人arresten基因转染对自体移植静脉内膜增生的抑制作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景自体静脉是血管重建术中最常用的移植材料。但自体静脉移植术后出现移植血管狭窄或再狭窄是限制其远期疗效的主要障碍。再狭窄是一个多因素、多环节、多阶段的复杂过程。移植后再狭窄的病理基础是内膜增生和远期动脉硬化。增生内膜的主要成分是血管平滑肌细胞和细胞外基质。而血管平滑肌细胞过度增殖与移行是导致其病理改变的关键,同时血管平滑肌细胞增殖和凋亡平衡的破坏为内膜增生提供了条件。抑制平滑肌细胞过度增殖及迁移是防治血管重建术后再狭窄的有效策略。arresten是Colorado等研究发现的一种新的强效血管生成抑制因子,是IV型胶原α1链的羧基末端NC1结构域多肽片段,其分子量约为26kD。arresten能有效抑制血管内皮细胞的增殖、迁移和管状形成,诱导内皮细胞凋亡;在体内可抑制新生血管形成及肿瘤的生长和转移。前期研究发现,arresten可有效抑制血管平滑肌细胞的体外增殖,我们推测血管生成抑制因子arresten通过抑制血管平滑肌细胞的增殖和迁移可能在内膜增生及血管重建术后再狭窄的发生发展中发挥抑制作用。因此,研究arresten在自体静脉移植术后内膜增生中的作用,对进一步阐明血管重建术后再狭窄的发病机制及提供有效的防治策略均具有重要的理论意义和应用前景。
     目的本实验中将构建arresten基因的真核表达载体,并在COS-7细胞中表达其分泌蛋白。组织块贴壁法建立体外培养的大鼠血管平滑肌细胞模型,研究真核表达的arresten蛋白对血管平滑肌细胞生物学行为的影响;建立大鼠自体静脉移植模型,局部定位转染arresten基因,探讨其对移植静脉内膜增生的作用。
     方法(1)根据重组质粒pGEMArr(前期构建)中的人arresten cDNA序列及其真核表达载体pSecTag2-B的多克隆位点编码序列,设计一对特异引物P1和P2。以重组质粒pGEMArr为模板进行PCR扩增,并对扩增产物用PCR纯化试剂盒进行回收和纯化,取纯化的PCR扩增产物经双酶切后与pSecTag2-B质粒载体大片段,在T4 DNA连接酶的作用下进行连接反应。采用内切酶BamHI和EcoRI进行双酶切鉴定重组质粒,命名为pSecTag2-AT。取纯化的重组质粒样品,进行核苷酸序列测定。用DNAssist及DNAMAN分析软件进行序列分析,并与前期克隆的人arresten cDNA序列进行序列比对分析,以确认目的基因序列及重组表达质粒的密码子阅读框是否正确。确定成功后,将重组质粒转染COS-7细胞。RT-PCR检测细胞中目的基因mRNA表达,Western blot分析检测上清液中目的蛋白的表达。(2)体外原代培养并鉴定大鼠血管平滑肌细胞,采用CCK-8法检测arresten蛋白对细胞增殖的影响;采用Transwell趋化小室法进行细胞迁移实验,检测arresten蛋白对血管平滑肌细胞体外迁移的影响;采用Annexin V/FITC法检测arresten蛋白对血管平滑肌细胞体外凋亡的影响。(3)以Sprague-Dawley大鼠为研究对象,建立自体静脉移植模型,局部转染重组质粒pSecTag2-AT。4周后取移植血管,RT-PCR检测血管中arresten基因mRNA的表达,常规HE及Verhoeff弹力纤维染色,利用计算机图象分析,检测移植静脉血管内膜及中膜厚度;内膜和中膜面积;免疫组化方法检测移植血管内膜平滑肌细胞肌动蛋白(α-SMA)及细胞增殖核抗原(PCNA)阳性表达情况;Western blot检测转化生长因子β1(TGF-β1)蛋白的表达。
     结果(1)重组质粒测序结果经DNAssist和DNAMAN分析软件分析显示,三个克隆的核苷酸序列完全相同;序列比对分析表明,测序结果与前期克隆的人arresten cDNA序列完全一致,即插入到表达载体中的目的基因正确。分析重组表达质粒的密码子开放阅读框,结果表明插入的arresten基因片段与表达载体的密码子阅读框相吻合;即arresten基因完整、准确地克隆入表达载体中,以保证了目的蛋白能正确表达。成功构建arresten基因的真核表达载体pSecTag2-AT。COS-7转染细胞RT-PCR结果显示,转染arresten基因的COS-7细胞中存在有目的基因特异性片段(449bp),表明基因转染成功;Western blot结果表明转染细胞上清液中有目的蛋白表达。(2)细胞体外增殖分析显示真核表达的arresten蛋白可显著抑制血管平滑肌细胞的增殖作用(F =40.154,P<0.01),且呈时间和剂量依赖性;Transwell小室法检测显示经对照细胞,空载体转染及重组质粒转染的COS-7细胞培养上清液处理的平滑肌细胞迁移数为(28.70±3.97)个,(26.10±4.53)个,(14.00±3.33)个,差异具有显著统计学意义(F =38.915,P<0.01);细胞凋亡分析表明arresten蛋白对平滑肌细胞的凋亡具有促进作用(F=29.32, P<0.01),不同作用时间的凋亡率无统计学差异(P>0.05)。(3)成功建立大鼠自体静脉移植模型,RT-PCR结果显示重组质粒pSecTag2-AT转染的血管组织中有目的基因mRNA的表达;病理图象分析结果显示,转染重组质粒组内膜、中膜面积小于空载体组及空白对照组;转染重组质粒组内膜增生程度轻于空载体组及空白对照组,差异有明显统计学意义(P<0.01)。而内膜面积/中膜面积无统计学差异(P>0.05);α-SMA染色表明增生内膜中的细胞是血管平滑细胞;PCNA阳性细胞数及表达指数,转染重组质粒组均少于空载体组及空白对照组,差异有统计学显著意义;转染重组质粒组TGF-β1蛋白的表达与空载体组及空白对照组相比明显下降。
     结论:在前期工作的基础上,成功构建了中国人arresten基因的真核表达载体,并在COS-7细胞中成功表达其分泌型蛋白。真核表达的人arresten蛋白能有效抑制体外培养的血管平滑肌细胞的增殖和迁移,并促进平滑肌细胞的凋亡。体内局部定位转染人arresten基因可显著抑制移植静脉内膜增生,改善其血管通畅程度。arresten在防治血管移植术后再狭窄方面显示出良好的临床应用前景。
BACKGROUND:Autogenous vein is most commonly used for reconstruction vascular operation as the one of the best curative effect grafted materials. However, the long-term effectiveness of operation is limited by patency stenosis or restenosis rates after autogenous vein graft. Restenosis is a complicated course of multiple factor、multiple link and multiple stage. Intimal proliferation and long-term arteriosclerosis are the pathematology foundation of restenosis after transplantation. The essential component of hyperplasic intima are vascular smooth muscle cells and extracellular matrix, while excessive proliferation and migration to endomembrane are the important pathological base of neointima proliferation, and the crucial link of vascular restenosis resulted by diversified factors after reconstructive vascular operation.; meanwhile balance breakdown between the proliferation and apoptosis of vascular smooth muscle cells provide a chance for intima proliferation. It will be the effective prevention and cure approaches of preventing restenosis after reconstructive vascular operation that to inhibit the excessive proliferation and migration of VSMC. arresten, the NC1 domain of the alpha1 chain of type IV collagen, is a recently reported by Colorado angiogenesis inhibitor derived from vascular basement membrane. Its molecular weight is about 26kD. arresten has recently been shown effective in the inhibition of proliferation and migration of endothelial cells、tubiform formation and induction of endothelial apoptosis. It also can suppress neovascularization and tumor growth and metastases in vivo. We found that arresten may inhibit the proliferation of VSMC in vitro in prophase research, so we suppose that angiogenesis inhibitor arresten may produce a marked effect in the intimal hyperplasia and development of restenosis after reconstructive vascular operation. Hence, to research the effect of arresten on intimal hyperplasia after autogenous vein graft is of important significance and application perspective to elucidate the molecular mechanisms of intimal hyperplasia and vasotransplantation restennosis deeply, provide effective prevention and cure strategy.
     OBJECTIVE:To construct human arresten gene eukaryotic expression vector, express recombinant plasmid in COS-7 cells and excrete protein in our experiment. Rat vascular smooth muscle cells were cultured from thoracic aorta of male Sprague-Dawley rats using the tissue explants method and subcultured by trypsinization;To express human arresten gene in eukaryotic cell, and investigate its effect on the biological behavior off vascular smooth muscle cells in vitro. To construct the model of autogenous vein graft in rat, transfect recombinant plasmid pSecTag2-AT into vein grafts locally; to explore the effect of arresten on the intimal proliferation of venous autografts.
     METHODS: (1) We design a pair of specific primer P1 and P2 according to the cDNA sequence of human arresten in recombinant plasmid pGEMArr contrasted in prophase and multiclone encoding sequence in eukaryotic expression vector pSecTag2-B. arresten gene was amplified by PCR using recombinant plasmid pGEMArr as the template. The amplified target gene were purified and reclaimed by QIAquick PCR Purification Kits. The purified amplified conduction after coupled reaction was inserted into the pSecTag2-B vector by T4 DNA Ligase. The recombinant plasmid was identified using restriction analysis by incision enzyme BamHI and EcoRI, and it was named as pSecTag2-AT. The target gene was sequenced using the 377 DNA automatic sequencing meter. The target gene sequence and reading frame of codon was affirmed correctly or not through the analysis of the DNA sequence of the obtained gene using DNAssist and DNAMAN analysis software. The recombinant expression plasmid was transfected into COS-7 cells. RT-PCR was used to detect the expression of arresten mRNA in cells, while Western blot assay was applied to detect expressed arresten protein in concentrated supernatants. (2) Rat vascular smooth muscle cells (VSMC) were cultured and identified successfully in vitro. Its proliferation was detected using Cell Counting Kit-8 (CCK-8) in vitro. Migration of VSMC was assayed by a microchemotaxis chamber and a polycarbonate filter (Transwell’s chemotaxis chamber) with pores of 8μm in diameter. Annexin V/FITC assay was carried out to detect the effect of the arresten protein on apoptosis of VSMC in vitro. (3) The model of autogenous vein graft was prepared on Sprague-Dawley rat strains, and recombinant plasmid pSecTag2-AT was transfected into vein grafts locally. RT-PCR was used to detect the expression of arresten mRNA in blood vessel; the intimal and medial areas and thickness were measured by computerized planimetry under a light microscope to compare the degree of intimal hyperplasia (IH) by the calculated ratio between intima (I) and media (M) after staining with hematoxylin-eosin (HE) and Verhoeff (elastic fibers). Immunohistochemical labeling and morphologic analysis of vein graft sections were used to identify proliferating cell nuclear antigen (PCNA )positive cells and smooth muscle alpha-actin(α-SMA) positive cells; Western blot were used to detect the protein of transforming growth factor--β1 (TGF-β1).
     RESULTS: (1) arresten gene eukaryotic expression vector was identified correctly using restriction analysis, and the sequence was identified and confirmed by DNAssist and DNAMAN analytical software. Three clonged nucleotide sequence were in the same manner; analysis of sequence comparison showed that sequenced result was as the same as the sequence of human arresten cDNA clonged in prostage. Target gene inserted into expression vector was correct. There was coincidence between arresten gene fragment inserted into vector and reading frame of codon of expression vector. It suggested that arresten gene was clonged into expression vector completely and exactly to assure the correct expression of target protein. Eukaryotic expression plasmid pSecTag2-AT was constructed successfully. RT-PCR revealed that arresten-transferred cells contained a 449bp specific fragment of arresten gene. Successful protein expression in supernatants was confirmed by Western blot. (2) CCK-8 assay showed that the proliferation of VSMC were inhibited significantly by arresten protein as compared with control group (F=40.154, P<0.01). It was certain time and concentration dependence. Transwell’s chamber showed that the number of control group, pSecTag2 transfected group and pSecTag2-AT transfected group were 28.70±3.97,26.10±4.53,14.00±3.33, and the differences were statistically significant (F =38.915,P<0.01);apoptosis assay showed that arresten protein promoted the apoptosis of VSMC(F=29.32,P<0.01), and the rate of apoptosis in different time had no statistical significance (P>0.05).(3)RT-PCR revealed that the genome of arresten-transferred tissue contained a 449bp specific fragment of arresten gene; the intimal and medial areas of pSecTag2-AT transfected group was less than that of control group, and the difference were statistically significant (P<0.01), while I/M had no statistics difference. A less intimal thickness of pSecTag2-AT transfected group was seen compared with the control group and pSecTag2 transfected group.α-SMA staining suggested that VSMC were in the hyperplasic intima; the number of PCNA-positive-stained cells and expression index was lower as compared with that of the control group, and the differences were also statistically significant (P<0.01). Western blot revealed that protein level of TGF-β1 decreased obviously compared with the control group and pSecTag2 transfected group.
     CONCLUSIONS: We constructed eukaryotic expression vector of human arresten gene successfully, expressed recombinant plasmid in COS-7 cells and excreted protein. arresten protein expressed in eukaryotic cells can inhibit proliferation and migration of VSMC effectively and promote the apoptosis of VSMC in vitro. Local transfection of human arresten gene can inhibit the intimal hyperplasia of venous autografts and improve patency level of blood vessel. These showed the good clinical application perspective for prevention and cure of restenosis after transplantation of blood vessel.
引文
[1] Conte MS, Belkin M, Upchurch GR, et al. Impact of increasing comorbidity on infrainguinal reconstruction: a 20-year perspective. Ann.Surg, 2001, 233(3): 445-452.
    [2] Eugster T, Stierli P, Fischer G, et al. Long-term results of infrainguinal arterial reconstruction with spliced veins are equal to results with non-spliced veins. Eur.J.Vasc.Endovasc.Surg, 2001, 22(2): 152-156.
    [3] Belkin M, Knox J, Donaldson MC, et al. Infrainguinal arterial reconstruction with nonreversed greater saphenous vein . J.Vasc.Surg, 1996, 24(6): 957-962.
    [4] Mii S, Okadome K, Onohara T, et al. Intimal thickening and permeability of arterial autogenous vein graft in a canine poor-runoff model: transmission electron microscopic evidence. Surgery, 1990, 108(1): 81-89.
    [5] Cho WH, Kim HT, Koo JH, et al. Effect of AP-1 decoy using hemagglutinating virus of Japan-liposome on the intimal hyperplasia of the autogenous vein graft in mongrel dogs. Transplant.Proc, 2006, 38(7): 2161-2163.
    [6] Holmes DR, Savage M, Lablanche JM, et al. Results of Prevention of REStenosis with Tranilast and its Outcomes (PRESTO) trial. Circulation, 2002, 106(10): 1243-1250.
    [7] Kimura T, Abe K, Shizuta S, et al. Long-term clinical and angiographic follow-up after coronary stent placement in native coronary arteries. Circulation, 2002, 105(25): 2986-2991.
    [8] Leon MB, Teirstein PS, Moses JW, et al. Localized intracoronary gamma-radiation therapy to inhibit the recurrence of restenosis after stenting. N.Engl.J.Med, 2001, 344 (4): 250-256.
    [9] George CJ, Baim DS, Brinker JA, et al. One-year follow-up of the Stent Restenosis (STRESS I) Study. Am.J.Cardiol, 1998, 81(7): 860-865.
    [10] Thury A, Van LG, Carlier SG, et al. High shear stress after successful balloonangioplasty is associated with restenosis and target lesion revascularization. Am.Heart J, 2002, 144(1): 136-143.
    [11] Tashiro H, Shimokawa H, Sadamatsu K, et al. Role of cytokines in the pathogenesis of restenosis after percutaneous transluminal coronary angioplasty. Coron.Artery Dis, 2001, 12(2): 107-113.
    [12] Boehm M, Nabel EG. Cell cycle and cell migration: new pieces to the puzzle. Circulation, 2001, 103(24): 2879-2881.
    [13] Charles R, Sandirasegarane L, Yun J, et al. Ceramide-coated balloon catheters limit neointimal hyperplasia after stretch injury in carotid arteries. Circ.Res, 2000, 87(4): 282-288.
    [14] Schwartz RS, Holmes DR, Topol EJ. The restenosis paradigm revisited: an alternative proposal for cellular mechanisms. J.Am.Coll.Cardiol, 1992, 20(5): 1284-1293.
    [15] Macleod DC, Strauss BH, De JM, et al. Proliferation and extracellular matrix synthesis of smooth muscle cells cultured from human coronary atherosclerotic and restenotic lesions. J.Am.Coll.Cardiol, 1994, 23(1): 59-65.
    [16] Wang Z, Castresana MR, Newman WH. Reactive oxygen and NF-kappaB in VEGF-induced migration of human vascular smooth muscle cells. Biochem.Biophys. Res. Commun, 2001, 285(3): 669-674.
    [17] Blindt R, Vogt F, Lamby D, et al. Characterization of differential gene expression in quiescent and invasive human arterial smooth muscle cells. J.Vasc.Res, 2002, 39(4): 340-352.
    [18] Tennant M, Mcgeachie JK. Adaptive remodelling of smooth muscle in the neo-intima of vein-to-artery grafts in rats: a detailed morphometric analysis. Anat.Embryol(Berl), 1993, 187(2): 161-166.
    [19] Tsilibary EC, Reger LA, Vogel AM, et al. Identification of a multifunctional, cell-binding peptide sequence from the a1(NC1) of type IV collagen. J.Cell Biol, 1990, 111(4): 1583-1591.
    [20] Colorado PC, Torre A, Kamphaus G, et al. Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res, 2000, 60(9): 2520-2526.
    [21]郑启昌,宋自芳,郑幼伟,等.血管生成抑制因子arresten基因的克隆表达.中国生物工程杂志, 2002(4):89-92
    [22]宋自芳,郑启昌,朱林,等.血管生成抑制因子arresten基因原核表达载体的构建及其在大肠杆菌中的表达.中国病理生理杂志, 2003(9):1161-1164.
    [23]Song Z, Qichang Z, Li W, et al. Prokaryotic expression and biological activity analysis of human arresten gene . J.Huazhong.Univ Sci.Technolog. Med.Sci, 2005, 25(1): 8-12.
    [1] Colorado PC, Torre A, Kamphaus G, et al. Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res, 2000, 60(9): 2520-2526.
    [2]郑启昌,宋自芳,李毅清,等.血管生成抑制因子arresten基因的分子克隆与序列测定.中华实验外科杂志, 2002(1):46-47.
    [3] Zhang WD, Bai HZ, Sawa Y, et al. Association of smooth muscle cell phenotypic modulation with extracellular matrix alterations during neointima formation in rabbit vein grafts. J.Vasc.Surg, 1999, 30(1): 169-183.
    [4] Walsh K, Smith RC, Kim HS. Vascular cell apoptosis in remodeling, restenosis, and plaque rupture. Circ.Res, 2000, 87(3): 184-188.
    [5] Engelse MA, Lardenoye JH, Neele JM, et al. Adenoviral activin a expression prevents intimal hyperplasia in human and murine blood vessels by maintaining the contractile smooth muscle cell phenotype. Circ.Res, 2002, 90(10): 1128-1134.
    [6] Timpl R. Macromolecular organization of basement membranes. Curr.Opin.Cell Biol., 1996, 8(5): 618-624.
    [7] Prockop DJ, Kivirikko KI. Collagens: molecular biology, diseases, and potentials for therapy. Annu.Rev.Biochem, 1995, 64: 403-434.
    [8] Scharf SJ, Horn GT, Erlich HA. Direct cloning and sequence analysis of enzymatically amplified genomic sequences. Science, 1986, 233(4768): 1076-1078.
    [9] Jung V, Pestka SB, Pestka S. Cloning of polymerase chain reaction-generated DNA containing terminal restriction endonuclease recognition sites. Methods Enzymol, 1993, 218: 357-362.
    [10] Horton RM, Ho SN, Pullen JK, et al. Gene splicing by overlap extension. Methods Enzymol, 1993, 217: 270-279.
    [11] Zimmermann K, Schogl D, Mannhalter JW. Digestion of terminal restrictionendonuclease recognition sites on PCR products. Biotechniques, 1998, 24(4): 582-584.
    [12] Xu L, Huang CC, Huang W, et al. Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes. Mol.Cancer Ther, 2002, 1(5): 337- 346.
    [13] Nakase M, Inui M, Okumura K, et al. p53 gene therapy of human osteosarcoma using a transferrin-modified cationic liposome. Mol.Cancer Ther, 2005, 4(4): 625-631.
    [14] Harvey TJ,Macnaughton TB, Gowans EJ. The development and characterisation of a SV40 T-antigen positive cell line of human hepatic origin. J.Virol.Methods, 1997, 65(1): 67-74.
    [15]钱锋,肖成祖.影响非洲绿猴肾细胞脂质体转染效率的因素。生物技术通报,1998,5:31-35.
    [1] Khachigian LM. Catalytic oligonucleotides targeting EGR-1 as potential inhibitors of in-stent restenosis. Ann.N.Y.Acad.Sci, 2001, 947: 412-415.
    [2] Kockx MM, Knaapen MW. The role of apoptosis in vascular disease. J.Pathol, 2000, 190(3): 267-280.
    [3] Wang Z, Castresana MR, Newman WH. Reactive oxygen and NF-kappaB in VEGF-induced migration of human vascular smooth muscle cells. Biochem.Biophys. Res. Commun, 2001, 285(3): 669-674.
    [4] Blindt R, Vogt F, Lamby D, et al. Characterization of differential gene expression in quiescent and invasive human arterial smooth muscle cells. J.Vasc.Res, 2002, 39(4): 340-352.
    [5] Colorado PC, Torre A, Kamphaus G, et al. Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res, 2000, 60(9): 2520-2526.
    [6]郑启昌,宋自芳,李毅清,等血管生成抑制因子arresten基因的分子克隆与序列测定.中华实验外科杂志, 2002(1):46-47.
    [7] Yan SF, Fujita T, Lu J, et al. Egr-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress. Nat.Med, 2000, 6(12): 1355-1361.
    [8] Faries PL, Rohan DI, Wyers MC, et al. Vascular smooth muscle cells derived from atherosclerotic human arteries exhibit greater adhesion, migration, and proliferation than venous cells. J.Surg.Res, 2002, 104(1): 22-28.
    [9] Ma R, Wu SZ, Lin QS. [Testosterone regulation of androgen receptor protein expression in cultured vascular smooth muscle cells. Zhonghua Yi.Xue.Za Zhi, 2004, 84(6): 491-495.
    [10] Lamm GM, Steinlein P, Cotten M, et al. A rapid, quantitative and inexpensive method for detecting apoptosis by flow cytometry in transiently transfected cells. Nucleic Acids Res, 1997, 25(23): 4855-4857.
    [11] Wang F, Chen TS, Xing D, et al. Measuring dynamics of caspase-3 activity in living cells using FRET technique during apoptosis induced by high fluence low-power laser irradiation. Lasers Surg.Med, 2005, 36(1): 2-7.
    [12] Itano N, Atsumi F, Sawai T, et al. Abnormal accumulation of hyaluronan matrix diminishes contact inhibition of cell growth and promotes cell migration. Proc.Natl. Acad. Sci. U.S.A, 2002, 99(6): 3609-3614.
    [13] Gorog P, Kovacs IB. Inhibition of vascular smooth muscle cell migration by intact endothelium is nitric oxide-mediated: interference by oxidised low density lipoproteins. J.Vasc.Res, 1998, 35(3): 165-169.
    [14] Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature, 1993, 362(6423): 801-809.
    [15] Landzberg BR, Frishman WH, Lerrick K. Pathophysiology and pharmacological approaches for prevention of coronary artery restenosis following coronary artery balloon angioplasty and related procedures. Prog.Cardiovasc.Dis, 1997, 39(4): 361-398.
    [16] Boehm M, Nabel EG. Cell cycle and cell migration: new pieces to the puzzle. Circulation, 2001, 103(24): 2879-2881.
    [17] Charles R, Sandirasegarane L, Yun J, et al. Ceramide-coated balloon catheters limit neointimal hyperplasia after stretch injury in carotid arteries. Circ.Res, 2000, 87(4): 282-288.
    [18] Sudhakar A, Nyberg P, Keshamouni VG, et al. Human alpha1 type IV collagen NC1 domain exhibits distinct antiangiogenic activity mediated by alpha1beta1 integrin. J.Clin.Invest, 2005, 115(10): 2801-2810.
    [19] Urano Y, Shirai K, Watanabe H, et al. Vascular smooth muscle cell outgrowth, proliferation, and apoptosis in young and old rats. Atherosclerosis, 1999, 146(1): 101-105.
    [20]景涛,刘建平,何国祥,等.组织贴壁法培养大鼠主动脉平滑肌细胞的探讨.中国现代医学杂志, 2001(9):10-12.
    [21]张秀云,徐辉,任丽群.大鼠主动脉平滑肌细胞体外培养及其临床意义.吉林医学, 2003(1):33-34.
    [22]郑爱青,宋现让,于金明,等.转染内皮抑素基因联合放射治疗对肝癌移植瘤生长的影响.中华肝脏病杂志, 2005(04):309-310
    [23] Nakase M, Inui M, Okumura K, et al. p53 gene therapy of human osteosarcoma using a transferrin-modified cationic liposome. Mol.Cancer Ther, 2005, 4(4): 625-631.
    [24] Harvey TJ, Macnaughton TB, Gowans EJ. The development and characterisation of a SV40 T-antigen positive cell line of human hepatic origin. J.Virol.Methods, 1997, 65(1): 67-74.
    [25]钱锋,肖成祖.影响非洲绿猴肾细胞脂质体转染效率的因素。生物技术通报,1998,5:31-35.
    [26] Wen JK, Han M, Zheng B, et al. Comparison of gene expression patterns and migration capability at quiescent and proliferating vascular smooth muscle cells stimulated by cytokines . Life Sci, 2002, 70(7): 799-807.
    [27] Baatout S. Endothelial differentiation using Matrigel (review). Anticancer Res, 1997, 17(1A): 451-455.
    [28] Bloomfield KL, Baldwin BL, Harkin DG, et al. Modification of the Boyden chamber to improve uniformity of cell invasion of matrigel-coated membranes. Biotechniques, 2001, 31(6): -341610338-0.
    [29] Izumi Y, Kim S, Yoshiyama M, et al. Activation of apoptosis signal-regulating kinase 1 in injured artery and its critical role in neointimal hyperplasia. Circulation, 2003, 108(22): 2812-2818.
    [30] Isner JM, Kearney M, Bortman S, et al. Apoptosis in human atherosclerosis and restenosis. Circulation, 1995, 91(11): 2703-2711.
    [1] Ryomoto M, Wolff RA, Tomas JJ, et al. 17 beta-estradiol attenuates intimal hyperplasia and macrophage accumulation with a reduction in monocyte chemoattractant protein 1 expression in a vein graft model . J.Vasc.Surg, 2002, 36(3): 613-621.
    [2] Waksman R, Ajani AE, White RL, et al. Intravascular gamma radiation for in-stent restenosis in saphenous-vein bypass grafts. N.Engl.J.Med, 2002, 346(16): 1194-1199.
    [3] Holmes DR, Savage M, Lablanche JM, et al. Results of Prevention of REStenosis with Tranilast and its Outcomes (PRESTO) trial . Circulation, 2002, 106(10): 1243-1250.
    [4] Kimura T, Abe K, Shizuta S, et al. Long-term clinical and angiographic follow-up after coronary stent placement in native coronary arteries. Circulation, 2002, 105(25): 2986-2991.
    [5] Leon MB, Teirstein PS, Moses JW, et al. Localized intracoronary gamma-radiation therapy to inhibit the recurrence of restenosis after stenting. N.Engl.J.Med, 2001, 344(4): 250-256.
    [6] George CJ, Baim DS, Brinker JA, et al. One-year follow-up of the Stent Restenosis (STRESS I) Study. Am.J.Cardiol, 1998, 81(7): 860-865.
    [7] Cho WH, Kim HT, Koo JH, et al. Effect of AP-1 decoy using hemagglutinating virus of Japan-liposome on the intimal hyperplasia of the autogenous vein graft in mongrel dogs. Transplant.Proc, 2006, 38(7): 2161-2163.
    [8] Horlitz M, Sigwart U, Niebauer J. Fighting restenosis after coronary angioplasty: contemporary and future treatment options. Int.J.Cardiol, 2002, 83(3): 199-205.
    [9] Wang Z, Castresana MR, Newman WH. Reactive oxygen and NF-kappaB in VEGF-induced migration of human vascular smooth muscle cells. Biochem.Biophys. Res. Commun, 2001, 285(3): 669-674.
    [10] Blindt R, Vogt F, Lamby D, et al. Characterization of differential gene expression inquiescent and invasive human arterial smooth muscle cells. J.Vasc.Res, 2002, 39(4): 340-352.
    [11] Colorado PC, Torre A, Kamphaus G, et al. Anti-angiogenic cues from vascular basement membrane collagen. Cancer Res, 2000, 60(9): 2520-2526.
    [12]郑启昌,宋自芳,郑幼伟,等.血管生成抑制因子arresten基因的克隆表达.中国生物工程杂志, 2002,22(04):89-92.
    [13]宋自芳,郑启昌,朱林,等.血管生成抑制因子arresten基因原核表达载体的构建及其在大肠杆菌中的表达.中国病理生理杂志, 2003,19(09):1161-1164.
    [14] Song Z, Qichang Z, Li W, et al. Prokaryotic expression and biological activity analysis of human arresten gene . J.Huazhong.Univ Sci.Technolog.Med.Sci., 2005, 25(1): 8-12.
    [15] Shang D, Zheng Q, Song Z, et al. Eukaryotic expression of human arresten gene and its effect on the proliferation of vascular smooth muscle cells. J.Huazhong.Univ Sci.Technolog.Med.Sci., 2006, 26(2): 202-205.
    [16]尚丹,郑启昌,宋自芳,等.人arresten基因的真核表达及其对血管平滑肌细胞增殖和迁移的影响.中国病理生理杂志2007待发表.
    [17]陈华,景在平,包俊敏,等. bcl-2基因短发夹RNA对自体移植静脉内膜增生的影响.中华实验外科杂志, 2006,23(07):810-811
    [18] Faries PL, Marin ML, Veith FJ, et al. Immunolocalization and temporal distribution of cytokine expression during the development of vein graft intimal hyperplasia in an experimental model. J.Vasc.Surg, 1996, 24(3): 463-471.
    [19] Komalavilas P, Shah PK, Jo H, et al. Activation of mitogen-activated protein kinase pathways by cyclic GMP and cyclic GMP-dependent protein kinase in contractile vascular smooth muscle cells. J.Biol.Chem, 1999, 274(48): 34301-34309.
    [20] Jackson MR, Belott TP, Dickason T, et al. The consequences of a failed femoropopliteal bypass grafting: comparison of saphenous vein and PTFE grafts. J.Vasc.Surg, 2000, 32(3): 498-504.
    [21] Vijayan V, Shukla N, Johnson JL, et al. Long-term reduction of medial and intimalthickening in porcine saphenous vein grafts with a polyglactin biodegradable external sheath. J.Vasc.Surg, 2004, 40(5): 1011-1019.
    [22] Motwani JG, Topol EJ. Aortocoronary saphenous vein graft disease: pathogenesis, predisposition, and prevention. Circulation, 1998, 97(9): 916-931.
    [23] Boehm M, Nabel EG. Cell cycle and cell migration: new pieces to the puzzle. Circulation, 2001, 103(24): 2879-2881.
    [24] Bauters C, Isner JM. The biology of restenosis. Prog.Cardiovasc.Dis, 1997, 40(2): 107-116.
    [25] Kearney M, Pieczek A, Haley L, et al. Histopathology of in-stent restenosis in patients with peripheral artery disease. Circulation, 1997, 95(8): 1998-2002.
    [26] Charles R, Sandirasegarane L, Yun J, et al. Ceramide-coated balloon catheters limit neointimal hyperplasia after stretch injury in carotid arteries. Circ.Res, 2000, 87(4): 282-288.
    [27] Tennant M, Mcgeachie JK. Adaptive remodelling of smooth muscle in the neo-intima of vein-to-artery grafts in rats: a detailed morphometric analysis. Anat.Embryol. (Berl), 1993, 187(2): 161-166.
    [28] Bauters C, Meurice T, Hamon M, et al. Mechanisms and prevention of restenosis: from experimental models to clinical practice. Cardiovasc.Res, 1996, 31(6): 835-846.
    [29] Nabel GJ, Nabel EG, Yang ZY, et al. Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proc.Natl.Acad.Sci.U.S.A, 1993, 90(23): 11307-11311.
    [30] Caplen NJ, Alton EW, Middleton PG, et al. Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Nat.Med, 1995, 1(1): 39-46.
    [31] Francis SE, Hunter S, Holt CM, et al. Release of platelet-derived growth factor activity from pig venous arterial grafts. J.Thorac.Cardiovasc.Surg, 1994, 108(3): 540-548.
    [32]单岩,张谦,朱慧琪.冠状动脉旁路移植术再狭窄中PCNA蛋白表达的研究.中国心血管杂志, 2004,9(01):1-3
    [33] Hu Y, Baker AH, Zou Y, et al. Local gene transfer of tissue inhibitor of metalloproteinase-2 influences vein graft remodeling in a mouse model. Arterioscler. Thromb. Vasc.Biol, 2001, 21(8): 1275-1280.
    [34] Bassiouny HS, Song RH, Hong XF, et al. Flow regulation of 72-kD collagenase IV (MMP-2) after experimental arterial injury . Circulation, 1998, 98(2): 157-163.
    [35] Li C, Cantor WJ, Nili N, et al. Arterial repair after stenting and the effects of GM6001, a matrix metalloproteinase inhibitor. J.Am.Coll.Cardiol, 2002, 39(11): 1852-1858.
    [36]孙达欣,张强,郎晓讴,等.纳米粒子载体携带反义转化生长因子-β1基因的局部定位转染对大鼠自体移植静脉内膜增生的影响.中华实验外科杂志, 2005,22(06):654-656.
    [1] Licalzi LK, Stansel HC. Failure of autogenous reversed saphenous vein femoropopliteal grafting: pathophysiology and prevention. Surgery, 1982, 91(3): 352-358.
    [2] Numaguchi Y, Okumura K, Harada M, et al. Catheter-based prostacyclin synthase gene transfer prevents in-stent restenosis in rabbit atheromatous arteries. Cardiovasc.Res, 2004, 61(1): 177-185.
    [3] Horlitz M, Sigwart U, Niebauer J. Fighting restenosis after coronary angioplasty: contemporary and future treatment options. Int.J.Cardiol, 2002, 83(3): 199-205.
    [4] Siow RC, Mallawaarachchi CM, Weissberg PL. Migration of adventitial myofibroblasts following vascular balloon injury: insights from in vivo gene transfer to rat carotid arteries. Cardiovasc.Res, 2003, 59(1): 212-221.
    [5] Newby AC. An overview of the vascular response to injury: a tribute to the late Russell Ross. Toxicol.Lett, 2000, 112-113: 519-529.
    [6] Freedman SB, Isner JM. Therapeutic angiogenesis for coronary artery disease. Ann. Intern. Med, 2002, 136(1): 54-71.
    [7] Camerer E, Kolsto AB, Prydz H. Cell biology of tissue factor, the principal initiator of blood coagulation. Thromb.Res, 1996, 81(1): 1-41.
    [8] Macleod DC, Strauss BH, De JM, et al. Proliferation and extracellular matrix synthesis of smooth muscle cells cultured from human coronary atherosclerotic and restenotic lesions. J.Am.Coll.Cardiol, 1994, 23(1): 59-65.
    [9] Delafontaine P, Song YH, Li Y. Expression, regulation, and function of IGF-1, IGF-1R, and IGF-1 binding proteins in blood vessels. Arterioscler.Thromb.Vasc.Biol, 2004, 24(3): 435-444.
    [10] Patel VA, Zhang QJ, Siddle K, et al. Defect in insulin-like growth factor-1 survival mechanism in atherosclerotic plaque-derived vascular smooth muscle cells is mediated by reduced surface binding and signaling. Circ.Res, 2001, 88(9): 895-902.
    [11] Du J, Brink M, Peng T, et al. Thrombin regulates insulin-like growth factor-1 receptor transcription in vascular smooth muscle: characterization of the signaling pathway. Circ.Res, 2001, 88(10): 1044-1052.
    [12] Zhang J, Fu M, Zhu X, et al. Peroxisome proliferator-activated receptor delta is up-regulated during vascular lesion formation and promotes post-confluent cell proliferation in vascular smooth muscle cells. J.Biol.Chem, 2002, 277(13): 11505- 11512.
    [13] Xi XP, Graf K, Goetze S, et al. Central role of the MAPK pathway in ang II-mediated DNA synthesis and migration in rat vascular smooth muscle cells. Arterioscler. Thromb. Vasc.Biol, 1999, 19(1): 73-82.
    [14] Hwang KC, Lee KH, Jang Y. Inhibition of MEK1,2/ERK mitogenic pathway by estrogen with antiproliferative properties in rat aortic smooth muscle cells. J.Steroid Biochem.Mol.Biol, 2002, 80(1): 85-90.
    [15] Li G, Chen SJ, Oparil S, et al. Direct in vivo evidence demonstrating neointimal migration of adventitial fibroblasts after balloon injury of rat carotid arteries. Circulation, 2000, 101(12): 1362-1365.
    [16] Ibrahim AI, Obeid MT, Jouma MJ, et al. Detection of herpes simplex virus, cytomegalovirus and Epstein-Barr virus DNA in atherosclerotic plaques and in unaffected bypass grafts. J.Clin.Virol, 2005, 32(1): 29-32.
    [17] Hutter R, Carrick FE, Valdiviezo C, et al. Vascular endothelial growth factor regulates reendothelialization and neointima formation in a mouse model of arterial injury. Circulation, 2004, 110(16): 2430-2435.
    [18] Bassiouny HS, Song RH, Hong XF, et al. Flow regulation of 72-kD collagenase IV (MMP-2) after experimental arterial injury. Circulation, 1998, 98(2): 157-163.
    [19] Li C, Cantor WJ, Nili N, et al. Arterial repair after stenting and the effects of GM6001, a matrix metalloproteinase inhibitor. J.Am.Coll.Cardiol, 2002, 39(11): 1852-1858.
    [20] Clouthier DE, Comerford SA, Hammer RE. Hepatic fibrosis, glomerulosclerosis, and alipodystrophy-like syndrome in PEPCK-TGF-beta1 transgenic mice. J.Clin.Invest, 1997, 100(11): 2697-2713.
    [21] Ryuto M, Ono M, Izumi H, et al. Induction of vascular endothelial growth factor by tumor necrosis factor alpha in human glioma cells. Possible roles of SP-1. J.Biol.Chem, 1996, 271(45): 28220-28228.
    [22] Erl W, Hansson GK, De MR, et al. Nuclear factor-kappa B regulates induction of apoptosis and inhibitor of apoptosis protein-1 expression in vascular smooth muscle cells. Circ.Res, 1999, 84(6): 668-677.
    [23] Bennett MR, Littlewood TD, Hancock DC, et al. Down-regulation of the c-myc proto-oncogene in inhibition of vascular smooth-muscle cell proliferation: a signal for growth arrest?. Biochem.J, 1994, 302 ( Pt 3): 701-708.
    [24] Moggio RA, Ding JZ, Smith CJ, et al. Immediate-early gene expression in human saphenous veins harvested during coronary artery bypass graft operations. J.Thorac.Cardiovasc.Surg, 1995, 110(1): 209-213.
    [25] Harja E, Bucciarelli LG, Lu Y, et al. Early growth response-1 promotes atherogenesis: mice deficient in early growth response-1 and apolipoprotein E display decreased atherosclerosis and vascular inflammation. Circ.Res, 2004, 94(3): 333-339.
    [26] Yan SF, Fujita T, Lu J, et al. Egr-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress. Nat.Med, 2000, 6(12): 1355-1361.
    [27] Ohtani K, Egashira K, Usui M, et al. Inhibition of neointimal hyperplasia after balloon injury by cis-element 'decoy' of early growth response gene-1 in hypercholesterolemic rabbits. Gene Ther, 2004, 11(2): 126-132.
    [28] Blaschke F, Bruemmer D, Law RE. Egr-1 is a major vascular pathogenic transcription factor in atherosclerosis and restenosis. Rev.Endocr.Metab Disord, 2004, 5(3): 249-254.
    [29] Wada Y, Suzuki J, Kawauchi M, et al. Early growth-response factor 1 and basic transcriptional element-binding protein 2 expression in cardiac allografts. J.Heart LungTransplant, 2001, 20(5): 590-594.
    [30] Yupu L, Yaotiam H, Li Z, et al. Management of major arterial injuries of limbs: study of 166 cases. Cardiovasc Surg(Am), 1993, 1(5): 486-488.
    [31] Massey MF, Davies MG, Svendsen E, et al. Reduction of experimental vein graft intimal hyperplasia by ketanserin. J.Surg.Res, 1993, 54(6): 530-538.
    [32] Fulton GJ, Davies MG, Barber L, et al. Localized versus systemic angiotensin II receptor inhibition of intimal hyperplasia in experimental vein grafts by the specific angiotensin II receptor inhibitor L158,809. Surgery, 1998, 123(2): 218-227.
    [33] Schachner T, Oberhuber A, Zou Y, et al. Rapamycin treatment is associated with an increased apoptosis rate in experimental vein grafts. Eur.J.Cardiothorac.Surg, 2005, 27(2): 302-306.
    [34] Moses JW, Leon MB, Popma JJ, et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N.Engl.J.Med, 2003, 349(14): 1315-1323.
    [35] Song QB, Wei MJ, Duan ZQ, et al. Batroxobin reduces intracellular calcium concentration and inhibits proliferation of vascular smooth muscle cells. Chin Med J (Engl), 2004, 117(6): 917-921.
    [36] Axel DI, Frigge A, Dittmann J, et al. All-trans retinoic acid regulates proliferation, migration, differentiation, and extracellular matrix turnover of human arterial smooth muscle cells. Cardiovasc.Res, 2001, 49(4): 851-862.
    [37] Simons M, Edelman ER, Dekeyser JL, et al. Antisense c-myb oligonucleotides inhibit intimal arterial smooth muscle cell accumulation in vivo. Nature, 1992, 359(6390): 67-70.
    [38] Mannion JD, Ormont ML, Magno MG, et al. Sustained reduction of neointima with c-myc antisense oligonucleotides in saphenous vein grafts. Ann.Thorac.Surg, 1998, 66(6): 1948-1952.
    [39] Fahmy RG, Khachigian LM. Locked nucleic acid modified DNA enzymes targetingearly growth response-1 inhibit human vascular smooth muscle cell growth. Nucleic Acids Res, 2004, 32(7): 2281-2285.
    [40] Perlman H, Luo Z, Krasinski K, et al. Adenovirus-mediated delivery of the Gax transcription factor to rat carotid arteries inhibits smooth muscle proliferation and induces apoptosis. Gene Ther, 1999, 6(5): 758-763.
    [41] Bai H, Morishita R, Kida I, et al. Inhibition of intimal hyperplasia after vein grafting by in vivo transfer of human senescent cell-derived inhibitor-1 gene. Gene Ther, 1998, 5(6): 761-769.
    [42] Von LH, Gibbons GH, Morishita R, et al. Gene therapy inhibiting neointimal vascular lesion: in vivo transfer of endothelial cell nitric oxide synthase gene. Proc.Natl.Acad.Sci.U.S.A, 1995, 92(4): 1137-1141.
    [43] Janssens S, Flaherty D, Nong Z, et al. Human endothelial nitric oxide synthase gene transfer inhibits vascular smooth muscle cell proliferation and neointima formation after balloon injury in rats. Circulation, 1998, 97(13): 1274-1281.
    [44] Rutanen J, Turunen AM, Teittinen M, et al. Gene transfer using the mature form of VEGF-D reduces neointimal thickening through nitric oxide-dependent mechanism. Gene ther, 2005, 12(12): 980-987.
    [45] George SJ, Lloyd CT, Angelini GD, et al. Inhibition of late vein graft neointima formation in human and porcine models by adenovirus-mediated overexpression of tissue inhibitor of metalloproteinase-3. Circulation, 2000, 101(3): 296-304.
    [46] Dollery CM, Humphries SE, Mcclelland A, et al. Expression of tissue inhibitor of matrix metalloproteinases 1 by use of an adenoviral vector inhibits smooth muscle cell migration and reduces neointimal hyperplasia in the rat model of vascular balloon injury . Circulation, 1999, 99(24): 3199-3205.
    [47] Puhakka HL, Turunen P, Rutanen J, et al. Tissue inhibitor of metalloproteinase 1 adenoviral gene therapy alone is equally effective in reducing restenosis as combination gene therapy in a rabbit restenosis model. J.Vasc.Res, 2005, 42(5): 361-367.
    [48] Rotmans JI, Velema E, Verhagen HJ, et al. Matrix metalloproteinase inhibition reduces intimal hyperplasia in a porcine arteriovenous-graft model. J.Vasc.Surg, 2004, 39(2): 432-439.
    [49] Kuzuya M, Kanda S, Sasaki T, et al. Deficiency of gelatinase a suppresses smooth muscle cell invasion and development of experimental intimal hyperplasia . Circulation, 2003, 108(11): 1375-1381.
    [50] Cho A, Reidy MA. Matrix metalloproteinase-9 is necessary for the regulation of smooth muscle cell replication and migration after arterial injury. Circ.Res, 2002, 91(9): 845-851.
    [51] Varenne O, Sinnaeve P, Gillijns H, et al. Percutaneous gene therapy using recombinant adenoviruses encoding human herpes simplex virus thymidine kinase, human PAI-1, and human NOS3 in balloon-injured porcine coronary arteries. Hum.Gene Ther., 2000, 11(9): 1329-1339.
    [52] Izumi Y, Kim S, Yoshiyama M, et al. Activation of apoptosis signal-regulating kinase 1 in injured artery and its critical role in neointimal hyperplasia. Circulation, 2003, 108(22): 2812-2818.
    [53] Ohashi N, Matsumori A, Furukawa Y, et al. Role of p38 mitogen-activated protein kinase in neointimal hyperplasia after vascular injury. Arterioscler.Thromb.Vasc.Biol, 2000, 20(12): 2521-2526.
    [54] Isner JM, Walsh K, Rosenfield K, et al. Arterial gene therapy for restenosis. Hum.Gene Ther., 1996, 7(8): 989-1011.
    [55] Zoldhelyi P, Mcnatt J, Xu XM, et al. Prevention of arterial thrombosis by adenovirus-mediated transfer of cyclooxygenase gene. Circulation, 1996, 93(1): 10-17.
    [56] Angelini GD, Jeremy JY. Towards the treatment of saphenous vein bypass graft failure--a perspective of the Bristol Heart Institute. Biorheology, 2002, 39(3-4): 491-499.
    [57] Angelini GD, Lloyd C, Bush R, et al. An external, oversized, porous polyester stentreduces vein graft neointima formation, cholesterol concentration, and vascular cell adhesion molecule 1 expression in cholesterol-fed pigs. J.Thorac.Cardiovasc.Surg, 2002, 124(5): 950-956.
    [58] Stooker W, Niessen HW, Wildevuur WR, et al. Perivenous application of fibrin glue reduces early injury to the human saphenous vein graft wall in an ex vivo model. Eur.J.Cardiothorac.Surg, 2002, 21(2): 212-217.
    [59] Waksman R, Raizner AE, Yeung AC, et al. Use of localised intracoronary beta radiation in treatment of in-stent restenosis: the INHIBIT randomised controlled trial. Lancet, 2002, 359(9306): 551-557.
    [60] De CR, Wulf P, Van NH, et al. Irradiated versus nonirradiated endothelial cells: effect on proliferation of vascular smooth muscle cells. J.Vasc.Interv.Radiol, 2001, 12(7): 855-861.
    [61] Scott NA, Crocker IR, Yin Q, et al. Inhibition of vascular cell growth by X-ray irradiation: comparison with gamma radiation and mechanism of action. Int.J.Radiat. Oncol. Biol.Phys, 2001, 50(2): 485-493.
    [62] Cottin Y, Kollum M, Chan RC, et al. Differential remodeling after balloon overstretch injury and either beta- or gamma-intracoronary radiation of porcine coronary arteries. Cardiovasc.Radiat.Med, 2001, 2(2): 75-82.
    [63] Ajani AE, Waksman R, Cheneau E, et al. Comparison of intracoronary gamma radiation for in-stent restenosis in saphenous vein grafts versus native coronary arteries . Am.J.Cardiol, 2003, 91(1): 22-26.
    [64] Sidawy AN, Weiswasser JM, Waksman R. Peripheral vascular brachytherapy. J.Vasc.Surg, 2002, 35(5): 1041-1047.
    [65] Kipshidze N, Sahota H, Komorowski R, et al. Photoremodeling of arterial wall reduces restenosis after balloon angioplasty in an atherosclerotic rabbit model. J.Am.Coll. Cardiol, 1998, 31(5): 1152-1157.