纳米银的生物效应及毒性作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于具有良好的光电、催化、超导性能和杀菌消毒活性,纳米银已经成为目前市场上应用最广泛的金属纳米材料,商品化产品几乎无处不在。纳米银的大量生产和广泛应用增加了其向环境释放的机会,同时增加人体暴露的机会。因此,纳米银颗粒对生物及生态系统的影响日益得到关注。本课题采用水相合成法制备粒径为25-30 nm的纳米银颗粒,利用小型鱼medaka动物模型分别评价纳米银颗粒的急性、亚慢性毒性和胚胎发育毒性以及组织分布特征,并探讨了纳米银颗粒毒性作用机制。由于自由态银离子是目前公认的最强鱼类毒性金属之一,而纳米银在环境或生物体内可以释放Ag+,本实验还通过对照实验比较了两种不同形态银的组织分布和毒性效应。
     采用次磷酸盐液相还原法制备纳米银干粉,合成体系中加入聚乙烯吡咯烷酮(PVP)作为稳定剂,通过有机溶剂洗涤、离心以及真空干燥等过程获得纯净纳米银干粉。XRD衍生光谱表明制备产物为金属银,符合面对心(face-centered cubic, fcc)立方体银晶体结构。紫外-可见分光光度计(UV-vis)测定纳米银颗粒的最大吸收波长为400 nm,不仅表明球形纳米银颗粒,而且显示纳米银颗粒在制备和分散过程中没有发生团聚和氧化。透射电镜和粒度分析表明纳米银粒径分布均匀,绝大多数颗粒大小为25-30 nm。总的来说,本实验中获得分散相良好、粒径分布均匀、稳定的纳米银颗粒有利于生物效应及毒性作用评价。
     在急性毒性实验中,纳米银颗粒在24 h内的UV-vis光谱特征无明显变化,而且不改变溶解氧含量,成年medaka静水暴露96 h的LC50值为0.87 mg/L。在亚慢性毒性实验中,成年medaka连续静水暴露14 d,较低浓度组(0.05-0.25 mg/L)受试动物死亡率与对照组无统计学差异(P>0.05),最高暴露组(0.5 mg/L)medaka死亡率达37.5%,与对照组有明显差异(X2=7.05,P<0.01),纳米银对medaka的亚慢性最大无致死剂量为0.1 mg/L。纳米银主要造成肝脏、鳃和肠道金属负荷的增加,尤以肝脏中银含量增加最明显。生化分析显示纳米银诱导肝细胞损害,造成肝、鳃等组织中超氧化物歧化酶(SOD)、过氧化物酶(CAT)活性下降以及还原型谷胱甘肽(GSH)浓度减少,同时造成脂质过氧化产物含量明显增加,表现氧化损伤效应。组织病理学检查也证实纳米银暴露造成肝脏和鳃组织损伤。综合纳米银在成年medaka体内的组织分布和产生的毒理学终点,肝脏是纳米银颗粒的毒作用靶器官。此外,相对于急性毒性实验和死亡率指标,medaka亚慢性毒性实验的组织病理损伤对纳米银毒性比较敏感,可以作为灵敏的生物标志物来评价金属纳米颗粒生态毒性。
     众所周知,生命早期小型鱼对化学物质暴露和环境应激比较敏感,本部分实验采用目前通行的部分生命周期实验(Partial-life test)检测纳米银的胚胎毒性。在70 d暴露期间,较高浓度纳米银颗粒(400-1000μg/L)明显抑制medaka胚胎的发育过程,比较典型的毒性包括发育延迟、色素细胞减少、视顶盖最大宽度(脑发育指标)减少以及血液缓流等。胚胎期的观察还发现纳米银暴露造成高发生率的形态发育异常和畸形,包括水肿、骨骼畸形、心脏异常、眼睛发育异常以及鳍膜缺损等等。实验中得到的发育迟滞和畸形发生率的非线性剂量-反应关系反映了纳米银颗粒毒性作用的复杂性。在实验中我们还发现大量水肿病及淤血的medaka胚胎孵化后常常伴随形态发育异常,因此推测纳米银暴露造成胚胎期medaka渗透压调节紊乱,而淤血意味着血循环系统输送营养素质能力的下降,这些可能是造成胚胎期medaka发育异常的主要作用机制。本实验提示体内实验是评价纳米银颗粒毒性作用的敏感实验方案,同时部分生命周期实验可以有效地评价纳米银颗粒的发育毒性和生态危害。
     依据胚胎发育毒性实验,我们通过光学显微镜、扫描电镜技术、组织生化分析以及自由基测定探讨了纳米银胚胎毒性的作用机制。纳米银颗粒可以破坏medaka卵壳表面结构和完整性,损害卵壳的机械保护作用,同时降低卵壳维持卵内外环境渗透压平衡的能力,这些可以从机理上解释水肿病高发和胚胎发育毒性。纳米银暴露造成卵内乳酸脱氢酶(LDH)活性明显增加,表明medaka胚胎处于缺氧环境,而缺氧会影响需氧生物的能量代谢及正常发育。根据卵内SOD活性、还原型GSH含量、脂质过氧化产物-丙二醛(MDA)浓度、活性氧族(ROS)以及单线态氧的变化,纳米银还造成medaka胚胎产生氧化应激。这些生物效应或毒性效应主要发生在胚胎发育早期,随着胚胎期幼鱼的发育,纳米银颗粒所致的部分毒性效应具有恢复趋势。虽然如此,由于生命早期淡水鱼(如胚胎、孵化后幼鱼)对化学物质暴露和环境应激比较敏感,此时期幼鱼发生严重和不可逆损伤肯定影响水生鱼类群落。
     纳米银表面容易被氧化,在水、体液、生物体内很容易释放离子态银(Ag+),而后者影响着纳米银的生物效应和毒性作用。采用银离子选择电极法测定不同含量纳米银溶液中Ag+的含量,数据表明新鲜制备的溶液中银阳离子比例为0.94%-1.01%,释放率与时间成非线性增加。利用成年medaka亚慢性毒性实验比较银离子含量相当的纳米银与Ag+的组织分布、死亡率、氧化应激效应和组织病理损伤特征,结果显示两种形态金属银的组织分布特点和毒性效应各不相同。在Ag+含量相同的情况下,纳米银的毒性较弱。
Silver nanoparticles (AgNPs) have taken on wonderful and unique chemo-physical virtues and biological properties that differ from those of their macro scaled or ionic counterparts. These differences have led to ubiquitous applications of silver nanoparticles (AgNPs) in optoelectronics, catalysis system, medical fields and personal healthcare. Presently, nano-silver becomes the most common group of metal engineered nanomaterials in commercial products. The increasing uses of AgNPs in consumer products have increased their release to the environment and, meanwhile, resulted in their exposure to living tissues. This would thus promote special concerns of environmental risks and human health associated with these particles.
     Some evaluations have been carried out to demonstrate the plausible deleterious effects of nanoscale silver on microorganisms, algae, freshwater fish and rodent animals, however, the information of the AgNPs toxicity and environmental risks remains unclear. Silver nanoparticles that show considerably changed physical, chemical and biological properties increase these complex influences caused by exposure to AgNPs in the environment. In addition, the impossibility of release of ionic silver (Ag+) also should be taken into account to understand the AgNPs toxicity. Present work was performed to decipher in vivo biological activity of Ag nanoparticles on adult medaka fish and embryonic larvae as well as to explain the mechanisms for their toxicity. With a comparative study, we also described the discrepancy between nanoscale silver and ionic silver.
     The colloidal silver nanoparticles were prepared by reducing a high molar concentration of silver nitrate solution (up to 1 M) with sodium hypophosphite in the presense of polyvinylpyrrolidone 30 (PVP 30). Purified powder of AgNPs was subsequently produced through solvent cleaning, centrifugation and drying in vacuum oven to remove the residual ingredients. We have utilized X-ray diffraction (XRD), UV-vis spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering (DLS) spectrometry to characterize the silver nanoparticles obstained. These data showed spherical shape and face-centered cubic (fcc) phase of AgNPs with shallow size distribution ranged from 20-35 nm, and no agglomeration and oxidation of silver nanoparticles were observed. The experimental AgNPs exhibited a homogeneous dispersion in aqueous solutions. The stable state of these silver nanoparticles should ensure that biological or toxicological activity in medaka model may specially attribute to nanoparticles rather other components and chemical mixtures.
     In the acute toxicity tests, we found that the UV-vis spectrum pattern of AgNPs showed unchanged and the dissolved oxygen (DO) displayed consistency during 24 h AgNPs exposure. The caculated 96-h LC50 was at 0.87 mg/L, based on the mortality of adult medaka exposed to different concentration of nanoscale silver. In sublethal toxicity tests, adult medaka was treated with 0-0.5 mg/L AgNPs for consecutive 14 days to investigate organ distribution. Meanwhile, biochemical assessment and histopathological analysis were performed to evaluate possible harmful effects in terms of antioxidant enzymes, lipid peroxidation and histopathology. Highest concentration of AgNPs significantly increased mortality of medaka to 37.5% during the exposure (X2=7.05, P<0.01), though no statistic difference was found between low dose groups and control group. It's showed that AgNPs exposure enhanced the metal burden in gill, intestine and, specially, in liver. Dose-dependent decreases of Lactate dehydrogenase (LDH), Catalase (CAT) and superoxide dismutase (SOD) acitivities and total reduced GSH content were observed in liver, gill or brain of medaka exposed to Ag nanoparticles, however, increase of malondialdehyde (MDA) was induced in the AgNPs treated medaka-, suggesting that oxidative damage was induced by nano-Ag. Histopathological assay also revealed severe damages in the gill and liver. The results indicated liver of medaka could be the target organ of AgNPs toxicity.
     Using Japanese medaka (Oryzias latipes) at early-life stages as experimental models, the developmental toxicity of silver nanoparticles was investigated following exposure to 100-1000μg/L homogeneously dispersed AgNPs for 70 days, and developmental endpoints were evaluated by microscopy during embryonic, larval and juvenile stages of development in medaka. Meanwhile, histopathological changes in the larval eye were evaluated. Retarded development and reduced pigmentation were observed in the treated embryos by AgNPs at high concentrations (≥400 ug/L). Maximum width of the optic tectum, as an indicator of midbrain development, decreased significantly in a dose-related manner. Furthermore, silver nanoparticles exposure at all concentrations induced a variety of morphological malformations such as edema, spinal abnormalities, finfold abnormalities, heart malformations and eye defects. Histopathological observations also confirmed the occurrence of abnormal eye development induced by AgNPs. The data showed non-linear or U-shaped dose-response patterns for growth retardation at 5 days of postfertilization, as well as the incidence of abnormalities. Preliminary results suggested that the developmental process of medaka may be affected by exposure to silver nanoparticles. Morphological abnormalities in early-life stages of medaka showed the potential developmental toxicities of silver nanoparticles. Further research should be focused on the mechanisms of developmental toxicity in fish exposed to silver nanoparticles.
     Using light microscopy and scanning electron microscopy (SEM), the results indicated that AgNPs treatments at higher concentration (≥125μg/L) may severely destroy the surface ornamentation and egg envelope. Meanwhile, significant increase in lactate dehydrogenase (LDH) activity, an indicator of anaerobic metabolism, indicated hypoxia in treated groups. Biochemical changes in SOD activity, reduced GSH level, TRARS concentration showed oxidative stress caused by silver nanoparticles in early-stage medaka embryos. Unexpectedly, a weak dose-dependent reduction in levels of ROS and singlet oxygen by high AgNPs exposure (≥250μg/L) as observed. We also noted that responses by antioxidant defenses in well-developed embryos were elevated, but the developmental damages caused by silver nanoparticles showed no recovery. Overall, it suggested that the disturbed egg chorion, hypoxia and oxidative stress were mechanistically associated to AgNPs toxicity in embryonic fish.
     Ionic silver may be easily released from silver nanoparticles whose surface oxidation occurred in water, medium, and specially, under biological conditions. Toxic effects of AgNPs may be related to interactions of Ag+ ions with proteins and enzymes. As measured by Ag-ISE (Ion-selective electrode), maximum free Ag concentrations present in the fresh AgNPs suspensions were 0.94%-1.01%, and the dissolved silver was time-dependent increased with non-linear pattern for 24 h. We have examined the sub-chronic toxicity of silver nanoparticles and Ag+ to adult medaka by evaluating the distribution, mortality of tested fish, oxidative stress endpoints and histopathological changes. When compared as a function of the free ionic silver levels, Ag+(AgNP3) resulted in much higher toxicity such as mortality and oxidative damages than that of AgNPs.
引文
Adams RD, Captain B, Hall MB, Smith JL, Webster CE.2004. High nuclearity iridium-platinum clusters:Synthesis, structures, bonding, and reactivity. J Am Chem Soc 127(3):1007-1014.
    Adams LK, Lyon DY, Alvarez PJJ.2006. Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40(19):3527-3532.
    Adams LK, Lyon DY, McIntosh A, Alvarez PJJ.2006. Comparative toxicity of nano-scale TiO2, SiO2 and ZnO water suspensions. Water Science& Technology 54(11-12):327-334.
    Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M.2006. Manufacture and use of nanomaterials: Current status in the UK and global trends. Occup Med (Lond) 56(5):300-306.
    Amdur MO, Chen LC, Guty J, Lam HF, Miller PD.1988. Speciation and pulmonary effects of acidic SOx formed on the surface of ultrafine zinc oxide aerosols. Atmospheric Environment (1967) 22(3):557-560.
    Anderson PJ, Wilson JD, Hiller FC.1989. Particle size distribution of mainstream tobacco and marijuana smoke:Analysis using the electrical aerosol analyzer. The American review of respiratory disease 140(1):202-205.
    Andrea G, Bing G, Rama SK, John CR, Ian MK, Abdul IB.2007. Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles:Effect of particle composition. Environ Health Perspect 115:403-409.
    Antkiewicz DS, Burns CG, Carney SA, Peterson RE, Heideman W.2005. Heart malformation is an early response to TCDD in embryonic zebrafish. Toxicol Sci 84(2):368-377..
    Arora S, Jain J, Rajwade JM, Paknikar KM.2008. Cellular responses induced by silver nanoparticles:In vitro studies. Toxicol Lett 179(2):93-100.
    Artelt S, Kock H, K nig HP, Levsen K, Rosner G.1999. Engine dynamometer experiments: Platinum emissions from differently aged three-way catalytic converters. Atmos Environ 33(21):3559-3567.
    AshaRani PV, Mun GLK, Hande MP, Valiyaveettil S.2009. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279-290.
    Asharani PV, Wu YL, Gong ZY, Valiyaveettil S.2008. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19(25):1-8.
    Auffan M, Achouak W, Rose J, Roncato MA, Chaneac C, Waite DT, et al.2008. Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42(17):6730-6735.
    Balbus JM, Maynard AD, Colvin VL, Castranova V, Daston GP, Denison RA, et al.2007. Meeting
    report:Hazard assessment for nanoparticles-Report from an interdisciplinary workshop. Environ Health Perspect 115:1654-1659.
    Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY.2009. Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5(16):1897-1910.
    Baun A, Hartmann NB, Grieger K, Kusk KO.2008. Ecotoxicity of engineered nanoparticles to aquatic invertebrates:A brief review and recommendations for future toxicity testing. Ecotoxicology 17(5):387-395.
    Benn TM, Westerhoff P.2008. Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42(11):4133-4139.
    Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB, et al.2004. Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles. Toxicol Sci 77(2):347-357.
    Berry JP, Arnoux B, Stanislas G, Galle P, Chretien J.1977. A microanalytic study of particles transport across the alveoli:Role of blood platelets. Biomedicine 27(9-10):354-357.
    Bilberg K, Malte H, Wang T, Baatrup E.2009. Silver nanoparticles and silver nitrate cause respiratory stress in Eurasian perch (Perca fluviatilis). Aquat. Toxicol. doi:10.1016/j.aquatox.2009.10.019.
    Biswas P, Wu CY.2005. Nanoparticles and the environment. J Air Waste Manag Assoc 55(6): 708-746.
    Blakemore RP.1982. Magnetotactic bacteria. Annual Reviews in Microbiology 36(1):217-238.
    Blundell G, Henderson WJ, Price EW.1989. Soil particles in the tissues of the foot in endemic elephantiasis of the lower legs. Ann Trop Med Parasitol 83(4):381-385.
    Bokkon I, Salari V. Information storing by biomagnetites. J Biol Phys 36(1):109-120.
    Boorman GA, Botts S, Bunton TE, Fournie JW, Harshbarger JC, Hawkins WE, et al.1997. Diagnostic criteria for degenerative, inflammatory, proliferative nonneoplastic and neoplastic liver lesions in medaka (Oryzias latipes):Consensus of a national toxicology program pathology working group. Toxicol Pathol 25(2):202-210.
    Boudreau M, Courtenay SC, MacLatchy DL, Berube CH, Hewitt LM, Van Der Kraak GJ.2005. Morphological abnormalities during early-life development of the estuarine mummichog, Fundulus heteroclitus, as an indicator of androgenic and anti-androgenic endocrine disruption. Aquat Toxicol 71(4):357-369.
    Boudreau M, Courtenay SC, MacLatchy DL, Berube CH, Parrott JL, van der Kraak GJ.2004. Utility of morphological abnormalities during early-life development of the estuarine mummichog, Fundulus heteroclitus, as an indicator of estrogenic and antiestrogenic
    endocrine disruption. Environ Toxicol Chem 23(2):415-425.
    Boxall ABA, Tiede K, Chaudhry Q.2007. Engineered nanomaterials in soils and water:How do they behave and could they pose a risk to human health? Nanomedicine 2(6):919-927.
    Bradford A, Handy RD, Readman JW, Atfield A, Muhling M.2009. Impact of silver nanoparticle contamination on the genetic diversity of natural bacterial assemblages in estuarine sediments. Environ Sci Technol 43(12):4530-4536.
    Bradford MM.1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1-2):248-254.
    Braydich-Stolle L, Hussain S, Schlager JJ, Hofmann MC.2005. In vitro Cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88(2):412-419.
    Brouwer DH, Gijsbers JHJ, Lurvink MWM.2004. Personal exposure to ultrafine particles in the workplace:Exploring sampling techniques and strategies. Ann Occup Hyg 48(5):439-453.
    Brumfiel G.2003. Nanotechnology:A little knowledge. Nature 424(6946):246-248.
    Bunton TE.1990. Hepatopathology of diethylnitrosamine in the medaka (Oryzias latipes) following short-term exposure. Toxicol Pathol 18(2):313-323.
    Buzea C, Pacheco, II, Robbie K.2007. Nanomaterials and nanoparticles:sources and toxicity. Biointerphases 2(4):MR17-MR71.
    Camata RP, Hirasawa M, Okuyama K, Takeuchi K.2000. Observation of aerosol formation during laser ablation using a low-pressure differential mobility analyzer. J Aerosol Sci 31(4): 391-401.
    Cavieres MF, Jaeger J, Porter W.2002. Developmental toxicity of a commercial herbicide mixture in mice:Ⅰ. Effects on embryo implantation and litter size. Environ Health Perspect 110(11): 1081-1085.
    Chen LC, Peoples SM, Amdur MO.1991. Pulmonary effects of sulfur oxides on the surface of copper oxide aerosol. Am Ind Hyg Assoc J 52(5):187-191.
    Chen X, Schluesener HJ.2008. Nanosilver:A nanoproduct in medical application. Toxicol Lett 176(1):1-12.
    Chen YR, Nie SD, Shan W, Jiang DJ, Shi RZ, Zhou Z, et al.2007. Decrease in endogenous CGRP release in nitroglycerin tolerance:Role of ALDH-2. Eur J Pharmacol 571(1):44-50.
    Chi ZX, Liu RT, Zhao LZ, Qin PF, Pan XR, Sun F, et al.2009. A new strategy to probe the genotoxicity of silver nanoparticles combined with cetylpyridine bromide. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy 72(3):577-581.
    Cho EC, Xie JW, Wurm PA, Xia YN.2009. Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell
    surface with a I-2/KI etchant. Nano Lett 9(3):1080-1084.
    Choi O, Deng KK, Kim NJ, Ross L, Surampalli RY, Hu ZQ.2008. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42(12): 3066-3074.
    Choi O, Hu ZQ.2008. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42(12):4583-4588.
    Chow JC, Watson JG, Savage N, Solomon J, Cheng Y, McMurry PH, et al.2005. Nanoparticles and the Environment. J Air Waste Manage Assoc 55(10):1411-1417.
    Colvin VL.2003. The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21(10):1166-1170.
    Cooper RU, Clough LM, Farwell MA, West TL.2002. Hypoxia-induced metabolic and antioxidant enzymatic activities in the estuarine fish Leiostomus xanthurus. J Exp Mar Biol Ecol 279(1-2):1-20.
    Crane M, Handy RD, Garrod J, Owen R.2008. Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles. Ecotoxicology 17(5):421-437.
    Cross SE, Innes B, Roberts MS, Tsuzuki T, Robertson TA, McCormick P.2007. Human skin penetration of sunscreen nanoparticles:In-vitro Assessment of a novel micronized zinc oxide formulation. Skin Pharmacol Physiol 20(3):148-154.
    Daughton CG.2004. Non-regulated water contaminants:Emerging research. Environmental Impact Assessment Review 24(7-8):711-732.
    Derfus AM, Chan WCW, Bhatia SN.2004. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4(1):11-18.
    De Wild M, Berner S, Suzuki H, Ramoino L, Baratoff A, Jung TA.2003. Molecular assembly and self-assembly-Molecular nanoscience for future technologies. Ann NY Acad Sci 1006: 291-305.
    Dobson J.2002. Investigation of age-related variations in biogenic magnetite levels in the human hippocampus. Exp Brain Res 144(1):122-126.
    Donaldson K, Beswick PH, Gilmour PS.1996. Free radical activity associated with the surface of particles:A unifying factor in determining biological activity? Toxicol Lett 88(1-3):293-298.
    Donaldson K, Stone V, Clouter A, Renwick L, MacNee W.2001. Ultrafine particles. Br Med J 58(3):211-216.
    Donaldson K, Stone V, Gilmour PS, Brown DM, MacNee W.2000. Ultrafine particles: Mechanisms of lung injury. Philosophical Transactions:Mathematical, Physical and Engineering Sciences 358(1775):2741-2749.
    Donlin MJ, Frey RF, Putnam C, Proctor J, Bashkin JK.1998. Analysis of iron in ferritin, the iron-storage protein:A general chemistry experiment. J Chem Educ 75:437-441.
    Dunin-Borkowski RE, McCartney MR, Frankel RB, Bazylinski DA, oacute, sfai M, et al.1998. Magnetic microstructure of magnetotactic bacteria by electron holography. Science 282(5395):1868-1870.
    Dunn JR, Fuller M, Zoeger J, Dobson J, Heller F, Hammann J, et al.1995. Magnetic material in the human hippocampus. Brain Res Bull 36(2):149-153.
    Dussert AS, Gooris E, Hemmerle J.1997. Characterization of the mineral content of a physical sunscreen emulsion and its distribution onto human stratum corneum. Int J Cosmet Sci 19(3): 119-129.
    Ebelt S, Brauer M, Cyrys J, Tuch T, Kreyling WG, Wichmann HE, et al.2001. Air quality in postunification Erfurt, East Germany:associating changes in pollutant concentrations with changes in emissions. Environ Health Perspect 109(4):325.
    Edwards-Jones V.2009. The benefits of silver in hygiene, personal care and healthcare. Lett Appl Microbiol 49(2):147-152.
    Elliott DW, Zhang W-x.2001. Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ Sci Technol 35(24):4922-4926.
    Farwell A, Nero V, Croft M, Bal P, Dixon DG.2006. Modified Japanese medaka embryo-larval bioassay for rapid determination of developmental abnormalities. Arch Environ Contam Toxicol 51(4):600-607.
    Fay JWJ, Ashford JR.1960. Size distribution of airborne dust samples from British coalmines. British Journal of Applied Physics 11:1-13.
    Federici G, Shaw BJ, Handy RD.2007. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss):Gill injury, oxidative stress, and other physiological effects. Aquat Toxicol 84(4):415-430.
    Ferguson EA, Hogstrand C.1998. Acute silver toxicity to seawater-acclimated rainbow trout: Influence of salinity on toxicity and silver speciation. Environ Toxicol Chem 17(4):589-593.
    Ferguson MA, Hoffmann MR, Hering JG.2005. TiO2-photocatalyzed As(III) oxidation in aqueous suspensions:Reaction kinetics and effects of adsorption. Environ Sci Technol 39(6): 1880-1886.
    Ferrari A, Anguiano L, Lascano C, Sotomayor V, Rosenbaum E, Venturino A.2008. Changes in the antioxidant metabolism in the embryonic development of the common South American toad Bufo arenarum:Differential responses to pesticide in early embryos and autonomous-feeding larvae. J Biochem Mol Toxicol 22(4):259-267.
    Firth JD, Ebert BL, Ratcliffe PJ.1995. Hypoxic regulation of lactate dehydrogenase A. J Biol Chem 270(36):21021.
    Foley S, Crowley C, Smaihi M, Bonfils C, Erlanger BF, Seta P, et al.2002. Cellular localisation of a water-soluble fullerene derivative. Biochem Biophys Res Commun 294(1):116-119.
    Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS.2007. Comparative toxicity of nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a freshwater microalga(Pseudokirchneriella subcapitata):The importance of particle solubility. Environ Sci Technol 41(24):8484-8490.
    Furutani-Seiki M, Wittbrodt J.2004. Medaka and zebrafish, an evolutionary twin study. Mech Dev 121(7-8):629-637.
    Gagne F, Auclair J, Turcotte P, Fournier M, Gagnon C, Sauve S, et al.2007. Ecotoxicity of CdTe quantum dots to freshwater mussels:Impacts on immune system, oxidative stress and genotoxicity. Aquat Toxicol 86(3):333-340.
    Gamer AO, Leibold E, Van Ravenzwaay B.2006. The in vitro absorption of microfine zinc oxide and titanium dioxide through porcine skin. Toxicol In Vitro 20(3):301-307.
    Gao J, Youn S, Hovsepyan A, Llaneza VL, Wang Y, Bitton G, et al.2009. Dispersion and toxicity of selected manufactured nanomaterials in natural river water samples:Effects of water chemical composition. Environ Sci Technol 43(9):3322-3328.
    Garcia Sampaio F, de Lima Boijink C, Tie Oba E, Romagueira Bichara dos Santos L, Lucia Kalinin A, Tadeu Rantin F.2008. Antioxidant defenses and biochemical changes in pacu (Piaractus mesopotamicus) in response to single and combined copper and hypoxia exposure. Comparative Biochemistry and Physiology, Part C 147(1):43-51.
    Garner M, Reglinski J, Smith WE, Stewart MJ.1994. The interaction of colloidal metals with erythrocytes. J Inorg Biochem 56:283-290.
    Garshick E, Laden F, Hart JE, Rosner B, Davis ME, Eisen EA, et al.2008. Lung cancer and vehicle exhaust in trucking industry workers. Environ Health Perspect 116(10):1327-1332.
    Garshick E, Schenker MB, Munoz A, Segal M, Smith TJ, Woskie SR, et al.1988. A retrospective cohort study of lung cancer and diesel exhaust exposure in railroad workers. Am Rev Respir Dis 137(4):820-825.
    Gatti AM, Montanari S, Gambarelli A, Capitani F, Salvatori R.2005. In vivo short-and long-term evaluation of the interaction material blood. J Mater Sci Mater Med 16:1213-1219.
    Geret F, Jouan A, Turpin V, Bebianno MJ, Cosson RP.2002. Influence of metal exposure on metallothionein synthesis and lipid peroxidation in two bivalve mollusks:the oyster (Crassostrea gigas) and the mussel(Mytilus edulis). Aquat Living Resour 15:61-66.
    Giasuddin ABM, Kanel SR, Choi H.2007. Adsorption of humic acid onto nanoscale zerovalent
    iron and its effect on arsenic removal. Environ Sci Technol 41(6):2022-2027.
    Golling G, Amsterdam A, Sun Z, Antonelli M, Maldonado E, Chen W, et al.2002. Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development. Nat Genet 31(2):135-140.
    Gong JL, Liang Y, Huang Y, Chen JW, Jiang JH, Shen GL, et al.2007. Ag/SiO2 core-shell nanoparticle-based surface-enhanced Raman probes for immunoassay of cancer marker using silica-coated magnetic nanoparticles as separation tools. Biosens Bioelectron 22:1501-1507.
    Griffitt RJ, Weil R, Hyndman KA, Denslow ND, Powers K, Taylor D, et al.2007. Exposure to Copper Nanoparticles Causes Gill Injury and Acute Lethality in Zebrafish (Danio rerio). Environ Sci Technol 41(23):8178-8186.
    Griffitt RJ, Hyndman K, Denslow ND, Barber DS.2009. Comparison of Molecular and Histological Changes in Zebrafish Gills Exposed to Metallic Nanoparticles. Toxicol Sci 107(2):404-415.
    Grigg J, Tellabati A, Rhead S, Almeida GM, Higgins JA, Bowman KJ, et al.2009. DNA damage of macrophages at an air-tissue interface induced by metal nanoparticles. Nanotoxicology 3(4):348-354.
    Grodzik M, Sawosz E.2006. The influence of silver nanoparticles on chicken embryo development and bursa of Fabricius morphology. J Anim Feed Sci 15(1):111-114.
    Handy RD, Owen R, Valsami-Jones E.2008. The ecotoxicology of nanoparticles and nanomaterials:current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17(5):315-325.
    Handy RD, Shaw BJ.2007. Toxic effects of nanoparticles and nanomaterials:Implications for public health, risk assessment and the public perception of nanotechnology. Health, Risk& Society 9(2):125-144.
    Hart NH, Collins GC.1991. An electron-microscope and freeze-fracture study of the egg cortex of Brachydanio-rerio. Cell Tissue Res 265(2):317-328.
    Hegde S, Kapoor S, Joshi S, Mukherjee T.2006. Effect of ethylene glycol-bis(2-aminoethylether)-N,N,N,N-tetraacetic acid (EGTA) on the growth, stabilization and morphology of silver nanoparticles. Colloids and Surfaces A:Physicochem Eng Aspects 280:116-124.
    Heinrich U, Muhle H, Hoymann HG, Mermelstein R.1989. Pulmonary function changes in rats after chronic and subchronic inhalation exposure to various particulate matter. Exp Pathol 37(1-4):248-252.
    Henglein A.1998. Colloidal silver nanoparticles:Photochemical preparation and interaction with
    O2, CC14, and some metal ions. Chem Mater 10(1):444-450.
    Hill AJ, Bello SM, Prasch AL, Peterson RE, Heideman W.2004. Water permeability and TCDD-induced edema in zebrafish early-life stages. Toxicol Sci 78(1):78-87.
    Hoffman NE, Bent AF, Hanson AD.1986. Induction of lactate dehydrogenase isozymes by oxygen deficit in barley root tissue. Plant Physiol 82(3):658.
    Hogstrand C, Wood CM.1998. Toward a better understanding of the bioavailability, physiology and toxicity of silver in fish:Implications for water quality criteria. Environ Toxicol Chem 17(4):547-561.
    Hoet PHM, Br I.2004. Nanoparticles-known and unknown health risks. J Nanobiotechnol 2:12.
    Huang J, Dai W-L, Li H, Fan K.2007. Au/TiO2 as high efficient catalyst for the selective oxidative cyclization of 1,4-butanediol to [gamma]-butyrolactone. J Catal 252(1):69-76.
    Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ.2005. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 19(7):975-983.
    Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang BI, et al.2008. Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4(6): 746-750.
    Isaure MP, Manceau A, Geoffroy N, Laboudigue A, Tamura N, Marcus MA.2005. Zinc mobility and speciation in soil covered by contaminated dredged sediment using micrometer-scale and bulk-averaging X-ray fluorescence, absorption and diffraction techniques. Geochim Cosmochim Acta 69(5):1173-1198.
    Ispas C, Andreescu D, Patel A, Goia DV, Andreescu S, Wallace KN.2009. Toxicity and developmental defects of different sizes and shape nickel nanoparticles in zebrafish. Environ Sci Technol 43(16):6349-6356.
    Iwamatsu T.2004. Stages of normal development in the medaka Oryzias latipes. Mech Dev 121(7-8):605-618.
    Jaques PA, Kim CS.2000. Measurement of total lung deposition of inhaled ultrafine particles in healthy men and women. Inhal Toxicol 12(8):715-731.
    Ji JH, Jung JH, Kim SS, Yoon JU, Park JD, Choi BS, et al.2007. Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhal Toxicol 19(10):857-871.
    Jiang B, Du J, Liu J, Bao YM, An LJ.2008. Catalpol attenuates the neurotoxicity induced by β-amyloid1-42 in cortical neuron-glia cultures. Brain Res 1188:139-147.
    Jin R, Cao Y, Mirkin CA, Kelly KL, Schatz GC, Zheng JG.2001. Photoinduced conversion of silver nanospheres to nanoprisms. Science 294:1901-1903.
    Kahru A, Dubourguier HC, Blinova I, Ivask A, Kasemets K.2008. Biotests and biosensors for
    ecotoxicology of metal oxide nanoparticles:A minireview. Sensors 8(8):5153-5170.
    Karn B, Kuiken T, Otto M.2009. Nanotechnology and In situ Remediation:A review of the benefits and potential risks. Environ Health Perspect 117(12):1823-1831.
    Kashiwada S.2006. Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environ Health Perspect 114(11):1697-1702.
    Kashiwada S, Tatsuta H, Kameshiro M, Sugaya Y, Sabo-Attwood T, Chandler GT, et al.2008. Stage-dependent differences in effects of carbaryl on population growth rate in Japanese medaka(Oryzias latipes). Environ Toxicol Chem 27(11):2397-2402.
    Kawata K, Osawa M, Okabe S.2009. In Vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol 43(15):6046-6051.
    Kehrer JP.1993. Free-radicals as mediators of tissue-injury and disease. Crit Rev Toxicol 23(1): 21-48.
    Kelly KL, Coronado E, Zhao LL, Schatz GC.2002. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. The Journal of Physical Chemistry B 107(3):668-677.
    Kelly KA, Havrilla CM, Brady TC, Abramo KH, Levin ED.1998. Oxidative stress in toxicology: established mammalian and emerging piscine model systems. Environ Health Perspect 106(7): 375-384.
    Kersting AB, Efurd DW, Finnegan DL, Rokop DJ, Smith DK, Thompson JL.1999. Migration of plutonium in ground water at the Nevada Test Site. Nature 397(6714):56-59.
    Kiener TK, Selptsova-Friedrich I, Hunziker W.2008. Tjp3/zo-3 is critical for epidermal barrier function in zebrafish embryos. Dev Biol 316(1):36-49.
    Kim DK, Zhang Y, Voit W, Rao KV, Kehr J, Bjelke B, et al.2001. Superparamagnetic iron oxide nanoparticles for bio-medical applications. Scr Mater 44(8-9):1713-1717.
    Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, et al.2007. Antimicrobial effects of silver nanoparticles. Nanomedicine:nanotechnology, biology, and medicine 3(1):95-101.
    Kim JS, Yoon TJ, Kim BG, Park SJ, Kim HW, Lee KH, et al.2006. Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci 89(1):338-347.
    Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A, et al.2004. Near-infrared fluorescent type Ⅱ quantum dots for sentinel lymph node mapping. Nat Biotechnol 22(1): 93-97.
    Kolayli S, Keha E.1999. A comparative study of antioxidant enzyme activities in freshwater and seawater-adapted rainbow trout. J Biochem Mol Toxicol 13(6):334-337.
    Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Schulz H, et al.2002. Translocation of
    ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health Part A 65(20):1513-1530.
    Kubacka A, Ferrer M, Martinez-Arias A, Fernandez-Garcia M.2008. Ag promotion of TiO2-anatase disinfection capability:Study of Escherichia coli inactivation. Applied Catalysis B, Environmental 84(1-2):87-93.
    Kuki K, Oliva M, Pereira E.2008. Iron Ore Industry Emissions as a Potential Ecological Risk Factor for Tropical Coastal Vegetation. Environ Manage 42(1):111-121.
    Kwak SY, Kim SH, Kim SS.2001. Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling 1. Preparation and characterization of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane. Environ Sci Technol 35(11):2388-2394.
    Kvitek L, Panacek A, Soukupova J, Kolar M, Vecerova R, Prucek R, et al.2008. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). The Journal of Physical Chemistry C 112(15):5825-5834.
    Kvitek L, Vanickova M, Panacek A, Soukupova J, Dittrich M, Valentova E, et al.2009. Initial study on the toxicity of silver nanoparticles (nps) against paramecium caudatum. The Journal of Physical Chemistry C 113(11):4296-4300.
    Lademann J, Weigmann HJ, Rickmeyer C, Barthelmes H, Schaefer H, Mueller G, et al.1999. Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Physiol 12(5):247-256.
    Larese FF, D'Agostin F, Crosera M, Adami G, Renzi N, Bovenzi M, et al.2009. Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology 255(1-2): 33-37.
    Lecoanet HF, Bottero J-Y, Wiesner MR.2004. Laboratory Assessment of the Mobility of Nanomaterials in Porous Media. Environ Sci Technol 38(19):5164-5169.
    Lee J, Choi W, Yoon J.2005. Photocatalytic Degradation of N-Nitrosodimethylamine:Mechanism, Product Distribution, and TiO2 Surface Modification. Environ Sci Technol 39(17): 6800-6807.
    Lee D, Cohen RE, Rubner MF.2005. Antibacterial properties of Ag nanoparticle loaded multilayers and formation of magnetically directed antibacterial microparticles. Langmuir 21(21):9651-9659.
    Lee KP, Kelly DP, Schneider PW, Trochimowicz HJ.1986. Inhalation toxicity study on rats exposed to titanium tetrachloride atmospheric hydrolysis products for two years. Toxicol Appl Pharmacol 83(1):30-45.
    Lee JM, Kim DW, Kim TH, Oh SG.2007. Facile route for preparation of silica-silver heterogeneous nanocomposite particles using alcohol reduction method. Mater Lett 61(7): 1558-1562.
    Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu XHN.2007. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 1(2):133-143.
    Leino RL, McCormick JH, Jensen KM.1987. Changes in gill histology of fathead minnows and yellow perch transferred to soft water or acidified soft water with particular reference to chloride cells. Cell and Tissue Research 250(2):389-399.
    Li A, Tai C, Zhao Z, Wang Y, Zhang Q, Jiang G, et al.2007. Debromination of decabrominated diphenyl ether by resin-bound iron nanoparticles. Environ Sci Technol 41(19):6841-6846.
    Li CS, Jenq FT, Lin WH.1992. Field characterization of submicron aerosols from indoor combustion sources. J Aerosol Sci 23.
    Li HC, Zhang JS, Wang T, Luo WR, Zhou QF, Jiang GB.2008. Elemental selenium particles at nano-size (Nano-Se) are more toxic to Medaka (Oryzias latipes) as a consequence of hyper-accumulation of selenium:A comparison with sodium selenite. Aquat Toxicol 89(4): 251-256.
    Li HC, Zhou QF, Wu Y, Fu JJ, Wang T, Jiang GB.2009. Effects of waterborne nano-iron on medaka(Oryzias latipes):Antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicol Environ Saf 72(3):684-692.
    Li Z, Flytzani-Stephanopoulos M.1999. On the Promotion of Ag-ZSM-5 by Cerium for the SCR of NO by Methane. J Catal 182(2):313-327.
    Lighty JS, Veranth JM, Sarofim AF.2000. Combustion aerosols:factors governing their size and composition and implications to human health. J Air Waste Manage Assoc 50(9):1565-1618.
    Lim B, Jiang M, Tao J, Camargo PHC, Zhu Y, Xia Y.2009. Shape-Controlled Synthesis of Pd Nanocrystals in Aqueous Solutions. Adv Funct Mater 19(2):189-200.
    Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ.2007. Exposure of engineered nanoparticles to human lung epithelial cells:influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41(11):4158-4163.
    Lin D, Xing B.2007. Phytotoxicity of nanoparticles:Inhibition of seed germination and root growth. Environ Pollut 150(2):243-250.
    Lin D, Xing B.2008. Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42(15):5580-5585.
    Liu J-f, Zhao Z-s, Jiang G-b.2008. Coating Fe3O4 magnetic nanoparticles with humic acid for
    high efficient removal of heavy metals in water. Environ Sci Technol 42(18):6949-6954.
    Liu Y, Daum PH.2000. The effect of refractive index on size distributions and light scattering coefficients derived from optical particle counters. J Aerosol Sci 31(8):945-957.
    Lipsett M, Campleman S.1999. Occupational exposure to diesel exhaust and lung cancer:a meta-analysis. Am J Public Health 89(7):1009-1017.
    Livingstone DR.2001. Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar Pollut Bull 42(8):656-666.
    Lockman PR, Koziara JM, Mumper RJ, Allen DD.2004. Nanoparticle surface charges alter blood-brain barrier integrity and permeability. J Drug Target 12(9-10):635-641.
    Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B.2006. Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2):Implications for Nanoparticle Neurotoxicity. Environ Sci Technol 40(14):4346-4352.
    Lushchak VI, Bagnyukova TV, Husak VV, Luzhna LI, Lushchak OV, Storey KB.2005b. Hyperoxia results in transient oxidative stress and an adaptive response by antioxidant enzymes in goldfish tissues. Int J Biochem Cell Biol 37(8):1670-1680.
    Lushchak VI, Bagnyukova TV, Lushchak OV, Storey JM, Storey KB.2005a. Hypoxia and recovery perturb free radical processes and antioxidant potential in common carp (Cyprinus carpio) tissues. Int J Biochem Cell Biol 37(6):1319-1330.
    Maguhn J, Karg E, Kettrup A, Zimmermann R.2003. On-line Analysis of the Size Distribution of Fine and Ultrafine Aerosol Particles in Flue and Stack Gas of a Municipal Waste Incineration Plant:Effects of Dynamic Process Control Measures and Emission Reduction Devices. Environ Sci Technol 37(20):4761-4770.
    Maillard M, Giorgio S, Pileni M-P.2002. Silver nanodisks. Adv Mater (Weinheim, Ger) 14(15): 1084-1086.
    Mark WF, Judith CS, G"unter O, Paul EM, David C, Anthony PP, et al.2006. Inhalation of ultrafine particles alters blood leukocyte expression of adhesion molecules in humans. Environ Health Perspect 114:51-58.
    Markert CL, Faulhaber I.1965. Lactate dehydrogenase isozyme patterns of fish. J Exp Zool 159(3):319-332.
    Matias JR.1984. The stage-dependent resistance of the chorion to external chemical damage and its relationship to embryonic diapause in the annual fish, Nothobranchius guentheri. Cell Mol Life Sci 40(7):753-754.
    Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdorster G, et al.2006. Safe handling of nanotechnology. Nature 444(7117):267-269.
    McCormick ML, Adriaens P.2004. Carbon Tetrachloride Transformation on the Surface of Nanoscale Biogenic Magnetite Particles. Environ Sci Technol 38(4):1045-1053.
    McFarland AD, Van Duyne RP.2003. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett 3(8):1057-1062.
    Michael S, Tsuzukib SRT, McCormickb T.2007. Human skin penetration of sunscreen nanoparticles:in-vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacol Physiol 20:148-154.
    Mishra AK, Mohanty B.2008. Acute toxicity impacts of hexavalent chromium on behavior and histopathology of gill, kidney and liver of the freshwater fish, Channa punctatus (Bloch). Environ Toxicol Pharmacol 26(2):136-141.
    Mizell M, Romig ES.1997. The aquatic vertebrate embryo as a sentinel for toxins:zebrafish embryo dechorionation and perivitelline space microinjection. Int J Dev Biol 41:411-423.
    Moore MN.2002. Biocomplexity:the post-genome challenge in ecotoxicology. Aquat Toxicol 59(1-2):1-15.
    Moore MN.2006. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32(8):967-976.
    Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, et al.2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346-2353.
    Mueller NC, Nowack B.2008. Exposure Modeling of Engineered Nanoparticles in the Environment. Environ Sci Technol 42(12):4447-4453.
    Muhvich A, Jones RT, Kane AS, Anderson RS, Reimscheussel R.1995. Effects of chronic copper exposure on the macrophage chemiluminescent response and gill histology in goldfish. Fish & Shellfish Immunology 5:251-264.
    Muller N, Data E, Soil A, Climate P.2007. Nanoparticles in the Environment. Dissertation for Doctor'Degree.
    Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, et al.2008a. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17(5):372-386.
    Navarro E, Piccapietra F, Wagner B, Marconi F, Kaegi R, Odzak N, et al.2008b. Toxicity of Silver Nanoparticles to Chlamydomonas reinhardtii. Environ Sci Technol 42(23):8959-8964.
    Nanotechproject.org.2009a. A database of silver nanotechnology in Commercial Products. Available:http://www.nanotechproject.org/inventories/silver/[accessed 23 June 2009].
    Nanotechproject.org.2009b. World's First Mandatory National Nanotech Requirement Pending. Available:http://www.nanotechproject.org/news/archive/7061/[accessed 28 Janaury 2009].
    Nanotechproject.org.2010. Consumer Products:An inventory of nanotechnology-based consumer products currently on the market. Available: http://www.nanotechproject.org/inventories/consumer/[accessed 17 January 2010].
    Nanotechproject.org.2010a. Database Methodology and Analysis. Available: http://www.nanotechproject.org/inventories/silver/[accessed 14 January 2010].
    Nanotechproject.org.2010b. Nanoremediation Map. Available: http://www.nanotechproject.org/inventories/remediation_map/[accessed 14 January 2009].
    Nel A, Xia T, Madler L, Li N.2006. Toxic potential of materials at the nanolevel. Science 311(5761):622-627.
    Nohynek GJ, Dufour EK, Roberts MS.2008. Nanotechnology, Cosmetics and the Skin:Is There a Health Risk? Skin Pharmacol Physiol 21(3):136-149.
    Novikov AP, Kalmykov SN, Utsunomiya S, Ewing RC, Horreard F, Merkulov A, et al.2006. Colloid transport of plutonium in the far-field of the Mayak Production Association, Russia. Science 314(5799):638-641.
    Oberdorster E.2004. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ Health Perspect 112(10):1058-1162.
    Oberdorster G, Ferin J, Lehnert BE.1994. Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect 102(Suppl 5):173-179.
    Oberdorster G.2000. Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health 74(1):1-8.
    Oberdorster G, Oberdorster E, Oberdorster J.2005. Nanotoxicology:an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823-839.
    Oldfors A, Fardeau M.1983. The permeability of the basal lamina at the neuromuscular junction: An ultrastructural study of rat skeletal muscle using particulate tracers. Neuropathol Appl .Neurobiol 9(6):419-432.
    Olivier V, Duval JL, Hindie M, Pouletaut P, Nagel MD.2003. Comparative particle-induced cytotoxicity toward macrophages and fibroblasts. Cell Biol Toxicol 19(3):145-159.
    Onyango MS, Kojima Y, Matsuda H, Ochieng A.2003. Adsorption kinetics of arsenic removal from groundwater by iron-modified zeolite. J Chem Eng Jpn 36(12):1516-1522.
    Osaki K, Kashiwada S, Tatarazako N, Ono Y.2006. Toxicity testing of leachate from waste landfills using medaka (Oryzias latipes) for monitoring environmental safety. Environ Monit Assess 117(1):73-84.
    Ostrowski AD, Martin T, Conti J, Hurt I, Harthorn BH.2009. Nanotoxicology:characterizing the scientific literature,2000-2007. Journal of Nanoparticle Research 11(2):251-257.
    Pandey S, Parvez S, Sayeed I, Haque R, Bin-Hafeez B, Raisuddin S.2003. Biomarkers of oxidative stress:a comparative study of river Yamuna fish Wallago attu (Bl.& Schn.). Sci Total Environ 309(1-3):105-115.
    Panyam J, Labhasetwar V.2003. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Delivery Rev 55(3):329-347.
    Park EJ, Yi J, Chung KH, Ryu DY, Choi J, Park K.2008. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett 180(3):222-229.
    Pastva SD, Alex Villalobos S, Kannan K, Giesy JP.2001. Morphological effects of bisphenol-A on the early life stages of medaka (Oryzias latipes). Chemosphere 45(4-5):535-541.
    Patyna PJ, Davi RA, Parkerton TF, Brown RP, Cooper KR.1999. A proposed multigeneration protocol for Japanese medaka(Oryzias latipes) to evaluate effects of endocrine disruptors. Science of the Total Environment,233(1-3):211-220.
    Peng X, Luan Z, Ding J, Di Z, Li Y, Tian B.2005. Ceria nanoparticles supported on carbon nanotubes for the removal of arsenate from water. Mater Lett 59(4):399-403.
    Peters LE, MacKinnon M, Van Meer T, van den Heuvel MR, Dixon DG.2007. Effects of oil sands process-affected waters and naphthenic acids on yellow perch (Perca flavescens) and Japanese medaka (Orizias latipes) embryonic development. Chemosphere 67(11): 2177-2183.
    Pope III CA, Burnett RT, Thurston GD, Thun MJ, Calle EE, Krewski D.2004. Cardiovascular mortality and longterm exposure to particulate air pollution:epidemiological evidence of general pathophysiological pathways of disease. Circulation 109:71-77.
    Popov AP, Lademann J, Priezzhev AV, Myllyl R.2005a. Effect of size of TiO2 nanoparticles embedded into stratum corneum on ultraviolet-A and ultraviolet-B sun-blocking properties of the skin. J Biomed Opt 10:1-9.
    Popov AP, Priezzhev AV, Lademann J, Myllyl R.2005b. TiO2 nanoparticles as a skin-protective compound. J Phys D:Appl Phys 38:2564-2570.
    Posfai M, Dunin-Borkowski RE.2009. Magnetic Nanocrystals in Organisms. Elements 5(4): 235-240.
    Rao SS, Metcalfe CD, Neheli TA, Schmidt B.1997. Assessing the toxicity of environmental contaminants with early life stages of Japanese medaka (Oryzias latipes). Environmental Toxicology and Water Quality 12(4):349-352.
    Reeves JF, Davies SJ, Dodd NJF, Jha AN.2008. Hydroxyl radicals (OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 640(1-2):
    113-122.
    Rittner MN.2002. Market analysis of nanostructured materials. American Ceramic Society Bulletin(USA) 81(3):33-36.
    Rizzo E, Sato Y, Barreto BP, Godinho HP.2002. Adhesiveness and surface patterns of eggs in neotropical freshwater teleosts. J Fish Biol 61(3):615-632.
    Roh JY, Sim SJ, Yi J, Park K, Chung KH, Ryu DY, et al.2009. Ecotoxicity of Silver Nanoparticles on the Soil Nematode Caenorhabditis elegans Using Functional Ecotoxicogenomics. Environ Sci Technol 43(10):3933-3940.
    Ruhle T, Schneider H, Find J, Herein D, Pfander N, Wild U, et al.1997. Preparation and characterisation of Pt/Al2O3 aerosol precursors as model Pt-emissions from catalytic converters. Applied Catalysis B:Environmental 14(1-2):69-84.
    Rungby J.1990. An experimental study on silver in the nervous system and on aspects of its general cellular toxicity. Dan Med Bull 37(5):442-449.
    Ryan JN, Elimelech M.1996. Colloid mobilization and transport in groundwater. Colloids and surfaces A:Physicochemical and engineering aspects 107: 1-56.
    Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA.2006. Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci 91(1):159-165.
    Sakiyama K, Koga K, Seto T, Hirasawa M, Orii T.2003. Formation of Size-Selected Ni/NiO Core-shell Particles by Pulsed Laser Ablation. The Journal of Physical Chemistry B 108(2): 523-529.
    Salata OV.2004. Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2(3): 177-182.
    Schrick B, Hydutsky BW, Blough JL, Mallouk TE.2004. Delivery Vehicles for Zerovalent Metal Nanoparticles in Soil and Groundwater. Chem Mater 16(11):2187-2193.
    Schulz J, Hohenberg H, Pflucker F, G rtner E, Will T, Pfeiffer S, et al.2002. Distribution of sunscreens on skin. Adv Drug Delivery Rev 54:157-163.
    Seki M, Yokota H, Matsubara H, Maeda M, Tadokoro H, Kobayashi K.2003. Fish full life-cycle testing for the weak estrogen 4-tert-pentylphenol on medaka (Oryzias latipes). Environ Toxicol Chem 22(7):1487-1496.
    Service RF.2003. American Chemical Society meeting:Nanomaterials show signs of toxicity. Science 300(5617):243-243.
    Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S.2007. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed:Nanotechnol, Biol and Med 3(2):168-171.
    Sharma VK, Yngard RA, Lin Y.2009. Silver nanoparticles:Green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145(1-2):83-96.
    Shen XS, Wang GZ, Hong X, Zhu W.2009. Nanospheres of silver nanoparticles:agglomeration, surface morphology control and application as SERS substrates. Phys Chem Chem Phys 11(34):7450-7454.
    Shin J-S, Abraham SN.2001. Caveolae--Not Just Craters in the Cellular Landscape. Science 293(5534):1447-1448.
    Shvedova A, Castranova V, Kisin E, Schwegler-Berry D, Murray A, Gandelsman V, et al.2003. Exposure to carbon nanotube material:assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health Part A 66(20):1909-1926.
    Silva LCD, Oliva MA, Azevedo AA, Araujo JMD.2006. Responses of restinga plant species to pollution from an iron pelletization factory. Water, Air,& Soil Pollution 175(1):241-256.
    Simonart T, Van Vooren JP, Parent D, Heenen M, Boelaert JR.2000. Role of iron in dermatology. Dermatology 200(2):156-159.
    Slistan-Grijalva A, Herrera-Urbina R, Rivas-Silva JF, avalos-Borja M, Castillon-Barraza FF, Posada-Amarillas A.2005. Assessment of growth of silver nanoparticles synthesized from an ethylene glycol-silver nitrate-polyvinylpyrrolidone solution. Physica E:Low-dimensional Systems and Nanostructures 25(4):438-448.
    Smith KR, Aust AE.1997. Mobilization of iron from urban particulates leads to generation of reactive oxygen species in vitro and induction of ferritin synthesis in human lung epithelial cells. Chem Res Toxicol 10(7):828-834.
    Storrs SI, Kiesecker JM.2004. Survivorship patterns of larval amphibians exposed to low concentrations of atrazine. Environ Health Perspect 112(10):1054-1057.
    Sun S, Zeng H.2002. Size-Controlled Synthesis of Magnetite Nanoparticles. J Am Chem Soc 124(28):8204-8205.
    Sun Y, Mayers B, Xia Y.2003. Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano letters(Print) 3(5):675-679.
    Sun Y, Yin Y, Mayers BT, Herricks T, Xia Y.2002. Uniform silver nanowires synthesis by reducing agno3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater 14:4736-4745.
    Sun Y, Xia Y.2002. Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176-2179.
    Tan MH, Commens CA, Burnett L, Snitch PJ.1996. A pilot study on the percutaneous absorption of microfine titanium dioxide from sunscreens. Australas J Dermatol 37(4):185-187.
    Tarimala S, Kothari N, Abidi N, Hequet E, Fralick J, Dai LL.2006. New Approach to Antibacterial Treatment of Cotton Fabric with Silver Nanoparticle-Doped Silica Using Sol-Gel Process. J Appl Polym Sci 101:2938-2943.
    Tien DC, Tseng KH, Liao CY, Tsung TT.2009. Identification and quantification of ionic silver from colloidal silver prepared by electric spark discharge system and its antimicrobial potency study. J Alloys Compd 473(1-2):298-302.
    Tinkle SS, Antonini JM, Rich BA, Roberts JR, Salmen R, DePree K, et al.2003. Skin as a route of exposure and sensitization in chronic beryllium disease. Environ Health Perspect 111(9): 1202-1208.
    Tollefsen KE, Mathisen R, Stenersen J.2002. Estrogen mimics bind with similar affinity and specificity to the hepatic estrogen receptor in Atlantic salmon (Salmo salar) and rainbow trout(Oncorhynchus mykiss). Gen Comp Endocrinol 126(1):14-22.
    Tong WP, Tao NR, Wang ZB, Lu J, Lu K.2003. Nitriding Iron at Lower Temperatures. Science 299(5607):686-688.
    Tratnyek PG, Johnson RL.2006. Nanotechnologies for environmental cleanup. Nano Today 1(2): 44-48.
    Trenam CW, Dabbagh AJ, Blake DR, Morris CJ.1992. The role of iron in an acute model of skin inflammation induced by reactive oxygen species (ROS). Br J Dermatol 126(3):250-256.
    Tsai SJ, Hofmann M, Hallock M, Ada E, Kong J, Ellenbecker M.2009. Characterization and Evaluation of Nanoparticle Release during the Synthesis of Single-Walled and Multiwalled Carbon Nanotubes by Chemical Vapor Deposition. Environ Sci Technol 43(15):6017-6023.
    Tsay JM, Michalet X.2005. New light on quantum dot cytotoxicity. Chemistry& Biology 12(11): 1159-1161.
    Utsunomiya S, Jensen KA, Keeler GJ, Ewing RC.2004. Direct identification of trace metals in fine and ultrafine particles in the detroit urban atmosphere. Environ Sci Technol 38(8): 2289-2297.
    Vig E, Nemcsok J.1989. The effects of hypoxia and paraquat on the superoxide dismutase activity in different organs of carp, Cyprinus carpio L. J Fish Biol 35(1):23-25.
    Vijay R, Hendershot RJ, Rivera-Jimenez SM, Rogers WB, Feist BJ, Snively CM, et al.2005. Noble metal free NOx storage catalysts using cobalt discovered via high-throughput experimentation. Catal Commun 6(2):167-171.
    Villalobos SA, Hamm JT, Teh SJ, Hinton DE.2000. Thiobencarb-induced embryotoxicity in medaka (Oryzias latipes):stage-specific toxicity and the protective role of chorion. Aquat Toxicol 48(2-3):309-326.
    Vincent JH, Clement CF.2000. Ultrafine particles in workplace atmospheres. Philosophical Transactions:Mathematical, Physical and Engineering Sciences 358(1775):2673-2682.
    Wallace LA, Emmerich SJ, Howard-Reed C.2004. Source Strengths of Ultrafine and Fine Particles Due to Cooking with a Gas Stove. Environ Sci Technol 38(8):2304-2311.
    Wang CB, Zhang W.1997. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31(7):2154-2156.
    Wang D, An J, Luo Q, Li X, Li M.2008. A convenient approach to synthesize stable silver nanoparticles and silver/polystyrene nanocomposite particles. J Appl Polym Sci 110(5): 3038-3046.
    Wang H, Wick RL, Xing B.2009. Toxicity of nanoparticulate and bulk ZnO, A12O3 and TiO2 to the nematode Caenorhabditis elegans. Environ Pollut 157(4):1171-1177.
    Warheit DB.2008. How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicol Sci 101(2):183-185.
    Webb NA, Wood CM.2000. Bioaccumulation and distribution of silver in four marine teleosts and two marine elasmobranchs:influence of exposure duration, concentration, and salinity. Aquat Toxicol (Amst) 49:111-129.
    Weis JS, Weis P.1989. Effects of environmental pollutants on early fish development. Rev Aquat Sci 1(1):45-73.
    Wester PW, Van der Ven LTM, Vethaak AD, Grinwis GCM, Vos JG.2002. Aquatic toxicology: opportunities for enhancement through histopathology. Environ Toxicol Pharmacol 11(3-4): 289-295.
    Wiesner MR, Lowry GV, Alvarez P, Dionysiou D, Biswas P.2006. Assessing the risks of manufactured nanomaterials. Environ Sci Technol 40(14):4336-4345.
    Wigginton NS, Haus KL, Jr MFH.2007. Aquatic environmental nanoparticles. J Environ Monit 9(12):1306-1316.
    Wiley B, Sun Y, Mayers B, Xia Y.2005. Shape-controlled synthesis of metal nanostructures:the case of silver. Chemistry-A European Journal 11(2):454-464.
    Wilhelm C, Billotey C, Roger J, Pons JN, Bacri JC, Gazeau F.2003. Intracellular uptake of anionic superparamagnetic nanoparticles as a function of their surface coating. Biomaterials 24(6):1001-1011.
    Wilhelm Filho D.1996. Fish antioxidant defenses:a comparative approach. Braz j med biol res 29(12):1735-1742.
    Winston GW.1991. Oxidants and antioxidants in aquatic animals. Comparative biochemistry and physiology C, Comparative pharmacology and toxicology 100(1-2):173-176.
    Wright BM.1954. A size-selecting sampler for airborne dust. Br J Ind Med 11(4):284-288.
    Wittbrodt J, Shima A, Schartl M.2002. Medaka-a model organism from the far East. Nat Rev Genet 3(1):53-64.
    Wood CM, Hogstrand C, Galvez F, Munger RS.1996. The physiology of waterborne silver toxicity in freshwater rainbow trout(Oncorhynchus mykiss).1. The effects of ionic Ag+ Aquat Toxicol 35(2):93-109.
    Wu Z, Zhang M, Zhao Z, Li W, Tao K.2008. Synthesis of a Pd on Ni-B nanoparticle catalyst by the replacement reaction method for hydrodechlorination. J Catal 256(2):323-330.
    Wu Y, Zhou Q, Li H, Liu W, Wang T, Jiang G.2009. Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partial-life test. Aquatic Toxicology In Press:DOI:10.1016/j.aquatox.2009.11.014.
    Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, et al.2006. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6(8):1794-1807.
    Xia T, Kovochich M, Liong M, Ma dler L, Gilbert B, Shi H, et al.2008. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2(10):2121-2134.
    Yamamoto A, Honma R, Sumita M, Hanawa T.2004. Cytotoxicity evaluation of ceramic particles of different sizes and shapes. J Biomed Mater Res 68(2):244-256.
    Yamanaka M, Hara K, Kudo J.2005. Bactericidal Actions of a Silver Ion Solution on Escherichia coli, Studied by Energy-Filtering Transmission Electron Microscopy and Proteomic Analysis. Appl Environ Microbiol 71(11):7589-7593.
    Yang L, Watts DJ.2005. Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158(2):122-132.
    Yang K, Xing B.2009. Sorption of Phenanthrene by Humic Acid-Coated Nanosized TiO2 and ZnO. Environ Sci Technol 43(6):1845-1851.
    Yasuda T, Aoki K, Matsumoto A, Maruyama K, Hyodo-Taguchi Y, Fushiki S, et al.2006. Radiation-induced brain cell death can be observed in living medaka embryos. J Radiat Res (Tokyo) 47(3-4):295-303.
    Yilmaz M, Gul A, Karakose E.2004. Investigation of acute toxicity and the effect of cadmium chloride (CdCl2·H2O) metal salt on behavior of the guppy (Poecilia reticulata). Chemosphere 56(4):375-380.
    Yin Y, Li ZY, Zhong Z, Gates B, Xia Y, Venkateswaran S.2002. Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process. J Mater Chem
    12(3):522-527.
    Yokota H, Tsuruda Y, Maeda M, Oshima Y, Tadokoro H, Nakazono A, et al.2000. Effect of bisphenol A on the early life stage in Japanese medaka (Oryzias latipes). Environ Toxicol Chem 19(7):1925-1930.
    Yu AC, Gregory GA, Chan PH.1989. Hypoxia-induced dysfunctions and injury of astrocytes in primary cell cultures. Journal of cerebral blood flow and metabolism:official journal of the International Society of Cerebral Blood Flow and Metabolism 9(1):20.
    Yu JF, Fukamachi S, Mitani H, Hori H, Kanamori A.2006. Reduced expression of vpsll causes less pigmentation in medaka, Oryzias latipes. Pigment Cell Res 19(6):628-634.
    Zemke-White WL, Clements KD, Harris PJ.2000. Acid lysis of macroalgae by marine herbivorous fishes:effects of acid pH on cell wall porosity. J Exp Mar Biol Ecol 245(1): 57-68.
    Zhang Q, Kusaka Y, Zhu X, Sato K, Mo Y, Kluz T, et al.2003. Comparative toxicity of standard nickel and ultrafine nickel in lung after intratracheal instillation. J Occup Health 45(1):23-30.
    Zhang Q, Kusaka Y, Donaldson K.2000. Comparative pulmonary responses caused by exposure to standard cobalt and ultrafine cobalt. J Occup Health 42(4):179-184.
    Zhang LW, Monteiro-Riviere NA.2008. Assessment of quantum dot penetration into intact, tape-stripped, abraded and flexed rat skin. Skin Pharmacol Physiol 21(3):166-180.
    Zimmer AT.2002. The influence of metallurgy on the formation of welding aerosols. J Environ Monit 4(5):628-632.
    Zimmer AT, Baron PA, Biswas P.2002. The influence of operating parameters on number-weighted aerosol size distribution generated from a gas metal arc welding process. J Aerosol Sci 33(3):519-531.
    Zimmer AT, Biswas P.2001. Characterization of the aerosols resulting from arc welding processes. J Aerosol Sci 32(8):993-1008.
    Zvyagin AV, Zhao X, Gierden A, Sanchez W, Ross JA, Roberts MS.2008. Imaging of zinc oxide nanoparticle penetration in human skin in vitro and in vivo. J Biomed Opt 13(6): 064031-064039.
    程定超,杨洁,赵艳丽.2004.纳米银抗菌材料在医疗器具与生活用品中的应用.医疗卫生装备25(011):27-30.
    成嘉,符贵红,刘芳,唐建洲,李基光,张建社.2006.重金属铅对鲫鱼乳酸脱氢酶和过氧化氢酶活性的影响.生命科学研究10(004):372-376.
    丁优仙,于迎春,刘建军,左胜利.2009.不同晶型纳米CdS的合成及其光催化活性.化学研究(2):12-16.
    冯翠菊.2008.纳米材料的奇异特性.现代物理知识(4):5-7.
    顾大明,农高,程谨宁.2002.次磷酸盐液相还原法快速制备纳米银粉.精细化工19(11):634-635,674.
    胡方能,陈玉萍,朱俊杰.2009.多角金属纳米镍的化学液相制备、表征以及负载Ti02的光催化研究.无机化学学报(1):81-86.
    胡全忠,孙宁玲.2004.正常人急进4000米高原后的血液动力学观察.中华内科杂志43(007):541-541.
    互动百科.2010. 磁小体Available: http://www.hudong.com/wiki/%E7%A3%81%E5%B0%8F%E4%BD%93 [accessed1月23日2010].
    黄健平,鲍姜伶.2008.纳米材料在水处理中的应用.电力环境保护(3):42-44.
    雷忻,杜团,廉振民,延志莲,白重炎.2009.重金属铬对金鱼的毒性效应及鳃的组织学影响.水生态学杂志(5):71-74.
    李倩,唐萌,班婷婷.2005.不同尺寸Fe203纳米粒子的细胞毒性及氧化作用研究.中国公共卫生21(5):589-591.
    梁立娜,李中阳,陈登云,何滨,江桂斌.2003.ICP-MS技术测定生物样品中重金属的前处理方法研究.环境化学22(1):99-100.
    刘海英,曲克明,马绍赛.2005.养殖水体中溶解氧的变化及收支平衡研究概况.海洋水产研究26(2):79-84.
    刘伟,邓晓燕,张志焜.2004.纳米铜粒子的热稳定性研究.理化检验:物理分册(2):64-67.
    芦明霞,牟世娟.2009.纳米材料在重金属水处理方面的应用.中国高新技术企业(11):6-7.
    汤鸿霄.2009.环境纳米材料及其生态风险.水处理信息报导(3):1-2.
    王江雪,李炜,刘颖,劳芳,陈春英,樊瑜波.2008.二氧化钛纳米材料的环境健康和生态毒理效应.生态毒理学报(2):105-113.
    王晓娜,唐萌,张婷,杨磊,夏婷,曾垂焕,et al.2007.磁性三氧化二铁纳米粒子对小鼠腹腔巨噬细胞的氧化损伤作用.中国组织工程研究与临床康复11(13):2575-2577.
    吴玲玲,明玺,陈玲,涂斌华,赵建夫.2007.长江口水域菲含量及对斑马鱼组织结构的影响.环境科学与技术(7):13-15.
    夏传俊,张莉,张锐,赵广超.2003.纳米银胶与蛋白质的相互作用及应用.安徽师范大学学报(自然科学版)26(2):146-148.
    杨保收,陈越,龚伟,金久善.1999.氧自由基致损伤的分子生物学机制.中国兽医杂志25(1):41-45.
    瞿金蓉,胡明安,陈敬中,韩炜.2005.纳米粒子的熔点与粒径的关系.地球科学:中国地质大学学报(2):195-198.
    张立德,牟季美.2001.纳米材料和纳米结构.北京:科学出版社.
    赵琢,王利兵,张园,李学洋,于智睿,王华.2008.纳米物质生物安全性研究进展.纳米科技(2):61-65.
    郑爱国,王笃金,徐怡庄,吴瑾光,徐端夫.2003.电解质对纳米银胶水溶液光谱行为的影响.高等学校化学学报24(11):1953-1955.
    朱小山,朱琳,田胜艳,郎宇鹏,李燕.2008.三种金属氧化物纳米颗粒的水生态毒性.生态学报(8):3507-3516.