吉西他滨衍生物SL-01和吲唑双芳基脲类化合物抗癌活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     癌症严重威胁人类健康,除手术治疗外,化学治疗仍然是肿瘤治疗的主要手段。目前临床广泛应用的化疗药物除传统的细胞毒类药物外,单克隆抗体、小分子化合物抑制剂等靶向药物越来越受到重视,并已经是目前及未来相当长时间内引领化疗领域发展动向的主要研究方向。尽管如此,这些药物仍然存在一定的毒副作用,并产生耐药性,这可能是限制药物成功化疗的主要因素。为克服这些弱点,我们拟对细胞毒类药物吉西他滨进行前体药物修饰,对小分子靶向抑制剂索拉非尼进行结构改造。
     吉西他滨以抗癌活性强、抗瘤谱广的特点在化疗药物中占居重要地位,但其在血浆和肝脏中很快被灭活,且严重的毒副作用和耐药性也限制其临床应用。我们认为,对吉西他滨进行前药修饰,在胞啶环的N4位引入具有长侧链酯基酰胺基团,在一定程度上可以增加胃肠道吸收,阻断脱氧胞苷脱氨酶的脱氨作用,增强代谢稳定性,延长半衰期,提高生物利用度,从而达到增加抗癌活性,降低毒副作用的目的。我们从此系列化合物中筛选得到了SL-01(N4-(3-正十二烷氧基甲酰基吡嗪-2-甲酰基)-2’-脱氧-2’,2’-二氟胞苷),发现其具有较高的抗癌活性。本论文第一部分重点评价了化合物SL-01的抗肿瘤活性并对其作用机制进行初步探讨。
     首个口服多激酶抑制剂索拉非尼是化疗药物中比较成功的双芳基脲类化合物,但毒副作用以及易产生耐药性也是其临床应用所不可忽视的。根据索拉非尼的结构特点,我们设计合成了一系列基于吲唑或氮杂吲唑的双芳基脲类或硫脲类化合物,初步试验显示出较好的抑制肿瘤细胞增殖的活性。本论文的第二部分对初步筛选得到的15个化合物的体外抗肿瘤活性进行了进一步的筛选,对筛选出的化合物1082-39(N-{4-[1-(4-溴吲唑)]苯基}-N’-[4-氯-3-三氟甲基苯基]脲),探讨其对人黑色素瘤M21体外抗癌活性和作用机制。
     第一部分吉西他滨口服衍生物SL-01的抗癌活性研究
     实验目的:比较评价化合物SL-01与吉西他滨的抗肿瘤活性,初步探讨SL-01的抗癌作用机制。
     实验方法:选用人非小细胞肺癌细胞NCI-H460和人结肠癌细胞HCT-116,以MTT法检测了SL-01对癌细胞增殖的抑制作用,Hochest33258染色法和流式细胞术Annexin V-FITC/PI双染实验测定了SL-01对癌细胞凋亡诱导作用;体内实验,通过建立裸鼠移植NCI-H460和HCT-116肿瘤模型,检测了SL-01对NCI-H460和HCT-116肿瘤细胞生长的抑制作用,进一步以TUNEL法检测了SL-01诱导肿瘤细胞凋亡率,western blotting法检测了SL-01对肿瘤组织caspase-9、caspase3、PARP、 Bax和Bcl-2的调控作用。
     实验结果:SL-01(0.156-20μM)与NCI-H460和HCT-116细胞分别孵育24h,48h,72h, SL-01以时间和剂量依赖性方式,显著抑制癌细胞增殖;相同剂量下SL-01与吉西他滨对癌细胞的体外抑制活性相似。以8μM SL-01和吉西他滨分别处理细胞24h,Hoehest33258染色,可见细胞核染色质固缩浓染、或集聚至核膜周边、或出现碎裂呈珠串状等典型凋亡现象。FITC-Annexin V/PI双染结果显示,SL-01明显诱导细胞凋亡,8μM的SL-01作用24h,诱导NCI-H460和HCT-116细胞凋亡率分别为39.6%和41.4%,高于相同剂量下吉西他滨的凋亡活性(NCI-H460:27.8%,HCT-116:24.6%),裸鼠实验表明,口服给予SL-01(10、20、30、μmol/kg,三天一次)三周,可明显抑制NCI-H460和HCT-116肿瘤生长,抑制率分别为31.8%、43.1%、58.0%和36.4%、45.8%、63.1%,且对裸鼠体重影响不甚明显;静脉注射给予同剂量吉西他滨(30μmol/kg,三天一次)对NCI-H460和HCT-116肿瘤生长的抑制率分别是41.5%和46.9%,但动物体重下降较明显。对肿瘤组织进行TUNEL分析,显示SL-01处理组(10、20、30μmol/kg)肿瘤组织中TUNEL阳染率明显增高,NCI-H460和HCT-116组织中TUNEL阳染率分别为25.6%、41.7%、54.3%和20.7%、33.6%、47.7%,吉西他滨处理的NCI-H460和HCT-116组织中阳染率则分别为37.2%和31.2%。Western blotting实验发现,SL-01对肿瘤组织caspase-9、 caspase3和PARP裂解活化程度及对Bax/Bcl-2上调作用均明显高于吉西他滨。
     实验结论:SL-01对NCI-H460和HCT-116细胞的体外增殖抑制作用与吉西他滨相似,但对裸鼠接种的人癌细胞生长抑制作用明显优于吉西他滨。SL-01的抗癌活性与其诱导凋亡作用有关,符合caspase依赖性凋亡诱导作用机制。
     第二部分吲唑双芳基脲类化合物的抗癌活性研究第一节吲唑双芳基脲类化合物抗癌活性筛选实验(体外实验)
     实验目的:对新设计的15个基于吲唑或氮杂吲唑的双芳基脲类或硫脲类化合物筛选,初步评价筛选出的5个化合物对血管生成的抑制作用和对黑色素瘤细胞M21增殖的抑制作用。
     实验方法:采用MTT法,检测了1121-39等15个双芳基脲类化合物对人肿瘤细胞MDA-MB-231、PLC/PRF/5、HCT-116、786-0、NCI-H460生长的抑制作用;化合物1121-39、1122-10、1122-38、1122-37和1082-39对人黑色素瘤细胞M21及人脐静脉内皮细胞HUVEC和EA.hy926生长抑制作用;利用划痕损伤法,检测化合物1121-39、1122-38和1082-39对HUVEC细胞迁移能力的影响;以斑马鱼胚胎模型法,检测化合物1121-39、1122-10、1122-38、1122-37和1082-39对血管生成的影响。
     实验结果:结果显示,除化合物1121-43、1122-26、1121-40外,新合成的其他化合物与MDA-MB-231、PLC/PRF/5、HCT-116和NCI-H460细胞分别孵育72h,其IC50值多低于索拉非尼,而对于786-0细胞,只有1122-38、1082-39、1122-37、1104-40和1106-78的IC50值小于索拉非尼。筛选出的化合物1121-39、1122-10、1122-38、1122-37和1082-39与EA-hy-926细胞作用72h,其IC50值远低于索拉非尼;而对于HUVEC细胞,只有化合物1121-39的IC50值为4.81±1.97μM;对于M21细胞,化合物1122-38和1082-39作用72h的IC5o值远低于索拉非尼,1122-10和1122-37的IC50值与索拉非尼相当,而1121-39对M21细胞增殖无明显抑制作用。划痕实验显示,化合物1121-39、1122-38和1082-39能抑制HUVEC细胞迁移作用,以5μM作用24h,对HUVEC的迁移抑制率分别为23.16%、41.32%和45.63%,明显低于相同剂量下的索拉非尼的抑制率71.85%。斑马鱼胚胎模型显示,阳性对照药物索拉非尼显著抑制斑马鱼胚胎体节间血管形成,致血流停滞和不同程度心囊水肿,循环系统障碍,而化合物1121-39、1122-10、1122-38、1122-37和1082-39对斑马鱼胚胎体节间的血管生成无明显影响,未见血流异常等现象。实验结论:筛选获得到的吲唑双芳基脲类化合物1121-39、1122-10、1122-38、1122-37和1082-39,体外对多种人癌细胞的增殖有明显抑制作用,且活性优于索拉非尼,但对斑马鱼胚胎血管生成没有影响。
     第二节化合物1082-39体外抗肿瘤活性研究及其机制探讨
     实验目的:比较评价化合物1082-39和索拉非尼对人黑色素瘤M21的抗癌活性,探讨1082-39的抗癌作用机制。
     实验方法:采用MTT法,测定了化合物1082-39和索拉非尼对人黑色素瘤细胞M21作用24、48、72h的半数抑制率。以流式细胞术Annexin V-FITC/PI双染法检测了1082-39与M21细胞孵育48h后的凋亡诱导作用。采用JC-1染色法,观察了不同浓度1082-39作用48h,对M21线粒体膜电位的影响。提取M21细胞总蛋白,以western-blotting法检测了M21细胞受体c-Kit表达水平,检测了1082-39作用48h对M21细胞增殖核抗原PCNA,caspase-9、caspase3、PARP、Bax、Bcl-2、 Mc1-1等凋亡相关蛋白、Akt及相关信号NF-κB、mTOR、GSK3β、c-Myc、survivin、 PI3K、EGFR、Wnt2表达水平的影响;分别分离提取线粒体蛋白及核蛋白,采用western-blotting法检测了1082-39对M21细胞色素c的重新分布及P-catenin入核的影响。
     实验结果:化合物1082-39与M21细胞分别孵育24、48、72h,其IC50值均明显低于索拉非尼,以72h最为明显。流式细胞术显示,1082-39明显引起M21细胞凋亡,作用48h后,其5μM组凋亡率40.73%,高于同剂量索拉非尼的凋亡率25.26%。以0、0.625、1.25、2.5、5μM的1082-39处理细胞48h,JC-1染色为红色荧光逐渐减弱,绿色荧光逐渐增强,绿色与红色荧光光密度比值增加,最高组为2.71±0.2,高于索拉非尼组的光密度值之比(2.13±0.6)。Western blotting结果显示,与细胞孵育48h,1082-39比索拉非尼明显下调M21细胞中PCNA表达量;1082-39显著上调Bax表达,下调Mcl-1表达,而索拉非尼则引起Mcl-1表达量明显下调,但对Bax和Bcl-2表达影响较弱,二者均能上调Bax/Bcl-2,Bax/Mcl-1值,引起细胞色素c由线粒体到胞浆重新分布;对于凋亡执行蛋白,1082-39可以明显促进casepase-9和casepase-3裂解活化,PARP裂解增加,而索拉非尼对casepase-9和casepase-3活化作用较弱;Western blotting结果显示,M21细胞中无受体c-Kit表达,但1082-39与索拉非尼均能抑制Akt磷酸化活化,并抑制其上游蛋白PI3K、EGFR、Wnt2及下游蛋白NF-κB、mTOR、GSK3β、c-Myc、survivin表达或活化,且以1082-39作用更为明显。
     实验结论:1082-39具有比索拉非尼更好的抑制M21细胞增殖活性,诱导M21凋亡作用,其机制可能与调节Akt信号通路有关。
Backgrounds
     Cancer remains a serious threat to mankind. Besides surgery, chemotherapy is still the major treatment for cancer. Currently, cytotoxic drugs are widely used chemotherapy drugs in clinic. In addition, targeted drugs such as small molecule inhibitors have been focused in recent years. This will lead the development trends of chemotherapy currently and in future for a long time. Nonetheless, toxicity and drug resistance are considered to be the main obstacles for successful chemotherapy. In order to overcome these disadvantages, we developed prodrugs for cytotoxic agent gemcitabine and made structure modification for small molecule targeted inhibitor sorafenib.
     Gemcitabine, showing effective against a variety of cancers, has played a prominent role in cancer treatment. However, gemcitabine is rapidly inactivated in plasma and liver. Serious toxcities and drug resistance also limited its use in clinic. The introduction of prodrug moieties at the N4-position of the cytidine ring to form a hydrolysable amide linkage would improve its oral bioavailability, decrease its susceptibility to deamination, increase metabolism stability, maintain the active concentration for a longer time, and reduce the toxicity. SL-01, dodecyl-3-((1-((2R,4R,5R)-3,3-difluoro-4-hydroxy-5-(hydroxymethyl)-tetrahydrofuran-2-yl)-2-oxo-1,2-dihydropyrimidin-4-yl) carbamoyl) pyrazine-2-carboxylate, was selected from these compounds. Our goal in this study in Part1was to evaluate the efficacy of SL-01on the growth of human cancers.
     Sorafenib, the first oral multi-kinase inhibitor, is a successful example of diarylurea derivatives. However, concomitant toxicities and drug resistance cannot be ignored in clinic. A new series of diarylurea compounds containing indazole or azaindazole moiety based on the structural features of sorafenib was synthesized in our group. These compounds showed good activiy in preliminary test. In Part2,15 diarylurea compounds were identified for their anticancer activity. The anticancer activity of compound1082-39(N-(4-(1-(4-bromoindazole))phenyl)-N'-(4-Chloro-3-trifluoromethylphenyl)urea), one of indazole diarylurea compounds, was evaluated in human melanoma cell M21and its mechanism underlying were also investigated.
     Part1Anti-tumor activity of SL-01, an oral derivative of gemcitabine
     Objective:Our goal in this study was to evaluate the efficacy of SL-01on the growth of human cancers and mechnasim underlying with gemcitabine as control.
     Methods:Experiments were performed on human non-small cell lung cancer NCI-H460and colon cancer HCT-116both in vitro and in vivo. In vitro assays, the anti-proliferative activity was determined by the MTT assay and the apoptosis induction was estimated with Hoechst33258staining and Annexin V-FITC and propidium iodide (PI) staining analysis by using flow cytometry. In vivo experiments, the anti-tumor effect of SL01was examined by NCI-H460and HCT-116xenografts bearing in mice. The TUNEL assay was used to evaluate the efficacy of apoptosis induction in tumor tissues. Further examination with western blotting analysis was employed to determine the levels of apoptosis related proteins including caspase-9, caspase3, PARP, Bax and Bcl-2.
     Results:After incubation for24,48and72h, SL-01(0.156-20μM) significantly inhibited the growth of NCI-H460and HCT-116cells in a dose-and time-dependent manner. The inhibitory potency is similar to that of gemcitabine. Both SL-01and gemcitabine (8μM) were found to potently induce NCI-H460and HCT-116cells to apoptosis, showing cell shrinkage and membrane integrity loss or deformation, nuclear fragmentation and chromatin compaction determined by Hochest33258staining. Annexin V-FITC/PI double staining showed that the apoptosis rates of NCI-H460and HCT-116were39.6%and41.4%after treatment with8μM SL-01for24h, which were higher than that of gemcitabine at the same dose (27.8%for NCI-H460and24.6%for HCT-116). In vivo, oral administration with SL-01once every three days for3weeks effectively delayed the growth of NCI-H460and HCT-116without significant loss of body weight in mice. At dosages of10,20and30μmol/kg of SL-01, the inhibition rates on growth of NCI-H460and HCT-116xenografts were31.8%,43.1%,58.0%and36.4%,45.8%,63.1%, respectively. In comparison, injection30μmol/kg gemcitabine once every three days inhibited the growth of NCI-H460and HCT-116xenografts by41.5%and46.9%, with a significant reduction in body weight. TUNEL staining showed that positive staining cells were increased in xenografts treated with SL-01. The percentages of apoptotic cells induced by10,20and30μmol/kg of SL-01were25.6%,41.7%,54.3%for NCI-H460and20.7%,33.6%.47.7%for HCT-116, respectively. While, gemcitabine (30μmol/kg) induced TUNEL staining positive cells in NCI-H460and HCT-116xenografts by37.2%and31.2%, respectively. Western blotting assay showed that SL-01induced activation of caspase-9, caspase-3and cleaved PARP, as well as increased Bax/Bcl-2ratio in cancer cells. These biological activities of SL-01were more potential than that of gemcitabine.
     Conclusion:SL-01showed similar in vitro but superior in vivo inhibitory effect to gemcitabine. The higher potency of SL-01in vivo was associated with its better ability in induction of caspase dependent apoptosis.
     Part2Anti-tumor activity study on indazole based diarylurea derivatives
     Chapter1Identification of indazole based diarylurea derivatives for their in vitro anti-tumor activity
     Objective:15indazole diarylurea compounds were identified for their anticancer activity. The effects of the selected5diarylurea compounds on antiangiogenesis and anti-proliferation against human melanoma cell M21were further investigated.
     Methods:The antiproliferative activities of15indazole diarylurea compounds against tumor cells MDA-MB-231, PLC/PRF/5, HCT-116,786-0, NCI-H460, and compounds1121-39,1122-10,1122-38,1122-37,1082-39against M21cells and human umbilical vein endothelial cells HUVEC and EA.hy926cells, were determined by the MTT assay. The scratch assay was employed to investigate the effects of1121-39,1122-38and1082-39on the migaration ability of HUVECs. The effects of1121-39,1122-10,1122-38,1122-37and1082-39on angiogenesis were evaluated by using the model of zebrafish embryo.
     Results:MTT assay showed that most of these diarylureas derivatives, except1121-43,1122-26and1121-40, showed lower IC50s than sorafenib in MDA-MB-231, PLC/PRF/5, HCT-116, and NCI-H460cells. But in786-0cells, only IC50s for1122-38,1082-39,1122-37,1104-40and1106-78were lower than that of sorafenib. IC50s for these5selected compounds1121-39,1122-10,1122-38,1122-37and1082-39against EA.hy926cells were lower than that of sorafenib. Only1121-39significantly inhibited the proliferation of HUVEC cells with IC50at4.81±1.97μM. In M21cell, IC50s forl122-38and1082-39were lower than that of sorafenib.1122-10and1122-37exihibited similar IC50S to sorafenib.1121-39showed no effect on proliferation of M21. Exposure at5μM for24h,1121-39,1122-38and1082-39inhibited the migration of HUVEC by23.16%,41.32%and45.63%, respectively, as estimated by scratch assay. Their effects were much lower than sorafenib with the rate of71.85%. Results from the model of Zebrafish embryo showed that these compounds markedly inhibited the formation of intersegmental blood vessel in Zebrafish embryo, leading to blakage of blood flow and pericardium edema. However, compounds1121-39,1122-10,1122-38,1122-37and1082-39showed no effect on the formation of intersegmental blood vessel in zebrafish embryo.
     Conclusion:Indazole diarylurea compounds1121-39,1122-10,1122-38,1122-37and1082-39showed more potential anti-proliferative activity than sorafenib against most tumor cell lines in vitro. These compounds exhibited no effect on the angiogenesis of Zebrafish embryo.
     Chapter2Anti-tumor activity in vitro and mechanism study of1082-39
     Objective:To evaluate the efficacy of1082-39on proliferation of human melanoma cell M21and mechnasim underlying with sorafenib as control.
     Methods:After treatment with1082-39or sorafenib for24,48,72h, the IC50s were determined by MTT assay. Annexin V-FITC and PI staining was exploited to assess the apoptosis rates induced by1082-39in M21cell. After JC-1staining, the change of M21cell mitochondria membrane potential was observed under fluorescence microscope. The expression of c-Kit in M21cells; the effect of1082-39on the expressions of proliferating cell nuclear antigen PCNA; apoptosis related proteins including caspase-9, caspase3, PARP, Bax, Bcl-2, Mcl-1; Akt and Akt signaling pathway related proteins such as NF-κB, mTOR, GSK3β, c-Myc, surviving, PI3K, EGFR, Wnt2, as well as the redistribution of cytochrome c and the nucleal translocation of β-catenin were evaluated by using western blotting assay.
     Results:MTT showed that IC50S for1082-39against M21cells were lower than that of sorafenib at indicated exposure time, especially72h. Annexin V-FITC and PI staining indicated that1082-39effectively induced M21cells to apoptosis. The rate of apoptosis caused by48h treatment with5μM of1082-39was40.7%, which was higher than that of the same dose of sorafenib with the rate at25.3%. After treatment with0,0.625,1.25,2.5,5μM of1082-39for48h, the red fluorescence of JC-1was gradually decreased and the green fluorescence was correspondingly increased. The ratios of green to red fluorescence were increased in a dose-dependent manner to the maximum at2.71±0.2, which was a little higher than that of sorafenib (2.13±0.6).1082-39was found to down-regulate the expression of PCNA in M21cells more potential than sorafenib as determine by western blotting assay.1082-39significantly increased the expression of Bax and slightly decreased the expression of Mcl-1. Sorafenib markedly decreased the expression of Mcl-1with weak effect on Bax and Bcl-2. Both1082-39and sorafenib could increase the ratio of Bax/Bcl-2and Bax/Mcl-1, leading to redistribution of cytochrome c.1082-39significantly induced the activation of caspase-9, caspase-3and cleaved PARR However, sorafenib showed less effct on these proteins. Western blotting results also showed that there was no expression of c-Kit in M21cells. But the phosphorylation of Akt, and the expression or activation of its upstream proteins PI3K, EGFR, Wnt2. as well as downstream proteins NF-κB, mTOR, GSK3β,c-Myc, survivin, were inhibited by1082-39and sorafenib. These biological activities of1082-39were more potential than that of sorafenib.
     Conclusion:1082-39showed better anti-proliferative and pro-apoptotic activiy than sorafenib in M21cells. The mechnasim underlying was associated with its activity in regulation of Akt signaling pathway.
引文
1. Siegel R, Naishadham D, Jemal A. (2012) Cancer Statistics,2012. CA Cancer J Clin 62:10-19. doi:10.3322/caac.20138
    2. Rodriguez-Wallberg KA. (2012) Principles of cancer treatment:impact on reproduction. Adv Exp Med Biol 732:1-8. doi:10.1007/978-94-007-2492-1-1
    3. Vanneman M, Dranoff G. (2012) Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer 12:237-251. doi:10.1038/nrc3237
    4. Nussbaumer S, Bonnabry P, Veuthey JL, Fleury-Souverain S. (2011) Analysis of anticancer drugs:a review. Talanta 85:2265-2289. doi:10.1016/j.talanta.2011.08.034
    5. Povirk LF, Shuker DE (1994) DNA damage and mutagenesis induced by nitrogen mustards. Mutat Res 318:205-226.
    6. Rosenberg B, VanCamp L, Trosko JE, Mansour VH. (1969) Platinum compounds:a new class of potent antitumour agents. Nature 222:385-386.
    7. Minotti G, Menna P, Salvatorelli E, Cairo G, Gianni L. (2004) Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev 56:185-229.
    8. Helleday T, Lo J, van Gent DC, Engelward BP. (2007) DNA double-strand break repair:from mechanistic understanding to cancer treatment. DNA Repair (Amst). 6:923-935.
    9. Redinbo MR, Champoux JJ, Hol WG. (1999) Structural insights into the function of type IB topoisomerases. Curr Opin Struct Biol 9:29-36.
    10. Heisig P. (2009) Type Ⅱ topoisomerases--inhibitors, repair mechanisms and mutations. Mutagenesis 24:465-469. doi:10.1093/mutage/gep035
    11. Sriram D, Yogeeswari P, Thirumurugan R, Bal TR. (2005) Camptothecin and its analogues:a review on their chemotherapeutic potential. Nat Prod Res 19:393-412.
    12. Wilstermann AM, Bender RP, Godfrey M, Choi S, Anklin C, Berkowitz DB, et al. (2007) Topoisomerase Ⅱ-drug interaction domains:identification of substituents on etoposide that interact with the enzyme. Biochemistry 46:8217-8225.
    13. Heidelberger C, Ansfield FJ. (1963) Experimental and clinical use of fluorinated pyrimidines in cancer chemotherapy. Cancer Res 23:1226-1243.
    14. Elion GB. (1989) The purine path to chemotherapy. Science 244:41-47.
    15. Plunkett W, Heinemann V, Estey E, Keating M. (1990) Pharmacologically directed design of leukemia therapy. Haematol Blood Transfus 33:610-613.
    16. Carmichael J. (1998) The role of gemcitabine in the treatment of other tumors. Br J Cancer 78(suppl 3):21-25.
    17. Matsuda A, Sasaki T. (2004) Antitumor activity of sugar-modified cytosine nucleosides. Cancer Sci 95:105-111.
    18. Visentin M, Zhao R, Goldman ID. (2012) The antifolates. Hematol Oncol Clin North Am.26:629-648. doi:10.1016/j.hoc.2012.02.002
    19. Stika CS. (2012) Methotrexate:the pharmacology behind medical treatment for ectopic pregnancy. Clin Obstet Gynecol.55:433-439. doi:10.1097/GRF.0b013e3182510a35
    20. Joerger M, Omlin A, Cerny T, Fruh M. (2010) The role of pemetrexed in advanced non small-cell lung cancer:special focus on pharmacology and mechanism of action. Curr Drug Targets 11:37-47.
    21. Spivak JL, Hasselbalch H. (2011) Hydroxycarbamide:a user's guide for chronic myeloproliferative disorders. Expert Rev Anticancer Ther.11:403-414. doi:10.1586/era.11.10.
    22. Foley EA, Kapoor TM. (2013) Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat Rev Mol Cell Biol.14:25-37. doi:10.1038/nrm3494
    23. Pasquier E, Kavallaris M. (2008) Micro tubules:a dynamic target in cancer therapy. IUBMB Life 60:165-170. doi:10.1002/iub.25
    24. Fauzee NJ. (2011) Taxanes:promising anti-cancer drugs. Asian Pac J Cancer Prev 12:837-851.
    25. Harrison MR, Holen KD, Liu G. (2009) Beyond taxanes:a review of novel agents that target mitotic tubulin and microtubules, kinases, and kinesins. Clin Adv Hematol Oncol 7:54-64.
    26. Perez EA. (2009) Microtubule inhibitors:Differentiating tubulin-inhibiting agents based on mechanisms of action, clinical activity, and resistance. Mol Cancer Ther 8:2086-95. doi:10.1158/1535-7163.MCT-09-0366.
    27. Gerber DE. (2008) Targeted therapies:a new generation of cancer treatments. Am Fam Physician.77:311-319.
    28. Peterson C. (2011) Drug therapy of cancer. Eur J Clin Pharmacol.67:437-447. doi:10.1007/s00228-011-1011-x.
    29. Desta Z, Ward BA, Soukhova NV, Flockahart DA. (2004) Comprehensive evaluation of tamoxifen sequential biotransformation by the human cytochrome P450 system in vitro:prominent roles for CYP3A4 and CYP2D6. J Pharmacol Exp Ther 310:1062-1075.
    30. Howell A, Cuzick J, Baum M, Buzdar A, Dowsett M, Forbes JF, et al. (2005) Results of the ATAC (arimidex, tamoxifen, alone or in combination) trial after completion of 5 years' adjuvant treatment for breast cancer. Lancet 365:60-62.
    31. Argiris K, Panethymitaki C, Tavassoli M. (2011) Naturally occurring, tumor-specific, therapeutic proteins. Exp Biol Med (Maywood).236:524-536. doi:10.1258/ebm.2011.011004.
    32. Choura M, Rebai A. (2011) Receptor tyrosine kinases:from biology to pathology. J Recept Signal Transduct Res 31:387-394. doi:10.3109/10799893.2011.625425
    33. Takeuchi K, Ito F. (2011) Receptor tyrosine kinases and targeted cancer therapeutics. Biol Pharm Bull 34:1774-1780.
    34. Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495-497.
    35. Adams GP, Weiner LM. (2005) Monoclonal antibody therapy of cancer. Nat Biotechnol 23:1147-1157.
    36. Carter P. (2001) Improving the efficacy of antibody-based cancer therapies. Nat Rev Cancer 1:118-129.
    37. Tanner JE. (2005) Designing antibodies for oncology. Cancer Metastasis Rev 24:585-598.
    38. Grillo-Lopez AJ, White CA, Varns C, Shen D, Wei A, McClure A, et al. (1999) Overview of the clinical development of rituximab:first monoclonal antibody approved for the treatment of lymphoma. Semin Oncol 5(Suppl 14):66-73.
    39. Ferrara N, Hillan KJ, Gerber HP, Novotny W. (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3:391-400.
    40. Goldenberg MM. (1999) Trastuzumab, a recombinant DNAderived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clin Ther 2:309-318.
    41. Garnock-Jones KP, Keating GM, Scott LJ. (2010) Trastuzumab:a review of its use as adjuvant treatment in human epidermal growth factor receptor 2 (HER2)-positive early breast cancer. Drugs 70:215-239. doi:10.2165/11203700-000000000-00000.
    42. Frieze DA, McCune JS. (2006) Current status of cetuximab for the treatment of patients with solid tumors. Ann Pharmacother 40:241-250.
    43. Harding J, Burtness B. (2005) Cetuximab:an epidermal growth factor receptor chemeric human-murine monoclonal antibody. Drugs Today (Barc) 41:107-127.
    44. Kopper L. (2010) Panitumumab:an arrow on target. Pathol Oncol Res 16:143-148. doi:10.1007/s12253-010-9257-7
    45. Zinzani PL, Corradini P, Gallamini A, Grossi A, Lazzarino M, Marchetti M, et al. (2012) Overview of alemtuzumab therapy for the treatment of T-cell lymphomas. Leuk Lymphoma 53:789-795. doi:10.3109/10428194.2011.629701.
    46. Lens M, Testori A, Ferucci PF. (2012) Ipilimumab targeting CD28-CTLA-4 axis:new hope in the treatment of melanoma.Curr Top Med Chem 12:61-66.
    47. Hale G. (2001) The CD52 antigen and development of the CAMPATH antibodies. Cytotherapy 3:137-143.
    48. Graziani G, Tentori L, Navarra P. (2012) Ipilimumab:a novel immunostimulatory monoclonal antibody for the treatment of cancer. Pharmacol Res.65:9-22. doi:10.1016/j.phrs.2011.09.002
    49. Witte ON. (1988) Closely related BCR/ABL oncogenes are associated with the distinctive clinical biologies of Philadelphia chromosome positive chronic myelogenous and acute lymphocytic leukemia. Curr Top Microbiol Immunol 141:42-49.
    50. Daley GQ, Ben-Neriah Y. (1991) Implicating the bcr/abl gene in the pathogenesis of Philadelphia chromosome-positive human leukemia. Adv Cancer Res 57:151-184.
    51. Maekawa T, Ashihara E, Kimura S. (2007) The Bcr-Abl tyrosine kinase inhibitor imatinib and promising new agents against Philadelphia chromosome-positive leukemias. Int J Clin Oncol 12:327-340.
    52. Siehl J, Thiel E. (2007) C-kit, GIST, and imatinib. Recent Results Cancer Res 176:145-151.
    53. Hochhaus A. (2007) Dasatinib for the treatment of Philadelphia chromosome-positive chronic myelogenous leukaemia after imatinib failure. Expert Opin Pharmacother 8:3257-3264.
    54. Fullmer A, Kantarjian H, Cortes J, Jabbour E. (2010) Nilotinib for the treatment of Philadelphia-chromosome-positive chronic myeloid leukemia. Expert Opin Pharmacother 11:3065-3072. doi:10.1517/14656566.2010.535655
    55. Bronte G, Terrasi M, Rizzo S, Sivestris N, Ficorella C, Cajozzo M, et al. (2011) EGFR genomic alterations in cancer:prognostic and predictive values. Front Biosci (Elite Ed) 3:879-887.
    56. Giaccone G. (2005) Targeting HER1/EGFR in cancer therapy:experience with erlotinib. Future Oncol 1:449-460.
    57. Yano S, Yamaguchi M, Dong RP. (2003) EGFR tyrosine kinase inhibitor "gefitinib (Iressa)" for cancer therapy. Nihon Yakurigaku Zasshi 122:491-497.
    58. Baselga J, Averbuch SD. (2000) ZD1839 ('Iressa') as an anticancer agent. Drugs 60(suppl 1):33-40.
    59. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O, et al. (2007) Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356:115-124.
    60. Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, et al. (2007) Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356:125-134.
    61. Demetri GD, van Oosterom AT, Garrett CR, Blackstein ME, Shah MH, et al. (2006) Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib:a randomised controlled trial. Lancet 368:1329-1338.
    62. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, et al. (2008) Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 359:378-390. doi:10.1056/NEJMoa0708857
    63. Bollag G, Tsai J, Zhang J, Zhang C, Ibrahim P, Nolop K, Hirth P. (2012) Vemurafenib: the first drug approved for BRAF-mutant cancer. Nat Rev Drug Discov.11:873-886. doi:10.1038/nrd3847
    64. Ravnan MC, Matalka MS. (2012) Vemurafenib in patients with BRAF V600E mutation-positive advanced melanoma. Clin Ther 34:1474-1486. doi:10.1016/j.clinthera.2012.06.009
    65. Gandhi L, Janne PA.(2012) Crizotinib for ALK-rearranged non-small cell lung cancer: a new targeted therapy for a new target. Clin Cancer Res 18:3737-3742. doi:10.1158/1078-0432.CCR-11-2393
    66. Altomare DA, Khaled AR. (2012) Homeostasis and the importance for a balance between AKT/mTOR activity and intracellular signaling. Curr Med Chem 19:3748-3762.
    67. Gomez-Pinillos A, Ferrari AC. (2012) mTOR signaling pathway and mTOR inhibitors in cancer therapy. Hematol Oncol Clin North Am 26:483-505. doi:10.1016/j.hoc..02.014
    68. Guarini A, Minoia C, Giannoccaro M, Rana A, Iacobazzi A, Lapietra A, et al. (2012) mTOR as a target of everolimus in refractory/relapsed Hodgkin lymphoma. Curr Med Chem 19:945-954.
    69. Oudard S, Medioni J, Aylllon J, Barrascourt E, Elaidi RT, Balcaceres J, et al. (2009) Everolimus (RAD001):an mTOR inhibitor for the treatment of metastatic renal cell carcinoma. Expert Rev Anticancer Ther 9:705-717. doi:10.1586/era.09.27
    70. Houghton PJ. (2010) Everolimus. Clin Cancer Res 16:1368-1372. doi: 10.1158/1078-0432.CCR-09-1314
    71. Everson GT. (2006) Everolimus and mTOR inhibitors in liver transplantation: opening the "box". Liver Transpl 12:1571-1573.
    72. Yin L, Velazquez OC, Liu ZJ. (2010) Notch signaling:emerging molecular targets for cancer therapy. Biochem Pharmacol 80:690-701. doi:10.1016/j.bcp.2010.03.026
    73. Gualberto A, Pollak M. (2009) Emerging role of insulin-like growth factor receptor inhibitors in oncology:early clinical trial results and future directions. Oncogene 28:3009-2301. doi:10.1038/onc.2009.172
    74. Ruden M, Puri N.(2012) Novel anticancer therapeutics targeting telomerase. Cancer Treat Rev. [Epud ahead of print]
    75. Bozina N, Bradamante V, Lovric M. (2009) Genetic polymorphism of metabolic enzymes P450 (CYP) as a susceptibility factor for drug response, toxicity, and cancer risk. Arh Hig Rada Toksikol 60:217-242. doi:10.2478/10004-1254-60-2009-1885
    76. Malumbres M, Barbacid M. (2009) Cell cycle, CDKs and cancer:a changing paradigm. Nat Rev Cancer 9:153-166. doi:10.1038/nrc2602
    77. Nahi H, Selivanova G, Lehmann S, Mollgard L, Bengtzen S, Concha H, et al. (2008) Mutated and non-mutated TP53 as targets in the treatment of leukaemia. Br J Haematol 141:445-453. doi:10.1111/j.1365-2141.2008.07046.x
    78. Hartmann RW, Ehmer PB, Haidar S, Hector M, Jose J, Klein CD, Seidel SB, et al. (2002) Inhibition of CYP 17, a new strategy for the treatment of prostate cancer. Arch Pharm (Weinheim).335:119-128
    79. DeVore NM, Scott EE. (2012) Structures of cytochrome P45017A1 with prostate cancer drugs abiraterone and TOK-001. Nature 482:116-119. doi:10.1038/nature 10743.
    80. Hoelder S, Clarke PA, Workman P. (2012) Discovery of small molecule cancer drugs: successes, challenges and opportunities. Mol Oncol 6:155-76. doi:10.1016/j.molonc.2012.02.004
    81. Yao X, Panichpisal K, Kurtzman N, Nugent K. (2007) Cisplatin nephrotoxicity:a review. Am J Med Sci 334:115-124.
    82. Elliott P. (2006) Pathogenesis of cardiotoxicity induced by anthracyclines. Semin Oncol 33:S2-7.
    83. Kuroi K, Shimozuma K. (2004) Neurotoxicity of taxanes:symptoms and quality of life assessment. Breast Cancer 11:92-99.
    84. Lobert S. (1997) Neurotoxicity in cancer chemotherapy:vinca alkaloids. Crit Care Nurse 17:71-79.
    85. Shi LX, Ma R, Lu R, Xu Q, Zhu ZF, Wang L. et al. (2008) Reversal effect of tyroservatide (YSV) tripeptide on multi-drug resistance in resistant human hepatocellular carcinoma cell line BEL-7402/5-FU. Cancer Lett 269:101-110. doi:10.1016/j.canlet.2008.04.033
    86. Gottesman MM, Pastan I. (1993) Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem 62:385-427
    87. Miao ZH, Ding J. (2003) Research advances on circumventing tumor multidrug resistance. Chinese Journal of Cancer 22:886-892.
    88. Hertel LW, Kroin JS, Misner JW, Tustin JM. (1988) Synthesis of 2-deoxy-2',2'difluoro-D-ribose and 2-deoxy-2,2'difluoro-D-ribofuranosyl nucleosides. J Org Chem 53:2406-2409.
    89. Hertel LW, Boder GB, Kroin JS, Rinzel SM, Poore GA, Todd GC, et al. (1990) Evaluation of the antitumor activity of gemcitabine (2',2'-difluoro-2'-deoxycytidine). Cancer Res 50:4417-4422.
    90. Guchelaar HJ, Richel DJ, van Knapen A. (1996) Clinical, toxicological and pharmacological aspects of gemcitabine. Cancer Treat Rev 22:15-31.
    91. Toschi L, Finocchiaro G, Bartolini S, Gioia V, Cappuzzo F. (2005) Role of gemcitabine in cancer therapy. Future Oncol 1:7-17. doi:10.1517/14796694.1.1.7
    92. Kroep J, van Moorsel C, Veerman G, Voorn D, Schultz R, Worzalla J, et al. (1998) Role of deoxycytidine kinase (dCK), thymidine kinase 2 (TK.2), and deoxycytidine deaminase (dCDA) in the antitumor activity of gemcitabine (dFdC). Adv Exp Med Biol 431:657-660.
    93. van der Wilt CL, Kroep JR, Bergman AM, Loves WJ, Alvarez E, Talianidis I, et al. (2000) The role of deoxycytidine kinase in gemcitabine cytotoxicity. Adv Exp Med Biol 486:287-290.
    94. Ruiz van Haperen V, Vererman G, Vermorken J, Peters G. (1993) 2',2'-Difluorodeoxycytidine (gemcitabine) incorporation into RNA and DNA from tumour cell lines. Biochem Pharmacol 46:762-766.
    95. Huang P, Chubb S, Hertel LW, Grindey GB, Plunkett W. (1991) Action of 2',2'-difluorodeoxycytidine on DNA synthesis. Cancer Res 51:6110-6117.
    96. Tolis C, Peters GJ, Ferreira CG, Pinedo HM, Giaccone G. (1999) Cell cycle disturbances and apoptosis induced by topotecan and gemcitabine on human lung cancer cell lines. Eur J Cancer 35:796-807.
    97. Gmeiner WH, Yu S, Pon RT, Pourquier P, Pommier Y. (2003) Structural basis for topoisomerase Ⅰ inhibition by nucleoside analogs. Nucleos Nucleot Nucl 22:653-658. doi:10.1081/NCN-120022604
    98. Shipley L, Brown T, Cornpropst J, Hamilton M, Daniels W, Culp H. (1992) Metabolism and disposition of gemcitabine, and oncolytic deoxycytidine analog, in mice, rats, and dogs. Drug Metab Dispos 20:849-855.
    99. Veltkamp SA, Jansen RS, Callies S, Pluim D, Visseren-Grul CM, Rosing H, et al. (2008) Oral administration of gemcitabine in patients with refractory tumors:a clinical and pharmacologic study. Clin Cancer Res 14:3477-86. doi:10.1158/1078-0432.CCR-07-4521
    100. Iwata K, Aizawa K, Sakai S, Jingami S, Fukunaga E, Yoshida M, et al. (2011) The relationship between treatment time of gemcitabine and development of hematologic toxicity in cancer patients. Biol Pharm Bull 34:1765-1768. doi:10.1248/bpb.34.1765
    101. Huang J, Robertson JM, Ye H, Margolis J, Nadeau L, Yan D. (2011) Dose-volume analysis of predictors for gastrointestinal toxicity after concurrent full-dose gemcitabine and radiotherapy for locally advanced pancreatic adenocarcinoma. Int J Radiat Oncol Biol Phys Nov 16 [Epub ahead of print] doi:org/10.1016/j.ijrobp.2011.09.022
    102. Mini E, Nobili S, Caciagli B, Landini I, Mazzei T. (2006) Cellular pharmacology of gemcitabine. Ann Oncol.17:v7-12.
    103. Bergman AM, Pinedo HM, Peters GJ. (2002) Determinants of resistance to 2',2'-difluorodeoxycytidine (gemcitabine). Drug Resist Updat 5:19-33.
    104. Wu W, Sigmond J, Peters GJ, Borch RF. (2007) Synthesis and biological activity of a gemcitabine phosphoramidate prodrug. J Med Chem 50:3743-3746.
    105. Bergman AM, Adema AD, Balzarini J, Bruheim S, Fichtner I, Noordhuis P, et al. (2011) Antiproliferative activity, mechanism of action and oral antitumor activity of CP-4126, a fatty acid derivative of gemcitabine, in in vitro and in vivo tumor models. Invest New Drugs 29:456-466. doi:10.1007/s10637-009-9377-7
    106. Dasari M, Acharya AP, Kim D, Lee S, Lee S, Rhea J, et al. (2013) H-gemcitabine:a new gemcitabine prodrug for treating cancer. Bioconjug Chem 24:4-8. doi:10.1021/bc300095m
    107. Pasut G, Canal F, Dalla Via L, Arpicco S, Veronese FM, Schiavon O. (2008) Antitumoral activity of PEG-gemcitabine prodrugs targeted by folic acid. J Control Release 127:239-48. doi:10.1016/j.jconrel.2008.02.002
    108. Immordino ML, Brusa P, Rocco F, Arpicco S, Ceruti M, Cattel L. (2004) Preparation, characterization, cytotoxicity and pharmacokinetics of liposomes containing lipophilic gemcitabine prodrugs. J Control Release 100:331-346.
    109. Zhu S, Wonganan P, Lansakara-P DS, O' Mary HL, Li Y, Cui Z. (2013) The effect of the acid-sensitivity of 4-(N)-stearoyl gemcitabine-loaded micelles on drug resistance caused by RRM1 overexpression. Biomaterials 34:2327-2339. doi:10.1016/j.biomaterials
    110. Song X, Lorenzi PL, Landowski CP, Vig BS, Hilfinger JM, Amidon GL. (2005) Amino acid ester prodrugs of the anticancer agent gemcitabine:synthesis, bioconversion, metabolic bioevasion, and hPEPT1-mediated transport. Mol Pharm 2:157-167.
    111. Bender DM, Bao J, Dantzig AH, Diseroad WD, Law KL, Magnus NA, et al. (2009) Synthesis, crystallization, and biological evaluation of an orally active prodrug of gemcitabine. J Med Chem 52:6958-6961. doi:10.1021/jm901181h
    112. Zhao CR, Xue XX, Li G, Sun CC, Sun CJ, Qu XJ, et al. (2012) Synthesis and biological evaluation of oral prodrugs based on the structure of gemcitabine. Chem Biol Drug Des.80:479-488.
    113. Xue XX, Li G, Sun CJ, Li WB. (2009) Prodrugs based on gemcitabine structure as well as synthetic methods and the applications thereof. China Patent CN 101525361A
    114. Strumberg D. (2012) Sorafenib for the treatment of renal cancer. Expert Opin Pharmacother 13:407-419. doi:10.1517/14656566.2012.654776
    115. Woo HY, Heo J. (2012) Sorafenib in liver cancer. Expert Opin Pharmacother 13:1059-1067. doi:10.1517/14656566.2012.679930.
    116. Zhang J, Gold KA, Kim E. (2012) Sorafenib in non-small cell lung cancer. Expert Opin Investig Drugs 21:1417-1426. doi:10.1517/13543784.2012.699039
    117. Mangana J, Levesque MP, Karpova MB, Dummer R. (2012) Sorafenib in melanoma. Expert Opin Investig Drugs 21:557-568. doi:10.1517/13543784.2012.665872
    118. Gradishar WJ. (2012) Sorafenib in locally advanced or metastatic breast cancer. Expert Opin Investig Drugs 21:1177-1191. doi:10.1517/13543784.2012.689824
    119. Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M. (2008) Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther.7:3129-3140. doi:10.1158/1535-7163.MCT-08-0013.
    120. Beeram M, Patnaik A, Rowinsky EK. (2005) Raf:a strategic target for therapeutic development against cancer. J Clin Oncol 23:6771-6790.
    121. Rodenhuis S. (1992) Ras and human tumors. Seminars in Cancer Biology 3:241-247.
    122. Liu L, Cao Y, Chen C, Zhang X, McNabola A, Wilkie D, et al. (2006) Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 66:11851-11858.
    123. Chang YS, Adnane J, Trail PA, Levy J, Henderson A, Xue D, et al. (2007) Sorafenib (BAY 43-9006) inhibits tumor growth and vascularization and induces tumor apoptosis and hypoxia in RCC xenograft models. Cancer Chemother Pharmacol. 59:561-574.
    124. Wilhelm SM, Carter C, Tang L. Wilkie D, McNabola A, Rong H. et al. (2004) BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res.64:7099-7109.
    125. Otsuka T, Eguchi Y, Kawazoe S, Yanagita K, Ario K, Kitahara K, et al. (2012) Skin toxicities and survival in advanced hepatocellular carcinoma patients treated with sorafenib. Hepatol Res.42:879-886. doi:10.1111/j.1872-034X.2012.00991.x.
    126. Elice F, Rodeghiero F. (2012) Side effects of anti-angiogenic drugs. Thromb Res 129:S50-53.doi:10.1016/S0049-3848(12)70016-6
    127. Schutz FA, Je Y, Choueiri TK. (2011) Hematologic toxicities in cancer patients treated with the multi-tyrosine kinase sorafenib:a meta-analysis of clinical trials. Crit Rev Oncol Hematol.80:291-300. doi:10.1016/j.critrevonc.2010.11.007.
    128. Mir O, Coriat R, Blanchet B, Durand JP, Boudou-Rouquette P, Michels J, et al. (2012) Sarcopenia predicts early dose-limiting toxicities and pharmacokinetics of sorafenib in patients with hepatocellular carcinoma. PLoS One.7:e37563. doi: 10.1371/journal.pone.0037563.
    129. Ezzoukhry Z, Louandre C, Trecherel E, Godin C, Chauffert B, Dupont S, Diouf M et al. (2012) EGFR activation is a potential determinant of primary resistance of hepatocellular carcinoma cells to sorafenib. Int J Cancer 131:2961-2969. doi:10.1002/ijc.27604.
    130. Karashima T, Fukuhara H, Tamura K, Ashida S, Kamada M, Inoue K, et al. (2013) Expression of angiogenesis-related gene profiles and development of resistance to tyrosine-kinase inhibitor in advanced renal cell carcinoma:Characterization of sorafenib-resistant cells derived from a cutaneous metastasis. Int J Urol. doi:10.1111/iju.12084[Epub ahead of print]
    131. Bocci G, Loupakis F. (2012) The possible role of chemotherapy in antiangiogenic drug resistance. Med Hypotheses 78:646-648. doi:10.1016/j.mehy.2012.02.001.
    132. Kim HJ, Jung MH, Kim H, El-Gamal MI, Sim TB, Lee SH, et al. (2010) Synthesis and antiproliferative activity of pyrrolo[3,2-b]pyridine derivatives against melanoma. Bioorg Med Chem Lett.20:413-417. doi:10.1016/j.bmcl.2009.08.005.
    133. Jung MH, Kim H, Choi WK, El-Gamal MI, Park JH, Yoo KH, et al. (2009) Synthesis of pyrrolo[2.3-d]pyrimidine derivatives and their antiproliferative activity against melanoma cell line. Bioorg Med Chem Lett 19:6538-6543. doi:10.1016/j.bmcl.2009.10.051.
    134. Nam BS, Kim H, Oh CH, Lee SH, Cho SJ, Sim TB, et al. (2009) Aminoquinoline derivatives with antiproliferative activity against melanoma cell line. Bioorg Med Chem Lett.19:3517-3520. doi:10.1016/j.bmcl.2009.05.007.
    135. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. (2002) Mutations of the BRAF gene in human cancer. Nature 417:949-954.
    136. Menard D, Niculescu-Duvaz I, Dijkstra HP, Niculescu-Duvaz D, Suijkerbuijk BM, Zambon A, et al. (2009) Novel potent BRAF inhibitors:toward 1 nM compounds through optimization of the central phenyl ring. J Med Chem 52:3881-3891. doi:10.1021/jm900242c
    137. Miyazaki Y, Tang J, Maeda Y, Nakano M, Wang L, Nolte RT, et al. (2007) Orally active 4-amino-5-diarylurea-furo[2,3-d]pyrimidine derivatives as anti-angiogenic agent inhibiting VEGFR2 and Tie-2. Bioorg Med Chem Lett 17:1773-1778.
    138. Zhao CR, Wang RQ, Li G. Xue XX, Sun CJ, Qu XJ, et al. (2013) Synthesis of indazole based diarylurea derivatives and their antiproliferative activity against tumor cell lines. Bioorg Med Chem Lett 23:1989-1992. doi:10.1016/j.bmcl.2013.02.034
    139. Zhao CR, Li YY, Wang RQ, Li G, Sun CJ, Qu XJ. Li WB. Pharmacokinetics and metabolism of SL-01, a prodrug of gemcitabine, in rats. Cancer Chemother Pharmacol. doi:10.1007/s00280-013-2153-6
    140. Gandhi V, Plunkett W. (1990) Modulatory activity of 2',2'-difluorodeoxycytidine on the phosphorylation and cytotoxicity of arabinosyl nucleosides. Cancer Res 50:3675-3680.
    141. Huang P, Plunkett W. (1995) Induction of apoptosis by gemcitabine. Semin Oncol 22:19-25.
    142. Matsumoto K, Miyake Y, Kato H, Kawamoto H, Imagawa A, Toyokawa T, et al. (2011) Effect of low-dose gemcitabine on unresectable pancreatic cancer in elderly patients. Digestion 84:230-235. doi:10.1159/000330384
    143. Cattel L, Airoldi M, Delprino L, Passera R, Milla P, Pedani F. (2006) Pharmacokinetic evaluation of gemcitabine and 2',2'-difluorodeoxycytidine-5'-triphosphate after prolonged infusion in patients affected by different solid tumors. Ann Oncol 5:142-147. doi:10.1093/annonc/mdj970
    144. Sakamoto H, Kitano M, Suetomi Y, Takeyama Y, Ohyanagi H, Nakai T, et al.(2006) Comparison of standard-dose and low-dose gemcitabine regimens in pancreatic adenocarcinoma patients:a prospective randomized trial. J Gastroenterol 41:70-76. doi:10.1007/s00535-005-1724-7
    145. Pollera CF, Ceribelli A, Crecco M, Oliva C, Calabresi F. (1997) Prolonged infusion gemcitabine:a clinical phase I study at low-(300 mg/m2) and high-dose (875 mg/m2) levels. Invest New Drugs 15:115-121. doi:10.1023/A:1005817024382
    146. Edgell CJ, McDonald CC, Graham JB. (1983) Permanent cell line expressing human factor VⅢ-related antigen established by hybridization. Proc Natl Acad Sci USA 80:3734-3137.
    147. Bauer J, Margolis M, Schreiner C, Edgell CJ, Azizkhan J, Lazarowski E, et al. (1992) In vitro model of angiogenesis using a human endothelium-derived permanent cell line:contributions of induced gene expression, G-proteins, and integrins. J Cell Physiol 153:437-449.
    148. Childs S, Chen JN, Garrity DM, Fishman MC. (2002) Patterning of angiogenesis in the zebrafish embryo. Development 129:973-982.
    149. Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D. (2003) Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111:1287-1295.
    150. Jain RK. (2003) Molecular regulation of vessel maturation. Nat Med 9:685-693.
    151. Masson K, Ronnstrand L. (2009) Oncogenic signaling from the hematopoietic growth factor receptors c-Kit and Flt3. Cell Signal 21:1717-1726. doi:10.1016/j.cellsig.2009.06.002.
    152. Stuart-Harris R, Caldas C, Pinder SE, Pharoah P. (2008) Proliferation markers and survival in early breast cancer:a systematic review and meta-analysis of 85 studies in 32,825 patients. Breast 17:323-334. doi:10.1016/j.breast.2008.02.002
    153. Yu C, Bruzek LM, Meng XW, Gores GJ, Carter CA, Kaufmann SH, et al. (2005) The role of Mel-1 downregulation in the proapoptotic activity of the multikinase inhibitor BAY 43-9006. Oncogene 24:6861-6869.
    154. Rahmani M, Davis EM, Bauer C, Dent P, Grant S. (2005) Apoptosis induced by the kinase inhibitor BAY 43-9006 in human leukemia cells involves down-regulation of Mcl-1 through inhibition of translation. J Biol Chem 280:35217-35227.
    155. Wendel HG, Silva RL, Malina A, Mills JR, Zhu H, Ueda T, etal. (2007) Dissecting eIF4E action in tumorigenesis. Genes Dev 21:3232-3237.
    156. Panka DJ, Wang W, Atkins MB, Mier JW. (2006) The Raf inhibitor BAY 43-9006 (Sorafenib) induces caspase-independent apoptosis in melanoma cells. Cancer Res 66:1611-1619.
    157. Llambi F, Green DR (2011) Apoptosis and oncogenesis:give and take in the BCL-2 family. Curr Opin Genet Dev 21:12-20. doi:10.1016/j.gde.2010.12.001
    158. Degli Esposti M, Dive C. (2003) Mitochondrial membrane permeabilisation by Bax/Bak. Biochem Biophys Res Commun 304:455-461.
    159. Britten CD. (2013) PI3K and MEK inhibitor combinations:examining the evidence in selected tumor types. Cancer Chemother Pharmacol Feb 27. [Epub ahead of print]
    160. Chang F, Lee JT, Navolanic PM, Steelman LS, Shelton JG, Blalock WL, et al.(2003) Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation:a target for cancer chemotherapy. Leukemia 17:590-603.
    161. Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB. (1999) NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401:82-85.
    162. Lin A, Karin M. (2003) NF-kappaB in cancer:a marked target. Semin Cancer Biol 13:107-114.
    163. Yost C, Torres M, Miller JR, Huang E, Kimelman D, Moon RT. (1996) The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev 10:1443-1454.
    164. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, et al. (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509-1512.
    165. Dihlmann S, von Knebel Doeberitz M. (2005) Wnt/beta-catenin-pathway as a molecular target for future anti-cancer therapeutics. Int J Cancer 113:515-524.
    166. Altomare DA, Khaled AR. (2012) Homeostasis and the importance for a balance between AKT/mTOR activity and intracellular signaling. Curr Med Chem 19:3748-3762.