重组大肠杆菌工业生产三种蛋白药物过程中的关键技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕如何在大肠杆菌中生产药用蛋白的关键技术问题包括目的蛋白的高效表达、包涵体蛋白的复性、蛋白质的大规模分离纯化以及蛋白质药物的稳定性提高等开展研究,并以处于不同开发阶段的三个重组蛋白药物为研究对象,发展了满足实验室阶段、中试生产和已有成熟市场等特定时期迫切需要解决问题的关键技术。
     促红细胞生成素模拟肽(EMP1)是一种由20个氨基酸组成的环肽,氨基酸序列与EPO不存在同源性但其生物功能与EPO基本相同。本文首先通过二种不同的连接肽将两分子的EMP1串联构成了二串体,代替化学法的二聚体,然后与硫氧还蛋白或DsbA等融合在大肠杆菌中实现了可溶性高效表达。在最优诱导温度和IPTG浓度下,二串体融合蛋白的可溶性表达水平可达到0.83g/L,并可采用金属螯合层析和疏水作用层析获得较高纯度的目标融合蛋白,纯化收率约为6.3-7.8%。融合蛋白再经过肠激酶切割和反相作用层析可以获得EMP1二串体,两种不同长度连接肽的EMP1二串体与EMP1单体相比,生物活性提高了10倍,连接肽的长短对活性没有显著影响。
     重组人骨形态发生蛋白2(rhBMP-2)由114个氨基酸组成,其生物活性形式为同源二聚体或与BMP-7形成异二聚体,由于极强的疏水性,在大肠杆菌中包涵体形式表达的BMP-2复性率低下而且成本高,后分离困难。本文系统地研究了表达后处理包括包涵体的溶解条件和不同复性液组成对复性的影响,发现盐酸胍体系溶解包涵体更有效,目标蛋白回收率也更高。通过筛选获得了最佳复性液组成,建立了操作简便的可放大的稀释法复性方案,最佳条件下的复性率大于70%,复性液成本大大下降,复性液不需任何预处理就可以直接进行后续纯化。开发了新颖的利用疏水作用层析原理的纯化方法,筛选出N,N-二甲基甲酰胺(DMF)作为添加剂并优化了添加浓度,发现5%的DMF具有最好的分离度;通过不同盐浓度下的操作模式的比较,建立了两步法、DMF辅助的疏水作用层析分离工艺,最后分离达到的rhBMP-2同二聚体不仅纯度高,而且生物活性与商业化的CHO细胞来源的rhBMP-2相比ALP活力相当,与Wyeth公司的rhBMP-2制剂][NDUCTOSTM相比异位成骨活性更高,平均收率达到每克包涵体湿重产出80mgrhBMP-2同二聚体。DMF可以通过透析和冻干从rhBMP-2产品中完全去除,残留量未检出。这一套有效的复性和纯化工艺在中试生产车间进行了放大验证。另外,还针对大肠杆菌来源的rhBMP-2产品初步建立了反相高效液相色谱法和分子筛高效液相色谱法的纯度测定方案,并与毛细管电泳法和SDS-PAGE电泳法进行相互验证。
     重组人粒细胞集落刺激因子(rhG-CSF)是一类重要的已经成功实现产业化的细胞因子类重组蛋白药物,如何提升该产品的稳定性和质量水平具有重要的现实意义。本文建立了可靠的基于C4柱的反相HPLC纯度测定方法,经过方法学验证,分离度大于现有药典标准方法;通过37℃加速和4℃长期稳定性试验研究了生产过程三个关键环节对产品稳定性的影响,筛选了来自不同厂家的三类常见药品包材-安瓿瓶、西林瓶和预装针,通过制剂工艺条件的优化、确立和新处方优化,确立了稳定性最佳的三种不同内包材类型的rhG-CSF制剂工艺,使商品rhG-CSF的纯度和稳定性获得了显著的提高。
     总之,通过对处于不同研发和生产阶段的3种蛋白质药物的研究,不仅建立了多种蛋白质药物工业化生产的关键技术,而且实际上大大促进了这几种蛋白质药物从研究到大规模生产的转化,提升了生产效率和产品稳定性。
In the present work, several key technologies were developed to produce therapeutic proteins in recombinant Escherichia coli, such as high-efficient expression technology, protein refolding of inclusion body, separation and preparation of protein at pilot scale, and protein stability improvement, etc. Three kinds of recombinant proteins (EMP1, rhBMP-2and rhG-CSF) in different development stages were targeted in order to solve their specific and urgent problems at lab, at pilot plant and in mature markets respectively.
     Erythropoietin mimetic peptide1(EMP1) is a20-amino acid cyclic peptide which are not found in the primary sequence of EPO, but acts as full agonists and can also stimulate erythropoiesis in mice. In this work, two repeats of EMP1linked by flexible peptide with different length were expressed in E. coli as fusion proteins with thioredoxin or DsbA. Under optimal temperature and IPTG concentration, the highest soluble expression level of fusion proteins was0.83g/L. The soluble part of fusion proteins could be purified by metal chelating affinity chromatography and hydrophobic interaction chromatography with enhanced purity, and the overall process yield was about6.3-7.8%. The two repeat peptide of EMP1was released by enterokinase cleavage of fusion proteins and obtained by followed reversed phase chromatography. The biological activities of the resulted products, EMP1-EMP1(S) and EMP1-EMP1(L) were10-fold greater than monomeric EMP1, the length of flexible linker has negligible effect on the biological activity.
     The mature bone morphogenetic protein-2(BMP-2) consists of114amino acids and acts as a bioactive disulfide-linked homodimer, or a heterodimer linked with BMP-7. Due to its high hydrophobity, in vitro refolding of insoluble rhBMP-2was low-efficient, and subsequent purification of soluble rhBMP-2was still difficult and expensive due to the employment of heparin sepharose affinity chromatography. In order to solve the above problems, the post-expression processing procedure including inclusion bodies solubilization and in vitro refolding in different solutions were systematically investigated. The results indicated that Gdn-HCl solution (buffer A) was relatively more effective in solubilizing inclusion body, resulting in higher protein recovery and the optimal refolding solution was formulated. Under the optimized conditions, an effective and economic refolding process by simple dilution was established and successfully scaled up with yield higher than70%. The refolding mixture could be subjected to subsequent purification directly without any adjustment or pre-treatment. Then a novel purification process to produce active rhBMP-2homodimer from refolding mixture by hydrophobic interaction chromatography (HIC) was proposed. N, N-dimethylformamide (DMF) was adopted as additive and its concentration was optimized. It was found that5%(V/V) DMF can enhance the resolution of rhBMP-2homodimer most effectively. The rhBMP-2homodimer was purified to homogeneity through two HIC separations at different salt content, the purified rhBMP-2homodimer with high purity exhibited equivalent alkaline phosphatase (ALP) activity to commercial rhBMP-2produced from Chinese hamster ovary cell (CHO) and higher ectopic bone formation capacity. The average process yield was80mg rhBMP-2homodimer per g of wet inclusion bodies. DMF could be totally removed from the purified protein without any detectable trace after dialysis and lyophilization of final product. This efficient refolding and purification procedure was successfully scaled up in the pilot pharmaceutical plant. In the mean time, reversed phase chromatography and size exclusion chromatography were first used to measure the purity of rhBMP-2from E.coli which was validated with capillary electrophoresis and electrophoresis.
     The recombinant human granulocyte colony stimulating factor (rhG-CSF) is an important therapeutic protein which has been produced at large scale in biotechnology industry. How to guarantee and improve the stability and quality of final product is a practical and important issue for the manufacturers. In this work, a reversed phase chromatography using C4column was applied to determine the purity of rhG-CSF samples with better resolution. Three stages of manufactering process were evaluated to decide their effects on the stability of product. The effects of different sources of ampoules, vials and prefilled syringes on the rhG-CSF stability were compared. After the optimization of preparation condition and the adoption of novel formulation, rhG-CSF products filled in selected ampoule, vial and prefilled syringe exhibited much higher quality and stability than the traditional products.
     In conclusion, by targeting at three different recombinant proteins with E. coli, the present work not only developed several key technologies for their efficient production, but also pushed the transfer of these therapeutic proteins from research to large-scale production with enhanced productivity and improved stability.
引文
1. 詹正嵩,羡秋盛,朴淳一,等.生物技术药物发展现状与展望[J].实用医药杂志.2011,28(2):168-170.
    2. 骆建新,郑崛村,马用信,等.人类基因组计划与后基因组时代[J].中国生物工程杂志.2003,23(11):87-94.
    3. 戎晶晶,刁振宇,周国华.大肠杆菌表达系统的研究进展[J].药物生物技术.2005,12(06):416-420.
    4. 刘爽,胡宝成.原核系统可溶性表达策略[J].生物技术通讯.2005,16(2):172-175.
    5. Georgiou Q Valax P. Expression of correctly folded proteins in Escherichia coli [J]. Curr Opin Biotechnol.1996,7(2):190-197.
    6. Nilsson J, Stahl S, Lundeberg J, et al. Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins [J]. Protein Expr Purif.1997,11(1):1-16.
    7. Charlton A, Zachariou M. Tag removal by site-specific cleavage of recombinant fusion proteins [J]. Methods Mol Biol.2011,681:349-367.
    8. 张婷婷,叶波平.包涵体蛋白质的复性研究进展[J].药物生物技术.2007,17(4):306-309.
    9. Lilie H, Schwarz E, Rudolph R. Advances in refolding of proteins produced in E.coli [J]. Curr Opin Biotechnol.1998,9(5):497-501.
    10. Grantcharova V, Alm EJ, Baker D, et al. Mechanisms of protein folding [J]. Curr Opin Struct Biol. 2001,11(1):70-82.
    11. Onuchic JN, Wolynes PG. Theory of protein folding [J]. Curr Opin Struct Biol.2004,14(1):70-75.
    12.王颖,董晓燕,孙彦.蛋白质复性技术研究进展[J].生物工程进展.2002,22(2):61-65.
    13. Clark ED. Protein refolding for industrial processes [J]. Curr Opin Biotechnol.2001,12(2):202-207.
    14. Middelberg AP. Preparative protein refolding [J]. Trends Biotechnol.2002,20(10):437-443.
    15. Jungbauer A, Kaar W, Schlegl R. Folding and refolding of proteins in chromatographic beds [J]. Curr Opin Biotechnol.2004,15(5):487-494.
    16. Li M, Su ZG, Janson JC. In vitro protein refolding by chromatographic procedures [J]. Protein Expr Purif.2004,33(1):1-10.
    17. Tsumoto K, Ejima D, Kumagai I, et al. Practical considerations in refolding proteins from inclusion bodies [J]. Protein Expr Purif.2003,28(1):1-8.
    18. Jungbauer A, Kaar W. Current status of technical protein refolding [J]. J Biotechnol.2007, 128(3):587-596.
    19. Burgess RR. Refolding solubilized inclusion body proteins [J]. Methods Enzymol.2009,463:259-282.
    20. De Bernardez Clark E, Schwarz E, Rudolph R. Inhibition of aggregation side reactions during in vitro protein folding [J]. Methods Enzymol.1999,309:217-236.
    21. Fink AL. Chaperone-mediated protein folding [J]. Physiol Rev.1999,79(2):425-449.
    22. Daugherty DL, Rozema D, Hanson PE, Gellman SH. Artificial chaperone-assisted refolding of citrate synthase [J]. J Biol Chem.1998,273(51):33961-33971.
    23.余路.折叠酶DsbA的制备及协助蛋白质体外复性的研究[D].浙江大学硕士学位论文,浙江,杭州,2007,18-26.
    24. Willis MS, Hogan JK, Prabhakar P, et al. Investigation of protein refolding using a fractional factorial screen:a study of reagent effects and interactions [J]. Protein Sci.2005,14(7):1818-1826.
    25. Basu A, Li X, Leong SS. Refolding of proteins from inclusion bodies:rational design and recipes [J]. Appl Microbiol Biotechnol.2011,92(2):241-251.
    26. Expert-Bezancon N, Rabilloud T, Vuillard L, et al. Physical-chemical features of non-detergent sulfobetaines active as protein-folding helpers [J]. Biophys Chem.2003,100(1-3):469-479.
    27. Chen J, Liu Y, Li X, et al. Cooperative effects of urea and L-arginine on protein refolding [J]. Protein Expr Purif.2009,66(1):82-90.
    28. Mannen T, Yamaguchi S, Honda J, et al. Expanded-bed protein refolding using a solid-phase artificial chaperone [J]. J Biosci Bioeng.2001,91(4):403-408.
    29.陈浩.重组蛋白质纯化技术[J].中国生物工程杂志.2002,22(5):87-92.
    30. Manning MC, Patel K, Borchardt RT. Stability of protein pharmaceuticals [J]. Pharm Res.1989, 6(11):903-918.
    31. Manning MC, Chou DK, Murphy BM. et al. Stability of protein pharmaceuticals:An Update [J]. Pharm. Res.,2010,27(4):544-575.
    32. Wang W. Instability, stabilization, and formulation of liquid protein pharmaceuticals [J]. Int J Pharm. 1999,185(2):129-188.
    33. Li S, Schoneich C, Borchardt RT. Chemical instability of protein pharmaceuticals:mechanisms of oxidation and strategies for stabilization [J]. Biotechnol Bioeng.1995,48(5):490-500.
    34. Stadtman E R, Levine R L. Protein Oxidation [J]. Ann N Y Acad Sci.2000,899:191-208.
    35. Stadtman E R. Metal ion-catalyzed oxidation of proteins:biochemical mechanism and biological consequences [J]. Free Rad Biol Med.1990,9(4):315-325.
    36. Shacter E. Quantification and significance of protein oxidation in biological samples [J]. Drug Metab Rev.2000,32(3-4):307-326.
    37. Robinson NE. Protein deamidation [J]. Proc Natl Acad Sci U S A.2002,99(8):5283-5288.
    38. Robinson NE, Robinson ZW, Robinson BR. et al. Structure-dependent non-enzymatic deamidation of glutaminyl and asparaginyl pentapeptides [J]. J Peptide Res.2004,63(5):426-436.
    39.李世崇,陈昭烈.蛋白质不稳定性及其分析技术[J].药物生物技术.2003,10(1);60-61.
    40. Wang W. Protein aggregation and its inhibition in biopharmaceutics [J]. Int J Pharm.2005,289 (1-2): 1-30.
    41. Carpenter J F. Pikal M J. Chang BS, et al. Rational design of stable lyophilized protein formulations: Some practical advice [J]. Pharm Res.1997.14(8):969-975.
    42. Maa Y-F, Prestrelski SJ. Biopharmaceutical powders:particle formation and formulation considerations [J]. Curr Pharm Biotechnol.2000,1:283-302.
    43. Brannigan JA. Wilkinson AJ. Protein engineering 20 years on [J]. Nat Rev Mol Cell Biol.2002, 3:964-70.
    44. Zhu G, Xu C, Teng M, Tao L, Zhu X, Wu C, Hang J, Niu L, Wang Y. Increasing the thermostability of D-glucose isomerase by introduction of a proline into the turn of a random coil [J]. Protein Engineering.1999,12(8):635-638
    45.任勇,丁东平,渠刚.蛋白质类药物的稳定性研究进展[J].华南国防医学杂志.2006,20(4):31-33.
    46. Roberts M J, Bentley M D, Harris J M. Chemistry for Peptide and Protein PEGylation [J]. Adv Drug Delivery Rev.2002,54:459-476.
    47. Krantz SB. Erythropoietin [J]. Blood.1991,77(3):419-34.
    48. Cases A. Darbepoetin alfa:a novel erythropoiesis-stimulating protein [J]. Drugs Today (Barc).2003, 39(7):477-495.
    49. Curran MP, McCormack PL. Methoxy polyethylene glycol-epoetin beta:a review of its use in the management of anaemia associated with chronic kidney disease [J]. Drugs.2008,68(8):1139-56.
    50. Casadevall N, Nataf J, Viron B, et al. Pure red-cell aplasia and antierythropoietin antibodies in patients treated with recombinant erythropoietin [J]. N Engl J Med.2002,346(7):469-475.
    51. Yu NH, Ho EN, Wan TS, et al. Doping control analysis of recombinant human erythropoietin, darbepoetin alfa and methoxy polyethylene glycol-epoetin beta in equine plasma by nano-liquid chromatography-tandem mass spectrometry [J]. Anal Bioanal Chem.2010,396(7):2513-2521.
    52. Wrighton NC, Farrell FX, Chang R, et al. Small peptides as potent mimetics of the protein hormone erythropoietin [J]. Science.1996,273(5274):458-464.
    53. Livnah O, Stura EA, Johnson DL, et al. Functional mimicry of a protein hormone by a peptide agonist: the EPO receptor complex at 2.8 A [J]. Science.1996,273(5274):464-471.
    54. Wrighton NC, Balasubramanian P, Barbone FP, et al. Increased potency of an erythropoietin peptide mimetic through covalent dimerization [J]. Nat Biotechnol.1997,15(12):1261-1265.
    55. Johnson DL, Farrell FX, Barbone FP, et al. Amino-terminal dimerization of an erythropoietin mimetic peptide results in increased erythropoietic activity [J]. Chem Biol.1997,4(12):939-950.
    56. Naranda T, Wong K, Kaufman RI, et al. Activation of erythropoietin receptor in the absence of hormone by a peptide that binds to a domain different from the hormone binding site [J]. Proc Natl Acad Sci U S A.1999,96(13):7569-7574.
    57. McConnell SJ, Dinh T, Le MH, et al. Isolation of erythropoietin receptor agonist peptides using evolved phage libraries [J]. Biol Chem.1998,379(10):1279-1286.
    58. Dower WJ. Targeting growth factor and cytokine receptors with recombinant peptide libraries [J]. Curr Opin Chem Biol.1998,2(3):328-34.
    59. Middleton SA, Barbone FP, Johnson DL, et al. Shared and unique determinants of the erythropoietin (EPO) receptor are important for binding EPO and EPO mimetic peptide [J]. J Biol Chem.1999, 274(20):14163-14169.
    60. Livnah O, Johnson DL, Stura EA, et al. An antagonist peptide-EPO receptor complex suggests that receptor dimerization is not sufficient for activation [J]. Nat Struct Biol.1998,5(11):993-1004.
    61. Johnson DL, Farrell FX, Barbone FP, et al. Identification of a 13 amino acid peptide mimetic of erythropoietin and description of amino acids critical for the mimetic activity of EMP1[J]. Biochemistry.1998,37(11):3699-3710.
    62.齐岩峰.人促红细胞生成素小肽模拟物研究[D].吉林大学博士学位论文,吉林,长春,2006,1-103.
    63.齐岩峰,高雪峰,黄旭日.促红细胞生成素受体激活剂的理论突变设计[J].高等学校化学学报.2008,29(3):615-7.
    64. Vadas O, Rose K. Multivalency-a way to enhance binding avidities and bioactivity-preliminary applications to EPO [J]. J Pept Sci.2007,13(9):581-7.
    65. Vadas O, Hartley O, Rose K. Characterization of new multimeric erythropoietin receptor agonists [J].Biopolymers.2008,90(4):496-502.
    66. Greindl A. Kessler C, Breuer B, et al. AGEM400(HES), a novel erythropoietin mimetic peptide conjugated to hydroxyethyl starch with excellent in vitro efficacy [J]. The Open Hematology Journal. 2010,4:1-14.
    67. Fan Q, Leuther KK, Holmes CP, et al. Preclinical evaluation of Hematide, a novel erythropoiesis stimulating agent, for the treatment of anemia [J]. Exp Hematol.2006,34(10):1303-1311.
    68. Stead RB, Lambert J, Wessels D, et al. Evaluation of the safety and pharmacodynamics of Hematide, a novel erythropoietic agent, in a phase I, double-blind, placebo-controlled, dose-escalation study in healthy volunteers [J]. Blood.2006,108(6):1830-4.
    69. Woodburn KW, Fan Q, Winslow S, et al. Hematide is immunologically distinct from erythropoietin and corrects anemia induced by antierythropoietin antibodies in a rat pure red cell aplasia model [J]. Exp Hematol.2007,35(8):1201-1208.
    70. Doss S, Schiller B. Peginesatide:a potential erythropoiesis stimulating agent for the treatment of anemia of chronic renal failure [J]. Nephrol Nurs J.2010,37(6):617-626.
    71. Moller I, Thomas A, Geyer H, et al. Synthesis, characterisation, and mass spectrometric detection of a pegylated EPO-mimetic peptide for sports drug testing purposes [J]. Rapid Commun Mass Spectrom. 2011,25(15):2115-2123.
    72. Macdougall IC, Rossert J, Casadevall N, et al. A Peptide-Based erythropoietin-Receptor Agonist for Pure Red-Cell Aplasia [J]. N Engl J Med.2009,361(19):1848-1855.
    73. Bugelski PJ. Capocasale RJ, Makropoulos D, et al. CNTO 530:molecular pharmacology in human UT-7(EPO) cells and pharmacokinetics and pharmacodynamics in mice. J Biotechnol.2008, 134:171-180.
    74. Perez-Ruixo JJ, Krzyzanski W, Bouman-Thio E, et al. Pharmacokinetics and pharmacodynamics of the erythropoietin Mimetibody construct CNTO 528 in healthy subjects [J]. Clin Pharmacokinet.2009, 48(9):601-613.
    75. Sathyanarayana P, Houde E, Marshall D, et al. CNTO 530 functions as a potent EPO mimetic via unique sustained effects on bone marrow proerythroblast pools [J]. Blood.2009,113(20):4955-4962.
    76. Kuai L. Wu C. Qiu Q, Zhang J, et al. Plasminogen activator inhibitor-1 fused with erythropoietin (EPO) mimetic peptide (EMP) enhances the EPO activity of EMP [J]. J Peptide Res.2000,56:59-62.
    77. Su L, Chen SS, Yang KG, et al. High-level expression of human stem cell factor fused with erythropoietin mimetic peptide in Escherichia coli [J]. Protein Expr Purif.2006,47(2):477-482.
    78.韩苇,颜真,王俊楼,等.EPO模拟肽基因4串联体的构建和表达[J].第四军医大学学报.2001,22(4):319-321.
    79.韩苇,颜真,王俊楼,等.改变部分TIR对EPO模拟肽8串联体表达的影响[J].第四军医大学学报.2001,22(3):224-226.
    80. Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering:the road from the laboratory to the clinic, part I (basic concepts) [J]. J Tissue Eng Regen Med.2008,2(1):1-13.
    81. Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering:the road from the laboratory to the clinic, Ⅱ (BMP delivery) [J]. J Tissue Eng Regen Med.2008,2(2-3):81-96.
    82. Reddi AH. Bone morphogenetic proteins:from basic science to clinical applications [J]. J Bone Joint Surg Am.2001,83-A Suppl 1(Pt 1):S1-6.
    83. Cheng H, Jiang W, Phillips FM, et al. Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs) [J]. J Bone Joint Surg Am.2003,85-A (8):1544-1552.
    84. Riley EH, Lane JM, Urist MR, et al. Bone morphogenetic protein-2:biology and applications [J]. Clin Orthop Relat Res.1996(324):39-46.
    85. McKay WF, Peckham SM, Badura JM. A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE Bone Graft) [J]. Int Orthop.2007,31(6):729-734.
    86. Govender S, Csimma C, Genant HK. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures:a prospective, controlled, randomized study of four hundred and fifty patients [J]. J Bone Joint Surg Am.2006,88(6):1258-1265.
    87. Vaccaro AR, Lawrence JP, Patel T, et al. The safety and efficacy of OP-1 (rhBMP-7) as a replacement for iliac crest autograft in posterolateral lumbar arthrodesis:a long-term (>4 years) pivotal study [J]. Spine.2008,33(26):2850-62.
    88. Bessho K, Tagawa T, Murata M. Comparison of bone matrix-derived bone morphogenetic proteins from various animals [J]. J Oral Maxillofac Surg.1992,50(5):496-501.
    89. Bessho K, Kusumoto K, Fujimura K, et al. Comparison of recombinant and purified human bone morphogenetic protein [J]. Br J Oral Maxillofac Surg.1999,37(1):2-5.
    90. Kusumoto K, Bessho K, Fujimura K, et al. Comparative study of bone marrow induced by purified BMP and recombinant human BMP-2 [J]. Biochem Biophys Res Commun.1995,215(1):205-11.
    91. Barr T, McNamara AJ, Sandor GK, et al. Comparison of the osteoinductivity of bioimplants containing recombinant human bone morphogenetic proteins 2 (Infuse) and 7 (OP-1) [J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod.2010,109(4):531-40.
    92. Bessho K, Konishi Y, Kaihara S, et al. Bone induction by Escherichia coli-derived recombinant human bone morphogenetic protein-2 compared with Chinese hamster ovary cell-derived recombinant human bone morphogenetic protein-2 [J]. Br J Oral Maxillofac Surg.2000,38(6):645-649.
    93. Wang EA, Rosen V, D'Alessandro JS, et al. Recombinant human bone morphogenetic protein induces bone formation [J]. Proc Natl Acad Sci U S A.1990,87(6):2220-4.
    94. Israel DI, Nove J, Kerns KM, et al. Expression and characterization of bone morphogenetic protein-2 in Chinese hamster ovary cells [J]. Growth Factors.1992,7(2):139-50.
    95. Meleady P, Henry M, Gammell P, et al. Proteomic profiling of CHO cells with enhanced rhBMP-2 productivity following co-expression of PACEsol [J]. Proteomics.2008,8(13):2611-24.
    96.张道永,杨爽,吕树军,等.重组人骨形态发生蛋白2在CHO细胞中的表达、鉴定及活性分析[J].生物工程学报.2006,22(6):968-972.
    97.高原,索广力,韩津,等.重组人BMP-2在烟草不同组织中的表达[J].遗传学报.2006,33(1):56-62.
    98. Suo G, Chen B, Zhang J, et al. Expression of active hBMP2 in transgenic tobacco plants [J]. Plant Cell Rep.2006,25(12):1316-24.
    99. Ishida N, Tsujimoto M, Kanaya T, et al. Expression and characterization of human bone morphogenetic protein-2 in silkworm larvae infected with recombinant bombyx mori nuclear polyhedrosis virus [J]. J Biochem.1994,115(2):279-85.
    100.林松,宓怡德,戴聂红,等.重组人骨形态形成蛋白2在家蚕幼虫中表达及产物纯化[J].生物化学与生物物理学.1996,28(4):374-379.
    101.李毅.人骨形成蛋白2成熟肽在Pichia pastoris酵母系统中的表达、产物纯化及其生物学活性的初步研究[D].第四军医大学硕士学位论文,陕西,西安,2003:1-96.
    102.梁东春,左爱军,王宝利,等.人骨形态发生蛋白2(BMP-2)在巴斯德毕赤酵母中的表达[J].中国生物工程杂志.2005,25(7):61-65.
    103.赵明,王会信,周廷冲.重组人骨形态发生蛋白-2成熟肽在大肠杆菌中的表达及其诱导成骨活性[J].中国生物化学与分子生物学报.1994,]0(03):319-324.
    104.卢兹凡,刘新平,陈苏民,等.人骨形成蛋白2碳端肽在大肠杆菌中的高表达及活性测定[J].第四军医大学学报.1995,16(6):429-431.
    105.林松,徐印钦,李伯良.人骨形成蛋白2A活性片段在大肠杆菌中的高效表达[J].生物化学与生物物理学报.1996,28(1):8-13.
    106. Ruppert R, Hoffmann E, Sebald W. Human bone morphogenetic protein 2 contains a heparin-binding site which modifies its biological activity [J]. Eur J Biochem.1996,237(1):295-302.
    107. Kiibler NR, Reuther JF, Faller G, et al. Inductive properties of recombinant human BMP-2 produced in a bacterial expression system [J]. Int J Oral Maxillofac Surg.1998,27:305-309.
    108.蒲勤.人骨形成蛋白2成熟肽在大肠杆菌中的表达、纯化及其生物学活性的研究[D].第四军医大学博士学位论文,陕西,西安,2000:]-77.
    109.熊绍虎.人骨形态发生蛋白-2在大肠杆菌中的高效表达[D].第一军医大学硕士学位论文,广东,广州,2000:1-61.
    110.李毅,蒲勤,赵忠良,等.溶氧反馈-分批补料高密度培养人骨形成蛋白-2工程菌[J].生物工程学报.2002,18(6):718-723.
    111.邓少林,权毅,潘显明,等.骨形态发生蛋白的可溶性表达、纯化及抗体制备[J].四川大学学 报(医学版).2008,39(1):19-22,51.
    112. Ihm HJ, Yang SJ, Huh JW, et al. Soluble expression and purification of synthetic human bone morphogenetic protein-2 in Escherichia coli [J]. BMB Rep.2008,41(5):404-7.
    113.孙传秀,赵文志,何盛为,等.重组人骨形态发生蛋白2在大肠杆菌中的可溶性表达和纯化[J].中国组织工程研究与临床康复.2009,13(7):1267-1270.
    114. Scheufler C, Sebald W, Hulsmeyer M. Crystal structure of human bone morphogenetic protein-2 at 2.7 A resolution [J]. J Mol Biol.1999,287(1):103-15.
    115. Israel DI, Nove J, Kerns KM, et al. Heterodimeric bone morphogenetic proteins show enhanced activity in vitro and in vivo [J]. Growth Factors.1996,13(3-4):291-300.
    116. Zheng Y, Wu G, Zhao J, et al. rhBMP2/7 heterodimer:an osteoblastogenesis inducer of not higher potency but lower effective concentration compared with rhBMP2 and rhBMP7 homodimers [J]. Tissue Eng Part A.2010,16(3):879-87.
    117.熊绍虎,余磊,谭海燕,等.重组人骨形态发生蛋白-2在大肠杆菌中的表达及纯化[J].第-军医大学学报.2002,22(5):413-416.
    118.赵玮钦,陈苏民,王涛.不同复性方法制备的rhBMP-2m诱导异位成骨活性比较[J].第四军医大学学报.2007.28(7):619-623.
    119. Zhang H, Wu J, Zhang Y, et al. Optimized procedure for expression and renaturation of recombinant human bone morphogenetic protein-2 at high protein concentrations [J]. Mol Biol Rep.2010, 37(7):3089-95.
    120.王馥丽.高浓度rhBMP-2m复性条件的探讨[D].第四军医大学硕士学位论文,陕西,西安,2008:1-64.
    121. Vallejo LF, Brokelmann M, Marten S, et al. Renaturation and purification of bone morphogenetic protein-2 produced as inclusion bodies in high-cell-density cultures of recombinant Escherichia coli [J]. J Biotechnol.2002,94(2):185-94.
    122. Vallejo LF, Rinas U. Optimized procedure for renaturation of recombinant human bone morphogenetic protein-2 at high protein concentration [J]. Biotechnol Bioeng.2004 85(6):601-9.
    123.孙晋华.重组人骨形成蛋白-2在大肠杆菌中的高效表达及体外复性[D].暨南大学硕士学位论文,广东,广州,2004:1-70.
    124.Hillger F. Herr G, Rudolph R. et al. Biophysical comparison of BMP-2, ProBMP-2, and the free pro-peptide reveals stabilization of the pro-peptide by the mature growth factor [J]. J Biol Chem.2005, 280(15):14974-80.
    125. Long S, Truong L, Bennett K, et al. Expression, purification, and renaturation of bone morphogenetic protein-2 from Escherichia coli [J]. Protein Expr Purif.2006,46(2):374-8.
    126. Von Einem S, Schwarz E, Rudolph R. A novel two-step renaturation procedure for efficient production of recombinant BMP-2 [J]. Protein Expr Purif.2010,73(1):65-9.
    127. Zhang Y. Ma Y. Yang M. et al. Expression, purification, and refolding of a recombinant human bone morphogenetic protein 2 in vitro [J]. Protein Expr Purif.2011,75(2):155-60
    128. Sharapova NE, Kotnova AP, Galushkina ZM, et al. Production of the recombinant human bone morphogenetic protein-2 in Escherichia coli and testing of its biological activity in vitro and in vivo [J]. Mol Biol (Mosk).2010.44(6):1036-44.
    129. Yao SH, Zhang LL, Cheng SY, et al. Refolding and purification of rhBMP-2 expressed as inclusion bodies in E.coli with hydroxyapatite chromatography [J]. Key Eng Mater.2005,288-289:661-664.
    130.姚少华.重组人骨形态发生蛋白-2在大肠杆菌中的表达、复性与纯化[D].四川大学硕士学位论文,四川,成都,2005:1-64.
    131.Urist MR, Huo YK, Brownell AG, et al. Purification of bovine bone morphogenetic protein by hydroxyapatite chromatography [J]. Proc Natl Acad Sci U S A.1984,81(2):371-5.
    132.李睿书,王石泉,谭向阳,等.中国地鼠卵巢细胞培养上清中重组骨形态发生蛋白2的三步纯化法(英文)[J].南京大学学报(自然科学版),2010,46(1):85-91.
    133. Gueorguieva L, Vallejo LF, Rinas U, et al. Discontinuous and continuous separation of the monomeric and dimeric forms of human bone morphogenetic protein-2 from renaturation batches [J]. J Chromatogr A.2006,1135(2):142-50.
    134. Kessler LC, Gueorguieva L, Rinas U, et al. Step gradients in 3-zone simulated moving bed chromatography. Application to the purification of antibodies and bone morphogenetic protein-2 [J]. J Chromatogr A.2007,1176(1-2):69-78.
    135. Welte K, Gabrilove J, Bronchud MH. Platzer E, Morstyn G. Filgrastim (r-metHuG-CSF):the first 10 years [J]. Blood.1996,88(6):1907-29.
    136. Arakawa T. Horan TP, Leong K, et al. Structure and activity of granulocyte colony-stimulating factor derived from CHO cells containing cDNA coding for alternatively spliced sequences [J]. Arch Biochem Biophys.1995,(1):285-9.
    137. Dunn CJ, Goa KL. Lenograstim:an update of its pharmacological properties and use in chemotherapy-induced neutropenia and related clinical settings [J]. Drugs.2000,59(3):681-717.
    138. Herman AC, Boone TC, Lu HS. Characterization, formulation, and stability of Neupogen (Filgrastim), a recombinant human granulocyte-colony stimulating factor, in:R.I. Pearlman, Y. J. Wang (Eds.), Formulation, Characterization, and Stability of Protein Drugs[M], Plenum Press, New York, 1996,303-328.
    139. Lu HS, Clogston CL, Narhi LO, et al. Folding and oxidation of recombinant human granulocyte colony stimulating factor produced in Escherichia coli. Characterization of the disulfide-reduced intermediates and cysteine→serine analogs [J]. J Biol Chem.1992,267(13):8770-7.
    140.国家药典委员会.《中国药典》2005年版(三部)[S].北京:中国医药科技出版社出版2005,234-235.
    141.国家药典委员会.《中国药典》2010年版(三部)[S].北京:中国医药科技出版社出版2010,296-297.
    142. EDQM. European Pharmacopoeia 6.3. Filgrastim concentrated solution [S]. Strasbourg, France, 01/2009:2206.
    143. EDQM. European Pharmacopoeia 6.8. Filgrastim concentrated solution [S]. Strasbourg, France, 07/2010:2206.
    144. EDQM. European Pharmacopoeia7.0. Filgrastim concentrated solution [S]. Strasbourg, France, 07/2010:2206.
    145. The United States Pharmacopeial Convention. Filgrastim Monograph IN-PROCESS REVISION [S]. Pharmacopeial Forum.2010,36(5),1180-1184.
    146. Reubsaet JL, Beijnen JH, Bult A, et al. Oxidation of recombinant methionyl human granulocyte colony stimulating factor [J]. J Pharm Biomed Anal.1998,17(2):283-289.
    147. Lu HS, Fausset PR, Narhi LO, et al. Chemical modification and site-directed mutagenesis of methionine residues in recombinant human granulocyte colony-stimulating factor:effect on stability and biological activity [J]. Arch Biochem Biophys.1999,362(1):1-11.
    148. Chu JW, Yin J, Brooks BR, et al. A comprehensive picture of non-site specific oxidation of methionine residues by peroxides in protein pharmaceuticals [J]. J Pharm Sci.2004,93 (12):3096-102.
    149. Chu JW, Brooks BR, Trout BL. Oxidation of methionine residues in aqueous solutions:free methionine and methionine in granulocyte colony-stimulating factor [J]. J Am Chem Soc.2004, 126(50):16601-7.
    150. Pan B, Abel J, Ricci MS, et al. Comparative oxidation studies of methionine residues reflect a structural effect on chemical kinetics in rhG-CSF [J]. Biochemistry.2006,45(51):15430-43.
    151. Dalmora SL, Massiero S, Oliveira P, et al. Validation of an RP-HPLC method and assessment of rhG-CSF in pharmaceutical formulation by liquid chromatography and biological assay [J]. Journal of liquid chromatography & related technologies.2006,29:1753-1767.
    152. Skrlin A, Krnic EK, Gosak D, et al. Correlation of liquid chromatographic and biological assay for potency assessment of filgrastim and related impurities [J]. J Pharm Biomed Anal.2010, 53(2):262-268.
    153. Somani S, Mandal G, Banerjee S, et al. Rapid and sensitive method to detect oxidized forms of rhGCSF using agilent 2100 bioanalyzer [J]. Anal Lett.2009,42(8):1070-1083.
    154. Arakawa T, Prestrelski SJ, Narhi LO, et al. Cysteine 17 of recombinant human granulocyte-colony stimulating factor is partially solvent-exposed [J]. J Protein Chem.1993,12(5):525-31.
    155. Leon J, Reubsaet E, Beijnen JH, et al. Reduction of Cys36-Cys42 and Cys64-Cys74 disulfide bonds in recombinant human granulocyte colony stimulating factor [J]. J Pharm Biomed Anal.1999, 19(6):837-45.
    156. Raso SW, Abel J, Barnes JM, et al. Aggregation of granulocyte-colony stimulating factor in vitro involves a conformationally altered monomeric state [J]. Protein Sci.2005,14(9):2246-57.
    157. Krishnan S, Chi EY, Webb JN, et al. Aggregation of granulocyte colony stimulating factor under physiological conditions:characterization and thermodynamic inhibition [J]. Biochemistry.2002, 41(20):6422-31.
    158. Thirumangalathu R, Krishnan S, Brems DN, et al. Effects of pH, temperature, and sucrose on benzyl alcohol-induced aggregation of recombinant human granulocyte colony stimulating factor [J]. J Pharm Sci.2006,95(7):1480-97.
    159.Narhi LO, Kenney WC, Arakawa T. Conformational changes of recombinant human granulocyte-colony stimulating factor induced by pH and guanidine hydrochloride [J]. J Protein Chem. 1991,10(4):359-67.
    160. Ribarska JT, Jolevska ST, Panovska AP, et al. Studying the formation of aggregates in recombinant human granulocyte-colony stimulating factor (rHuG-CSF), lenograstim, using size-exclusion chromatography and SDS-PAGE [J]. Acta Pharm.2008,58(2):199-206.
    161. Codevilla C F, Brum Jr L, de Oliveira P R, et al. Validation of an SEC-HPLC method for the analysis of rhG-CSF in pharmaceutical formulations [J]. J Liq Chromatogr Relat Technol.2005,27(17): 2689-2698.
    162. Zhou GH, Luo GA, Sun GQ, et al. Characterization of recombinant human granulocyte colony stimulating factor (rHuG-CSF) by capillary zone electrophoresis, capillary isoelectric focusing electrophoresis and electrospray ionization mass spectrometry [J]. J Pharm Biomed Anal.2004, 35(3):425-32.
    163. Somerville LE, Douglas AJ, Irvine AE. Discrimination of granulocyte colony-stimulating factor isoforms by high-performance capillary electrophoresis [J]. J Chromatogr B.1999,732(1):81-9.
    164. Dalmora SL, D'Avila FB, da Silva LM, et al. Development and validation of a capillary zone electrophoresis method for assessment of recombinant human granulocyte colony-stimulating factor in pharmaceutical formulations and its correlation with liquid chromatography methods and bioassay [J]. J Chromatogr B.2009,877(24):2471-6.
    165.Clogston CL. Hsu YR, Boone TC, et al. Detection and quantitation of recombinant granulocyte colony-stimulating factor charge isoforms:comparative analysis by cationic-exchange chromatography, isoelectric focusing gel electrophoresis, and peptide mapping [J]. Anal Biochem. 1992,202(2):375-83.
    166.周俊岭,方向东,马骊,等.重组人粒细胞集落刺激因子生产质量控制方法的研究[J].中国生化药物杂志.1997,18(06):271-275.
    167.谢异泓,钟英,黄建宏.重组人粒细胞集落刺激因子注射液的稳定性研究[J].中国医药工业杂志.2000,31(03):123-124.
    168.陆刚,黄健,李宏军,等.重组人粒细胞集落刺激因子rhG-CSF稳定性研究[J].黑龙江医药.2001.14(04):269-271.
    169.赵先亮,黄玉录,王春雨,等.重组人粒细胞集落刺激因子热稳定性研究[J].齐鲁药事.2007,26(06):342-344.
    170.赵先亮,王春雨.重组人粒细胞刺激因子在《中国药典》和《欧洲药典》中质量标准不同点的对比分析[J].齐鲁药事.2010.29(]):25-27.
    171.Pavisic R, Hock K, Mijic I, et al. Recombinant human granulocyte colony stimulating factor pre-screening and screening of stabilizing carbohydrates and polyols[J]. Int J Pharm.2010, 387(1-2):110-119.
    172. Yin J, Chu JW, Ricci MS, et al. Effects of antioxidants on the hydrogen peroxide-mediated oxidation of methionine residues in granulocyte colony-stimulating factor and human parathyroid hormone fragment 13-34 [J]. Pharm Res.2004,21(12):2377-83.
    173. Yin J, Chu JW, Ricci MS, et al. Effects of excipients on the hydrogen peroxide-induced oxidation of methionine residues in granulocyte colony-stimulating factor [J]. Pharm Res.2005,22(1):141-147.
    174. Skrlin A, Radic I, Vuletic M, et al. Comparison of the physicochemical properties of a biosimilar filgrastim with those of reference filgrastim [J]. Biologicals.2010,38(5):557-66.
    175. Sorgel F, Lerch H, Lauber T. Physicochemical and biologic comparability of a biosimilar granulocyte colony-stimulating factor with its reference product [J]. BioDrugs.2010,24(6):347-57.
    176. Fujii I, Nagahara Y, Yamasaki M, Structure of KW-2228, a tailored human granulocyte colony-stimulating factor with enhanced biological activity and stability [J]. FEBS Lett.1997, 410(2-3):131-5.
    177.范慧,莫晓宁,张颖妹,等.人重组粒细胞集落刺激因子突变体rhG-CSF-Ala-17的纯化及部分理化性质[J].北京医科大学学报.2000,32(4):337-339.
    178. Bishop B, Koay DC, Sartorelli AC, et al. Reengineering granulocyte colony-stimulating factor for enhanced stability [J]. J Biol Chem.2001,276(36):33465-70.
    179. Huang YS, Wen XF, Wu YL, et al. Engineering a pharmacologically superior form of granulocyte-colony-stimulating factor by fusion with gelatin-like-protein polymer [J]. Eur J Pharm Biopharm.2010,74(3):435-41.
    180. Cox GN, Smith DJ, Carlson SJ, et al. Enhanced circulating half-life and hematopoietic properties of a human granulocyte colony-stimulating factor/immunoglobulin fusion protein [J]. Exp Hematol.2004, 32(5):441-9.
    181. Maeda H, Nakagawa T, Adachi N, et al. Design of long-acting formulation of protein drugs with a double-layer structure and its application to rhG-CSF [J]. J Control Release.2003,91(3):281-97.
    182. Zhai Y, Zhao Y, Lei J, et al. Enhanced circulation half-life of site-specific PEGylated rhG-CSF: optimization of PEG molecular weight [J]. J Biotechnol.2009,142(3-4):259-66.
    183. Rourke AM, Cha Y, Collins D. Stabilization of granulocyte colony-stimulating factor and structurally analogous growth factors by anionic phospholipids [J]. Biochemistry.1996,35(36):11913-7.
    184. Piedmonte DM, Treuheit MJ. Formulation of Neulasta (pegfilgrastim) [J]. Adv Drug Deliv Rev.2008, 60(1):50-8.
    185. Sambrook J, Fritsch EF, and Maniatis T.分子克隆实验指南(第三版),2002,科学出版社,北京,1-1270.
    186. Kruger NJ. The Bradford method for protein quantitation [J]. Methods Mol Biol.1994; 32:9-15.
    187. L Peng, ZN Xu, XM Fang, F Wang, PL Cen. High-level expression of soluble human β-defensin-2 in Escherichia coli [J]. Process Biochem 2004,39(12):2199-2205.
    188. ZN Xu, F Wang, L Peng, XM Fang, PL Cen. Expression of human beta-defensin-2 with multiple joined genes in Escherichia coli [J]. Appl Biochem Biotech 2005,120(1):1-14.
    189. HQ Chen, ZN Xu, NZ Xu, PL Cen. Efficient production of soluble fusion protein containing human beta-defensin-2 in E. coli cell-free system [J]. J Biotechnol 2005,115(3):307-315.
    190. L Huang, JF Wang, ZX Zhong, L Peng, F Wang, ZN Xu, PL Cen. Production of bioactive human beta-defensin-3 in Escherichia coli by soluble fusion expression [J]. Biotechnol Lett 2006,28(9): 627-632.
    191. ZX Zhong, ZN Xu, L Peng, L Hang, XM Fang, PL Cen. Tandem repeat mhBD2 gene enhance the soluble fusion expression of hBD2 in Escherichia coli [J]. Appl Microbiol Biot 2006,71(5):661-667.
    192. ZN Xu, ZX Zhong, L Huang, L Peng, F Wang, PL Cen. High-level production of bioactive beta-defensin-4 in Escherichia coli by soluble fusion expression [J]. Appl Microbiol Biot 2006,72(3): 471-479.
    193. HQ Chen, ZN Xu, NZ Xu, PL Cen. High-level expression of human beta-defensin-2 gene with rare codons in E. coli cell-free system [J]. Protein Pept Lett 2006,13(2):155-161.
    194. HQ Chen, LM Fan, ZN Xu, PL Cen. Efficient production of soluble fusion protein containing human beta-defensin-3-4 in E. coli cell-free system [J]. Process Biochem 2007,42:423-428.
    195. XA Chen, ZN Xu, W.K.R. Wong, PL Cen. A novel two-stage continuous process for excretive expression of hEGF with recombinant E. coli JM 101 [J]. Process Biochem 2005,40(1):1-4.
    196. XA Chen, ZN Xu, PL Cen, W.K.R. Wong. Enhanced plasmid-stability and production of hEGF by immobilized recombinant E. coli JM101 [J]. Biochem Eng J 2006,28(3):215-219.
    197. JZ Lian, Y Ma, J Cai, M Wu, JF Wang, XN Wang, ZN Xu. High-level expression of soluble subunit b of F1F0 ATP synthase in Escherichia coli cell-free system [J]. Appl Microbiol Biot 2009, 85(2):303-311.
    198. DP Zhang, PL Wei. LM Fan, JZ Lian. L Huang, J Cai, ZN Xu. High-level soluble expression of hIGF-1 fusion protein in recombinant Escherichia coli [J]. Process Biochem 2010,45(8):1401-1405.
    199. Sytkowski AJ, Lunn ED, Davis KL, et al. Human erythropoietin dimers with markedly enhanced in vivo activity [J]. Proc Natl Acad Sci U S A.1998,95(3):1184-8.
    200. Dalle B. Henri A. Rouyer-Fessard P. et al. Dimeric erythropoietin fusion protein with enhanced erythropoietic activity in vitro and in vivo [J]. Blood.2001,97(12):3776-82.
    201. Molineux G, Newland A. Development of romiplostim for the treatment of patients with chronic immune thrombocytopenia:from bench to bedside [J]. Br J Haematol.2010,150(1):9-20.
    202. Muzart J. N, N-Dimethylformamide:much more than a solvent [J]. Tetrahedron 2009,65(40): 8313-23.
    203.史新昌,韩春梅,李响,等.饶春明重组人骨形成蛋白-2的质量控制[J].中国生物制品学杂志.2008,21(7):608-10.
    204. Luca L, Capelle MA, Machaidze G, et al. Physical instability, aggregation and conformational changes of recombinant human bone morphogenetic protein-2 (rhBMP-2) [J]. Int J Pharm.2010, 391(1-2):48-54.
    205. Oliveira AF, Gemming S, Seifert G. Conformational analysis of aqueous BMP-2 using atomistic molecular dynamics simulations [J]. J Phys Chem B.2011,115(5):1122-30.
    206. Yim K. Abrams J. Hsu A. Capillary zone electrophoretic resolution of recombinant human bone morphogenetic protein 2 glycoforms. An investigation into the separation mechanisms for an exquisite separation [J]. J Chromatogr A.1995,716(1-2):401-12.
    207. Kim IS, Lee EN, Cho TH, et al. Promising efficacy of Escherichia coli recombinant human bone morphogenetic protein-2 in collagen sponge for ectopic and orthotopic bone formation and comparison with mammalian cell recombinant human bone morphogenetic protein-2 [J]. Tissue Eng Part A.2011,17(3-4):33
    208.王芳.臭氧消毒研究进展[J].中国消毒学杂志.1998,15(2):95-101.
    209.吕迪,郑迎春.臭氧消毒方式在医药行业生产洁净区(室)中的应用[J].辽宁化工.2003,32(9):404-405.