of Gastrin-Releasing peptide receptor activation in a human colon cancer cell line:a proteomic approach. [J]. J Proteome Res,2006,5(6):1460-1468.
    [56]Siu KW, DeSouza LV, Scorilas A, et al. Differential protein expressions in renal cell carcinoma:New biomarker discovery by mass spectrometry. [J]. J Proteome Res,2009,8(8):3797-3807.
    [57]Kim J, Amante DJ, Moody JP, et al. Reduced creatine kinase as a central and peripheral biomarker in Huntington's disease. [J]. Biochimica et Biophysica Acta,2010,1802:673-681.
    [58]Coolen RB, Pragay DA, Nosanchuk JS, et al. Elevation of brain-type creatine kinase in serum from patients with carcinoma. [J]. Cancer. 1979,44(4):1414-1418.
    [59]Joseph J, Cardesa A, Carreras J. Creatine kinase activity and isoenzymes in lung, colon and liver carcinomas. [J]. British Journal of Cancer,1997,76(5):600-605.
    [60]Han MK, Oh YH, Kang J, et al. Protein profiling in human sera for identification of potential lung cancer biomarkers using antibody microarray. [J]. Proteomics. 2009,9(24):5544-5552.
    [61]Kagami S, Kurita T, Kawagoe T, et al. Prognostic significance of BAF57 expression in patients with endometrial carcinoma. [J]. Histol Histopathol. 2012;27(5):593-599.
    [62]Han L, Geng L, Liu X, et al.Clinical significance of IEX-1 expression in ovarian carcinoma. [J]. Ultrastruct Pathol.2011;35(6):260-266.
    [63]Zhou X, Liu Y, Tan G. Prognostic value of elevated SHIP2 expression in laryngeal squamous cell carcinoma. [J]. Arch Med Res.2011;42(7):589-595.
    [64]Bihrer V, Waidmann O, Friedrich-Rust M, et al.Serum microRNA-21 as marker for necroinflammation in hepatitis C patients with and without hepatocellular carcinoma. [J]. PLoS One.2011;6(10):e26971.
    [65]Liu Y, Sun W, Zhang K, et al. Identification of genes differentially expressed in human primary lung squamous cell carcinoma. [J]. Lung Cancer. 2007;56(3):307-317.
    [66]Shen C, Zhao H, Wang D, et al. Molecular cloning, identification and analysis of lung squamous cell carcinoma-related genes. [J]. Lung Cancer. 2002;38(3):235-241.
    [67]Cheng S, Gao Y, Dong X, et al. Molecular and cytogenetic alterations in early stage of carcinogenesis of human lung. [J]. Cancer Lett.2001; 162 Suppl:S5-S10.
    [68]Tamura K, Southwick EC, Kerns J, et al. Cdc25 inhibition and cell cycle arrest by a synthetic thioalkyl vitamin K analogue. [J]. Cancer Res. 2000;60:1317-1325.
    [69]陈万青,张思维,孔灵芝,等.中国肿瘤登记处2004年恶性肿瘤死亡资料分析.[J].中国肿瘤,2008,17(11):913-916.
    [70]Wang K, Zhang M, Qian YY, et al.Imbalanced expression of mitogen-activated protein kinase phosphatase-1 and phosphorylated extracellular signal-regulated kinases in lung squamous cell carcinoma. [J]. J Zhejiang Univ Sci B. 2011;12(10):828-834.
    [71]Nitta RT, Del Vecchio CA, Chu AH, et al. The role of the c-Jun N-terminal kinase 2-a-isoform in non-small cell lung carcinoma tumorigenesis. [J]. Oncogene. 2011;30(2):234-244.
    [72]Liu WB, Ao L, Cui ZH, et al. Molecular analysis of DNA repair gene methylation and protein expression during chemical-induced rat lung carcinogenesis. [J]. Biochem Biophys Res Commun.2011;408(4):595-601.
    [73]Sousa V, Espirito Santo J, Silva M, et al. EGFR/erB-1, HER2/erB-2, CK7, LP34, Ki67 and P53 expression in preneoplastic lesions of bronchial epithelium:an immunohistochemical and genetic study. [J]. Virchows Arch. 2011;458(5):571-581.
    [74]Li B, Chang J, Chu Y, et al. Membrane proteomic analysis comparing squamous cell lung cancer tissue and tumour-adjacent normal tissue. [J]. Cancer Lett. 2012;319(1):118-124.
    [75]Rathinam S, Ward DG, James ND, et al. Proteomic analysis of resectable non-small cell lung cancer:post-resection serum samples may be useful in identifying potential markers. [J]. Interact Cardiovasc Thorac Surg. 2011;13(1):3-6.
    [76]Deng B, Ye N, Luo G, et al. Proteomics analysis of stage-specific proteins expressed in human squamous cell lung carcinoma tissues. [J]. Cancer Biomark. 2005;1(6):279-286.
    [77]Zhang H, Li N, Chen Y, et al. Protein profile of human lung squamous carcinoma cell line NCI-H226. [J]. Biomed Environ Sci.2007;20(1):24-32.
    [78]Mohammadzadeh GS,Nasseri Moghadam S,Rasaee MJ, et al.Measurement of glutathione S transferase and its class pi in plasma and tissue biopsies obtained after laparoscopy and endoscopy from subjects with esophagus and gastric cancer. [J]. Clin Biochem,2003,36(4):283-288.
    [79]Sheehan D,Meade G, Foley VM, et al. Structure,function and evolution of glutathione transferases:implications for classification of nonmammalian members of an ancient enzyme super family. [J]. Biochem J,2001,360(1):1-16.
    [80]Zheng J, Mitchell AE, Jones AD, et al. Haloenol lactone:A new isozyme selective and active site directed in activator of glutathione S transferase (GST). [J]. J Biol Chem,1996,271(34):20421-20425.
    [81]Burg D, Mulder GJ. Glutathine conjugates and their synthetic derivatives as inhibitors glutathione dependent enzymes involved in cancer and drug resistance. [J]. Grug Metab Rev.2002;34:821-863.
    [82]Haaften RIM, Guido R MM, Haenen B PJ,et al. Inhibition of various glutathione S transferase isoenzymes by RRR2A2 to copherol. [J]. Toxicology in Vitro. 2003,17(3):245-251.
    [83]Strange RC, Spiteri MA, Ramachandran S, et al. Glutathione S transferase family of enzymes. [J]. Mutat Res.2001;482(1-2):21-26.
    [84]Huang J, Tan PH, Thiyagarajan J, et al. Prognostic significance of glutathione S transferase pi in invasive breast cancer. [J]. Mod Pathol.2003;16(6):558-565.
    [85]Egan KM, Cai QY, Shu XO, et al. Genetic polymorphisms in GSTM1, GSTP1, and GSTT1 and the risk for breast cancer:results from the Shanghai breast cancer study and Meta analysis. [J]. Cancer Epidemiol Biomarkers Prev. 2004;13:197-204.
    [86]Zhu WY, Hunag YY, Liu XG, et al. Prognostic evaluation of CapG, gelsolin, P-gp, GSTP1, and Topo-Ⅱ proteins in non-small cell lung cancer. [J]. Anat Rec (Hoboken).2012;295(2):208-214.
    [87]王旭光,王兰,袁媛.胃黏膜肠化中π类谷胱甘肽转移酶的表达及其与幽门螺杆菌感染的相关性.[J].中华医学杂志,2002,82(15):1033-1036.
    [88]Saygili EI,Akcay T,Konukoglu D, et al. Glutathione and glutathione related enzymes in colorectal cancer patients. [J]. Toxicol environ Health Am,2003, 66(5):411-415.
    [89]Sekine I, Minna JD, Nishio K, et al. A literature review of molecular markers predictive of clinical response to cytotoxic chemotherapy in patients with lung cancer. [J]. J Thorac Oncol.2006;1:31-37.
    [90]Vlachogeorgos GS, Manali ED, Blana E, et al. Placental isoform glutathione S-transferase and P-glycoprotein expression in advanced non-small cell lung cancer:association with response to treatment and survival. [J]. Cancer. 2008;114:519-526.
    [91]Hirano T, Kato H, Maeda M, et al. Identification of postoperative adjuvant chemotherapy responders in non-small cell lung cancer by novel biomarker. [J]. Int J Cancer.2005; 117:460-468.
    [92]Sun N, Sun X, Chen B, et al. MRP2 and GSTP1 polymorphisms and chemotherapy response in advanced non-small cell lung cancer. [J]. Cancer Chemother Pharmacol.2010; 65:437-446.
    [93]Gao P, Yang X, Xue YW, et al. Promoter methylation of glutathione S-transferase pil and multidrug resistance gene 1 in bronchioloalveolar carcinoma and its correlation with DNA methyltransferase 1 expression. [J]. Cancer. 2009;115:3222-3232.
    [94]Cote M L, Chen W, Smith DW, et al. Meta- and pooled analysis of GSTP1 polymorphism and lung cancer:a HuGE-GSEC review. [J]. Am. J. Epidemiol. 2009;169:802-814.
    [95]Zienolddiny S, Campa D, Lind H, et al. A comprehensive analysis of phase I and phase II metabolism gene polymorphisms and risk of non-small cell lung cancer in smokers. [J]. Carcinogenesis.2008;29:1164-1169.
    [96]Uchida Y, Chiyomaru T, Enokida H, et al. MiR-133a induces apoptosis through direct regulation of GSTP1 in bladder cancer cell lines. [J]. Urol Oncol.2011 Mar 9. [Epub ahead of print]
    [97]Mutallip M, Nohata N, Hanazawa T, et al. Glutathione S-transferase P1(GSTP1) suppresses cell apoptosis and its regulation by miR-133a in head and neck squamous cell carcinoma (HNSCC). [J]. Int J Mol Med.2011,27(3):345-352.
    [98]Wang Z, He W, Yang G, et al. Decreased expression of GST pi is correlated with a poor prognosis in human esophageal squamous carcinoma. [J]. BMC Cancer. 2010,10:352.
    [99]Hoffmann D, Djordjevic MV, Hoffmann I. The changing cigarette. [J].Prev Med. 1997;26:427-434.
    [100]Sims P, Grover PL. Epoxides in polycyclic aromatic hydrocarbon metabolism and carcinogenesis. [J].Adv Cancer Res.1974;20:165-274.
    [101]Baird W M, Hooven LA, Mahadevan B. Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. [J]. Environ Mol Mutagen.2005;45:106-114.
    [102]Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. [J]. Annu Rev Pharmacol Toxicol.2005;45:51-88.
    [103]Reszka E, Wasowicz W. Significance of genetic polymorphisms in lutathione S-transferase multigene family and lung cancer risk. [J]. Int J Occup Med Environ Health.2001; 14(2):99-113.
    [1]Tambor V, Fucikova A, Lenco J, et al. Application of proteomics in biomarker discovery:a primer for the clinician.[J]. Physiol Res,2010,59(4):471-497.
    [2]Gast M C, Schellens J H, Beijnen J H. Clinical proteomics in breast cancer:a review.[J]. Breast Cancer Res Treat.2009,116(1):17-29.
    [3]Wilkins MR, Sanchez JC, Gooley AA, et al.Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it.Biotechnol Genet Eng Rev,1996,13:19-50.
    [4]Anderson N L, Anderson N G. Proteome and proteomics:new technologies, new concepts, and new words.[J]. Electrophoresis,1998,19(11):1853-1861.
    [5]Cheng A L, Huang W G, Chen Z C, et al. Identificating cathepsin D as a biomarker for differentiation and prognosis of nasopharyngeal carcinoma by laser capture microdissection and proteomic analysis. [J]. J Proteome Res,2008,7(6):2415-2426.
    [6]Breitkopf S B, Oppermann F S, Keri G, et al. Proteomics analysis of cellular imatinib targets and their candidate downstream effectors.[J]. J Proteome Res,2010,9(11):6033-6043.
    [7]Emmert-Buck M R, Bonner R F, Smith P D, et al. Laser capture microdissection. [J]. Science,1996,274(5289):998-1001.
    [8]Bohm M, Wieland I, Schutze K, et al. Microbeam MOMeNT:non-contact laser microdissection of membrane-mounted native tissue.[J]. Am J Pathol,1997,151(1):63-67.
    [9]Lawrie L C, Curran S, Mcleod H L, et al. Application of laser capture microdissection and proteomics in colon cancer. [J]. Mol Pathol,2001,54(4):253-258.
    [10]Shekouh A R, Thompson C C, Prime W, et al. Application of laser capture microdissection combined with two-dimensional electrophoresis for the discovery of differentially regulated proteins in pancreatic ductal adenocarcinoma.[J].Proteomics,2003,3(10):1988-2001.
    [11]Neubauer H, Clare S E, Kurek R, et al. Breast cancer proteomics by laser capture microdissection, sample pooling,54-cm IPG IEF, and differential iodine radioisotope detection.[J].Electrophoresis,2006,27(9):1840-1852.
    [12]Ai J, Tan Y, Ying W, et al. Proteome analysis of hepatocellular carcinoma by laser capture microdissection.[J]. Proteomics,2006,6(2):538-546.
    [13]Skvortsov S, Schafer G, Stasyk T, et al. Proteomics Profiling of Microdissected Low-and High-Grade Prostate Tumors Identifies Lamin A as a Discriminatory Biomarker.[J]. J Proteome Res,2010.
    [14]Cha S, Imielinski M B, Rejtar T, et al. In situ proteomic analysis of human breast cancer epithelial cells using laser capture microdissection:annotation by protein set enrichment analysis and gene ontology. [J]. Mol Cell Proteomics,2010,9(11):2529-2544.
    [15]Nan Y, Jin F, Yang S, et al. Discovery of a set of biomarkers of human lung adenocarcinoma through cell-map proteomics and bioinformatics.[J]. Med Oncol,2010,27(4):1398-1406.
    [16]Xu B J, Li J, Beauchamp R D, et al. Identification of early intestinal neoplasia protein biomarkers using laser capture microdissection and MALDI MS.[J]. Mol Cell Proteomics,2009,8(5):936-945.
    [17]Ordog T, Redelman D, Miller L J, et al. Purification of interstitial cells of Cajal by fluorescence-activated cell sorting. [J]. Am J Physiol Cell Physiol,2004,286(2):C448-C456.
    [18]Kellner U, Steinert R, Seibert V, et al. Epithelial cell preparation for proteomic and transcriptomic analysis in human pancreatic tissue.[J]. Pathol Res Pract,2004,200(2):155-163.
    [19]Kange R, Selditz U, Granberg M, et al. Comparison of different IMAC techniques used for enrichment of phosphorylated peptides.[J]. J Biomol Tech,2005,16(2):91-103.
    [20]O'Farrell P H. High resolution two-dimensional electrophoresis of proteins.[J]. J Biol Chem,1975,250(10):4007-4021.
    [21]Hamdan M, Righetti P G. Assessment of protein expression by means of 2-D gel electrophoresis with and without mass spectrometry.[J]. Mass Spectrom Rev,2003,22(4):272-284.
    [22]Oh-Ishi M, Kodera Y, Furudate S, et al. Disease proteomics of endocrine disorders revealed by two-dimensional gel electrophoresis and mass spectrometry.[J]. Proteomics Clin Appl,2008,2(3):327-337.
    [23]Bhattacharya D, Mukhopadhyay D, Chakrabarti A. Hemoglobin depletion from red blood cell cytosol reveals new proteins in 2-D gel-based proteomics study.[J]. Proteomics Clin Appl,2007,1(6):561-564.
    [24]He Y, Wu Y, Mou Z, et al. Proteomics-based identification of HSP60 as a tumor-associated antigen in colorectal cancer. [J]. Proteomics Clin Appl,2007,1(3):336-342.
    [25]Diz A P, Carvajal-Rodriguez A, Skibinski D O. Multiple hypothesis testing in proteomics:A strategy for experimental work.[J]. Mol Cell Proteomics,2010.
    [26]De La Torre C, Illa I, Faulkner G, et al. Proteomics identification of differentially expressed proteins in the muscle of dysferlin myopathy patients.[J]. Proteomics Clin Appl,2009,3(4):486-497.
    [27]Gorg A, Obermaier C, Boguth G, et al. Recent developments in two dimensional gel electrophoresis with immobilized pH gradients:wide pH gradients up to pH 12,longer separation distances and simplified procedures[J].Electrophoresis,1999,20(4-5):712-717.
    [28]Unlu M, Morgan M E, Minden J S. Difference gel electrophoresis:a single gel method for detecting changes in protein extracts.[J]. Electrophoresis,1997,18 (11):2071-2077.
    [29]Karp N A, Kreil D P, Lilley K S. Determining a significant change in protein expression with DeCyder during a pair-wise comparison using two-dimensional difference gel electrophoresis.[J]. Proteomics,2004,4(5):1421-1432.
    [30]Wu T L. Two-dimensional difference gel electrophoresis.[J]. Methods Mol Biol,2006,328:71-95.
    [31]Persson 0, Brynnel U, Levander F, et al. Proteomic expression analysis and comparison of protein and mRNA expression profiles in human malignant gliomas.[J]. Proteomics Clin Appl,2009,3(1):83-94.
    [32]Ji H, Greening D W, Kapp E A, et al. Secretome-based proteomics reveals sulindac-modulated proteins released from colon cancer cells.[J]. Proteomics Clin Appl,2009,3(4):433-451.
    [33]Kim D H, Bae J, Lee J W, et al. Proteomic analysis of breast cancer tissue reveals upregulation of actin-remodeling proteins and its relevance to cancer invasiveness.[J]. Proteomics Clin Appl,2009,3(1):30-40.
    [34]Kikuta K, Tochigi N, Saito S, et al. Peroxiredoxin 2 as a chemotherapy responsiveness biomarker candidate in osteosarcoma revealed by proteomics.[J]. Proteomics Clin Appl,2010,4(5):560-567.
    [35]Scaife C, Mowlds P, Grassl J, et al.2-D DIGE analysis of the budding yeast pH 6-11 proteome in meiosis.[J]. Proteomics,2010,10(24):4401-4414.
    [36]Pressey J G, Pressey C S, Robinson G, et al.2D-Difference Gel Electrophoretic Proteomic Analysis of a Cell Culture Model of Alveolar Rhabdomyosarcoma.[J]. J Proteome Res,2010.
    [37]Shi R, Kumar C, Zougman A, et al. Analysis of the mouse liver proteome using advanced mass spectrometry.[J]. J Proteome Res,2007,6(8):2963-2972.
    [38]Sapra R. The use of difference in-gel electrophoresis for quantitation of protein expression.[J]. Methods Mol Biol,2009,492:93-112.
    [39]Hariharan D, Weeks M E, Crnogorac-Jurcevic T. Application of proteomics in cancer gene profiling:two-dimensional difference in gel electrophoresis (2D-DIGE).[J]. Methods Mol Biol,2010,576:197-211.
    [40]Hsu W L, Sung T Y. Automated generic analysis tools for protein quantitation using stable isotope labeling. [J]. Methods Mol Biol,2010,604:257-272.
    [41]Sethuraman M, Mccomb M E, Huang H, et al. Isotope-coded affinity tag (ICAT) approach to redox proteomics:identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures.[J]. J Proteome Res,2004,3(6):1228-1233.
    [42]Unwin R D, Griffiths J R, Whetton A D. Simultaneous analysis of relative protein expression levels across multiple samples using iTRAQ isobaric tags with 2D nano LC-MS/MS.[J]. Nat Protoc,2010,5(9):1574-1582.
    [43]吕连华,王开正,冯建军,SELDI-TOF-MS技术在消化系统肿瘤诊断中的应用[J].中国实用医药,2008,3(16):180-182.
    [44]Feng H, Li X, Niu D, et al. Protein profile in HBx transfected cells:a comparative iTRAQ-coupled 2D LC-MS/MS analysis.[J]. J Proteomics,2010,73(8):1421-1432.
    [45]Feng H, Wang M, Chen W N. iTRAQ-coupled 2D LC-MS/MS analysis of secreted proteome of HBV-replicating HepG2 cells:potential in biomarkers for prognosis of HCC.[J]. Curr Microbiol,2010,61(4):280-284.
    [46]Choi S, Cho K, Kim J, et al. Comparative proteome analysis using amine-reactive isobaric tagging reagents coupled with 2D LC/MS/MS in 3T3-L1 adipocytes following hypoxia or normoxia.[J]. Biochem Biophys Res Commun,2009,383(1):135-140.
    [47]Keshamouni V G, Jagtap P, Michailidis G, et al. Temporal quantitative proteomics by iTRAQ 2D-LC-MS/MS and corresponding mRNA expression analysis identify post-transcriptional modulation of actin-cytoskeleton regulators during TGF-beta-Induced epithelial-mesenchymal transition.[J]. J Proteome Res,2009,8(1):35-47.
    [48]Washburn M P, Wolters D, Jr Yates R. Large-scale analysis of the yeast proteome by multidimensional protein identification technology.[J]. Nat Biotechnol,2001,19(3):242-247.
    [49]D'Ascenzo M, Choe L, Lee K H. iTRAQPak:an R based analysis and visualization package for 8-plex isobaric protein expression data.[J]. Brief Funct Genomic Proteomic,2008,7(2):127-135.
    [50]Choe L, D'Ascenzo M, Relkin N R, et al.8-plex quantitation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunoglobulin treatment for Alzheimer's disease.[J]. Proteomics,2007,7 (20):3651-3660.
    [51]Wu W W, Wang G, Baek S J, et al. Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel-or LC-MALDI TOF/TOF.[J]. J Proteome Res,2006,5(3):651-658.
    [52]Perspicace S, Banner D, Benz J, et al. Fragment-based screening using surface plasmon resonance technology.[J]. J Biomol Screen,2009,14(4):337-349.
    [53]Sandblad P, Arnell R, Samuelsson J, et al. Approach for reliable evaluation of drug proteins interactions using surface plasmon resonance technology.[J]. Anal Chem,2009,81(9):3551-3559.
    [54]Drescher D G, Ramakrishnan N A, Drescher M J. Surface plasmon resonance (SPR) analysis of binding interactions of proteins in inner-ear sensory epithelia.[J]. Methods Mol Biol,2009,493:323-343.
    [55]Gavin A C, Bosche M, Krause R, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes.[J]. Nature,2002,415 (6868):141-147.
    [56]Jemal A, Siegel R, Ward E, et al. Cancer statistics,2006.[J]. CA Cancer J Clin,2006,56(2):106-130.
    [57]Fry W A, Phillips J L, Menck H R. Ten-year survey of lung cancer treatment and survival in hospitals in the United States:a national cancer data base report.[J]. Cancer,1999,86(9):1867-1876.
    [58]Chiu Y L, Yu I T, Wong T W. Time trends of female lung cancer in Hong Kong: Age, period and birth cohort analysis.[J]. Int J Cancer,2004,111(3):424-430.
    [59]陈万青,张思维,孔灵芝等.中国肿瘤登记处2004年恶性肿瘤死亡资料分析[J].中国肿瘤,2008,17(11):913-916.
    [60]胡成平.肺癌流行病学与烟草控制的研究进展[J].中国肺癌杂志,2008,11(01):25-28.
    [61]Wu X, Xiao Z, Chen Z, et al. Differential analysis of two-dimension gel electrophoresis profiles from the normal-metaplasia-dysplasia-carcinoma tissue of human bronchial epithelium. [J]. Pathol Int,2004,54(10):765-773.
    [62]Chang J W, Jeon H B, Lee J H, et al. Augmented expression of peroxiredoxin I in lung cancer.[J]. Biochem Biophys Res Commun,2001,289(2):507-512.
    [63]Park J H, Kim Y S, Lee H L, et al. Expression of peroxiredoxin and thioredoxin in human lung cancer and paired normal lung.[J]. Respirology,2006,11 (3):269-275.
    [64]Han K Q, Huang G, Gao C F, et al. Identification of lung cancer patients by serum protein profiling using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry.[J]. Am J Clin Oncol,2008,31(2):133-139.
    [65]Yildiz P B, Shyr Y, Rahman J S, et al. Diagnostic accuracy of MALDI mass spectrometric analysis of unfractionated serum in lung cancer.[J]. J Thorac Oncol,2007,2(10):893-901.
    [66]Farlow E C, Patel K, Basu S, et al. Development of a multiplexed tumor-associated autoantibody-based blood test for the detection of non-small cell lung cancer.[J]. Clin Cancer Res,2010,16(13):3452-3462.
    [67]Qiu J, Hanash S. Autoantibody profiling for cancer detection.[J]. Clin Lab Med,2009,29(1):31-46.
    [68]杨拴盈,肖雪媛,张王刚,等.用蛋白质芯片技术筛选非小细胞肺癌患者血清中标志蛋白[J].中华结核和呼吸杂志,2006,29(1):31-34.
    [69]Ali I U, Xiao Z, Malone W, et al.Plasma proteomic profiling:search for lung cancer diagnostic and early detection markers.[J]. Oncol Rep,2006,15 (5):1367-1372.
    [70]Zhukov T A, Johanson R A, Cantor A B, et al. Discovery of distinct protein profiles specific for lung tumors and pre-malignant lung lesions by SELDI mass spectrometry.[J]. Lung Cancer,2003,40(3):267-279.
    [71]Jacot W, Lhermitte L, Dossat N, et al. Serum proteomic profiling of lung cancer in high-risk groups and determination of clinical outcomes.[J]. J Thorac Oncol,2008,3(8):840-850.
    [72]Han K Q, Huang G, Gao C F, et al. Identification of lung cancer patients by serum protein profiling using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry.[J]. Am J Clin Oncol,2008,31(2):133-139.
    [73]Yanagisawa K, Shyr Y, Xu B J, et al. Proteomic patterns of tumour subsets in non-small-cell lung cancer.[J]. Lancet,2003,362(9382):433-439.
    [74]Masahiro S, Tadashi K, Kazuyasu F, et al. Proteomic signatures for histological types of lung cancer [J].Proteomics,2005,5(11):2939-2948.
    [75]罗国安,邓斌,叶能胜.肺鳞癌和小细胞肺癌组织比较蛋白质组学研究[J].高等学校化学学报,2005,26(9):1645-4649.
    [76]罗晓阳,陈海泉,周建华.肺腺癌病人血清蛋白质组构型与病理分期的关系[J].中华胸心血管外科杂志,2006,22(2):112-114.
    [77]Liu Y F, Xiao Z Q, Li M X, et al. Quantitative proteome analysis reveals annexin A3 as a novel biomarker in lung adenocarcinoma.[J]. J Pathol,2009,217 (1):54-64.
    [78]Yao H, Zhang Z, Xiao Z, et al. Identification of metastasis associated proteins in human lung squamous carcinoma using two-dimensional difference gel electrophoresis and laser capture microdissection.[J]. Lung Cancer,2009,65(1):41-48.
    [79]Chuman Y, Bergman A, Ueno T, et al. Napsin A, a member of the aspartic protease family, is abundantly expressed in normal lung and kidney tissue and is expressed in lung adenocarcinomas.[J]. FEBS Lett,1999,462(1-2):129-134.
    [80]Han M K, Oh Y H, Kang J, et al. Protein profiling in human sera for identification of potential lung cancer biomarkers using antibody microarray.[J]. Proteomics,2009,9(24):5544-5552.
    [81]Qu Y, Yang Y, Liu B, et al. Comparative proteomic profiling identified sorcin being associated with gemcitabine resistance in non-small cell lung cancer.[J]. Med Oncol,2010,27(4):1303-1308.
    [82]Rubporn A, Srisomsap C, Subhasitanont P, et al. Comparative proteomic analysis of lung cancer cell line and lung fibroblast cell line.[J]. Cancer Genomics Proteomics,2009,6(4):229-237.
    [83]Wang C L, Wang C I, Liao P C, et al. Discovery of retinoblastoma-associated binding protein 46 as a novel prognostic marker for distant metastasis in nonsmall cell lung cancer by combined analysis of cancer cell secretome and pleural effusion proteome.[J]. J Proteome Res,2009,8(10):4428-4440.
    [84]Gao L W, Zhu W, Feng Z H, et al. [Comparative proteomic analysis of human large cell lung cancer cell line with high and low metastasis potentials][J]. Sichuan Da Xue Xue Bao Yi Xue Ban,2008,39(5):706-710.
    [85]De Petris L, Orre L M, Kanter L, et al. Tumor expression of S100A6 correlates with survival of patients with stage Ⅰ non-small-cell lung cancer. [J]. Lung Cancer,2009,63(3):410-417.
    [86]Lu Z J, Song Q F, Jiang S S, et al. Identification of ATP synthase beta subunit (ATPB) on the cell surface as a non-small cell lung cancer (NSCLC) associated antigen.[J]. BMC Cancer,2009,9:16.
    [87]Chang J W, Jeon H B, Lee J H, et al. Augmented expression of peroxiredoxin Ⅰ in lung cancer.[J]. Biochem Biophys Res Commun,2001,289(2):507-512.
    [88]Gharib T G, Chen G, Wang H, et al. Proteomic analysis of cytokeratin isoforms uncovers association with survival in lung adenocarcinoma.[J]. Neoplasia,2002,4(5):440-448.