黄瓜侧枝抑制基因CLS的克隆和功能验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分枝多少,长势强弱是黄瓜重要的农艺性状。对于培育腌渍品种和鲜食品种而言,两者对侧枝性状的要求是不同的。一般来说对于培育腌渍品种来说,多数选用有限生长型,一次采收。分枝的多少、长势的强弱就成了决定单株产量的最直接因素了。而对于培育鲜食品种来说,尤其是国内黄瓜一般采用搭架栽培,要求在整个生长季内不断采收,这就需要维持主茎旺盛的生命力,防止早衰。而侧枝过多,势必会削弱主茎的生长势,还会造成空间密闭给病害发生创造了有利条件,而人工去除则费时费力,所以国内倾向于栽培少分枝或无分枝类型。了解清楚侧枝的发育机理不仅有助于育种学家因地制宜的培育不同侧枝类型的黄瓜品种,另一方面也能丰富分枝发育机制的基础研究。但长期以来,对黄瓜侧枝的研究都限于对侧枝性状的遗传学分析,一般认为,多侧枝性状至少受到5个加性因子控制,且较容易受到环境和群体结构的影响。但这些研究都止步于对侧枝性状的QTL定位,没有鉴定控制侧枝形成的关键基因,更未能对控制黄瓜分枝的分子机理进行探究。这类型的研究无法对黄瓜分枝机理做出深入地探讨。基于此种原因,我们希望从本实验室收集的不同分枝类型的黄瓜品系入手,根据拟南芥等植物物研究侧枝发育的方法对黄瓜分枝的机理做进一步的研究。
     首先根据分枝多少将我们实验室收集的黄瓜育种资源分成三种不同的分枝类型:多侧枝,S06是这一类中的代表,表现为在春秋两季栽培时叶腋内都会萌发大量的侧枝,一般是每节都有一个侧枝;少侧枝,这一类的代表为S94,表现为侧枝数量较少,每十节有不超过4个侧枝,但是侧枝较长;无侧枝类型,这一类的代表是S61和S92,S61一般没有侧枝长出,但是栽培后期温度升高后在较低节位会有少于两条的侧枝萌发;而S92在叶腋处会形成侧枝花打顶(侧枝变成有限生长型),多数节位的侧枝在不到1CM就开始变成有限生长型,但是较低节位会有一到两个长到8-10CM开始打顶。
     在对这些侧枝的表型进行初步分类的基础上,我们参照了在拟南芥和豌豆上对侧枝产生的分析途径,进行了嫁接试验,以期通过这个研究长距离信号转导的方法将它们进一步分类。结果发现一部分多分枝品系的接穗被少侧枝品系的砧木改变,说明这些黄瓜侧枝后期发育受到一种嫁接转移信号的调控,而多侧枝的形成原因恰恰是这种抑制信号缺失的结果。而在用无侧枝S61做砧木的嫁接组合中,它不能改变多侧枝接穗法表型,而S92则可以。该结果暗示S61无侧枝的原因可能是侧芽起始障碍,而S92无侧枝的原因可能涉及多个方面。为了能有更加有力的证据,我们先后作了打顶试验和侧芽的细胞学检查,结果显示:S06、S94和s92在顶端生长受抑制时,侧芽的生长都有不同程度的促进;而在顶端生长抑制解除时,S61的叶腋处依然没有侧枝长出。细胞学检查的结果也显示在S06、S94和S92的叶腋处有侧芽形成,而在S61的叶腋处只有花芽原基。以上的实验说明在多侧枝的黄瓜品系中多侧枝的原因是抑制信号的缺失;而无侧枝S61的形成原因则是侧芽原基起始障碍。进一步通过对S92、S61和S06的遗传分析,确定了S61的无侧枝性状受一个隐性单基因的控制,而S92的无侧枝性状显然受到不止一个基因的控制。
     考虑到S61无侧枝的表型与番茄、拟南芥、水稻等植物中的侧枝抑制突变体(ls/las/moc1)的表型类似,可以推测在黄瓜中应该存在它们的同源基因。我们根据番茄和拟南芥的LATERAL SUPPRESSOR基因的保守序列,利用RACE技术克隆了它们在黄瓜中的同源基因,CLS(EU503217),蛋白同源关系分析显示属于GRAS转录因子家族,在进化关系上与其它物种GRAS家族中的侧枝抑制基因归于同一个群。利用信号肽(NLS)预测软件对CLS蛋白序列进行分析但是没有发现核定位信号序列,于是构建了CLS:GFP融合蛋白进行瞬时表达试验,结果显示CLS蛋白定位在细胞核里,推测作为转录因子行使功能。Southern分析显示在黄瓜基因组中只有一个CLS基因的拷贝,在将CLS基因的cDNA序列转化入拟南芥ls突变体后发现,CLS基因的表达可以挽救拟南芥ls的突变体表型,这表明CLS是具有与LS/LAS相同功能的直系基因。半定量RT-PCR显示CLS基因的表达部位与拟南芥,番茄类似,为了更详细的了解CLS基因的时空表达,我们选择不同分枝类型的品系,选取不同播种时期的顶芽FAA固定后作RNA原位杂交,结果显示在有侧枝的黄瓜植株中CLS的表达部位与拟南芥LAS的表达部位类似,转录本都集中在来源于顶端分生组织的侧生分生组织区域,而且在新老分生组织的边界区都能清楚地看见CLS基因的转录信号。说明它在黄瓜侧芽起始过程中发挥了重要作用,是侧生分生组织起始的标志基因。值得注意的是,在无侧枝的S61植株的侧生分生组织区域却检测不到CLS的转录信号,说明S61无侧枝的原因与CLS基因的表达缺陷有关。随后,我们根据CLS基因在S61与S06序列上的差异设计得CAPS标记,在S61与S06的分离群体中检测该标记的分离,也没有发现它与无侧枝性状的共分离。考虑到控制S61无侧枝性状的是一个隐性单基因,说明在黄瓜中存在另一个基因在上游调控着CLS基因的表达,此基因的正常表达是CLS基因转录的前提。
     综上所述,我们认为黄瓜侧枝的发育也可以分解为由不同基因调控的侧芽原基的发生、侧芽形成和侧芽后期生长等过程。在侧芽原基的起始过程中,CLS发挥重要的作用,像拟南芥的LS一样,是侧生分生组织起始的标志基因。同时,黄瓜的后期发育也受到一种可以嫁接转移物质的调控,根据MAX依赖的信号通路在单子叶和双子叶植物中的保守性,我们推测黄瓜中的这个可以嫁接转移的信号物质可能也是类胡罗卜素的衍生物。
Commercial cucumber (Cucumis sativus L.; 2n=2x=14) has been of culinary importance to humans for millennia. With the increased requirement in cucumber-like vegetables, yield has been a focus of cucumber breeders for over 50 years. The lateral branch number is an important agronomic trait for cucumber production, to which, though, pickling (processing) and fresh-eaten cucumber cultivars have different requirements. Therefore, studies on the genetic and molecular mechanisms of cucumber lateral branching will be of help to cucumber breeders to create special cucumber plant architectures. In the past years, however, the studies on cucumber branching have been restricted on the processing cucumber types, whereas, these studies were only focused on the number, locations and effects of the detectable QTLs for possible maker-assisted selection (MAS) of an appropriate branch trait in cucumber breeding and not involved in the branching mechanisms of cucumber.
     Based on this situation, to explore the possible branching mechanisms in cucumber materials in our laboratory, which could be readily classified into three types in terms of branch numbers, i.e. multiple branching (multi-branching), fewer branching and non-branching types. The grafting and decaption experiments, bud examination and genetic analyses on these cucumber lines suggested that the non-branching phenotype of S61 is caused by a defect in lateral bud formation and controlled by a single recessive gene. In order to isolate a Lateral Suppressor (LS)-homologous gene, Cucumber Lateral Suppressor (CLS), we used the homo-based cloning strategy according to the conserved structures of the lateral suppressor genes, LS, LAS and MOC1. Homology analysis showed that the cDNA encoded protein is a member of the plant-specific GRAS family proteins which contains the characteristic sequence motifs of the GRAS family. The phylogenetic analysis showed that CLS together with the known LATERAL SUPPRESSORs in tomato, rice, Arabidopsis, carrot, forms a distinct cluster, implying that CLS may have a function similar to LS/LAS/MOC1. Because no conventional nuclear localization signal (NLS) domain was predicted in CLS by in silico analysis with the predication program, the instantaneous expression was permored. Nuclear targeting of CLS is consistent with its predicted transcription regulatory role. Southern blotting experiment showed that only one copy of CLS exists in cucumber genome. Interestingly, the CLS could
     LAS. Next, semi-quantitative RT-PCR analysis showed that CLS could be detected in all tested tissues except the internode. Moreover, RNA in situ hybridization revealed that the pattern of CLS transcript accumulation in axillary meristems was similar to that of LAS in Arabidopsis, suggesting that CLS plays an important role in cucumber lateral meristem initiation. Remarkably, the CLS transcript signal could not be detected in the axils of leaf primordia in the non-branching line, S61, indicating that the CLS expression defect is responsible to its non-branching phenotype. However, no nucleotide changes was found in the ORF region of the CLS from S61 except for the three nucleotide changes in 3’UTR and some other alterations in the intron region away from the splicing boundaries. Based on these changes, a CAPS marker was designed. But the recessive phenotype wasn’t co-segration with the CAPS marker in the 06/61 F2 population.
     All the results suggest that the lateral branching development in cucumber can also be divided into two major processes. One is the lateral bud inination and the other is the outgrowth of the lateral buds. CLS plays a key role in cucumber axillary meristem initiation. The CLS expression defect is responsible to the branchless phenotype of S61.
引文
[1] Steeves T.A., and Sussex I.M., eds. Patterns in plant development, 2nd edition, Cambridge University Press, Cambridge, U.K., 1989, pp.124-146
    [2]Snowden KC, Napoli CA. A quantitative study of lateral branching in petunia. Functional Plant Biology, 2003, 30: 987–994.
    [3]Cline MG. Apical dominance. The Botanical Review 1991, 57: 318–358.
    [4]Cline MG. Exogenous auxin effects on lateral bud outgrowth in decapitated shoots. Annals of Botany, 1996, 78: 225–266.
    [5]Wang YH, Li JY. Molecular Basis of plant Architecture. Annu. Rev. Plant Biol, 2008, 59:253-279
    [6] Wang Y, Li J. Genes controlling plant architecture. Curr. Opin. Biotechnol. 2006,17:123–29
    [7]Shimizu-Sato S, Mori H Control of outgrowth and dormancy in axillary buds. Plant Physiol, 2001, 127: 1405-1413
    [8] Leyser O Regulation of shoot branching by auxin. Trends Plant Sci, 2003, 8: 541-545
    [9] Long J., Barton M.K. Initiation of axillary and floral meristems in arabidopsis, Dev. Biol, 2000, 218: 341–353.
    [10] McConnell J.R., Barton M.K, Leaf polarity and meristem formation in arabidopsis, Development, 1998, 125: 2935–2942.
    [11]李扬汉.植物学,第三章,被子植物营养器官的形态、结构和功能,第二节,茎.上海科学技术出版社,1978,p115-118.
    [12]巩鹏涛,李迪.植物分枝发育的遗传控制.分子植物育种,2005,3(2):151-162
    [13]McSteen P, Leyser O. Shoot Branching. Annu. Rev. Plant Biol. 2005,56:353-374
    [14]黄海.植物叶发育调控机理研究的进展.植物学通报,2003,20(4):416-422
    [15]Carles CC, Fletcher JC. Shoot apical meristem maintenance: the art of a dynamic balance. Trends Plant Sci, 2003, 8:394–401
    [16]Stewart R, Dermen H. Determination of number and mitotic activity of shoot apical initial cells by analysis of mericlinal chimeras. Am. J. Bot, 1970, 57:816–26
    [17]Thimann, K. V. S., F. Studies on the growth hormone of plants. III. The inhibiting action of the growth substance on bud development. Proc Natl Acad Sci USA, 1933, 19: 714 -716.
    [18] Clark SE, Running MP, Meyerowitz EM. CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development, 1993, 119:397–418
    [19]Clark SE, Running MP, Meyerowitz EM. CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development, 1995, 121:2057–67
    [20]Clark SE. Organ formation at the vegetative shoot meristem. Plant Cell 1997, 9:1067–76
    [21]Jeong S, Trotochaud AE, Clark SE. The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell, 1999, 11:1925–34
    [22]Fujioka S, Yokota T. Biosynthesis and metabolism of brassinosteroids. Annu. Rev.Plant Biol. 2003, 54:137–64
    [23] Laux T, Mayer KF, Berger J, J¨urgens G. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development, 1996, 122:87–96
    [24]Mayer KF, Schoof H, Haecker A, Lenhard M, J¨urgens G, Laux T. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell, 1998, 95:805–15
    [25]Baurle I, Laux T. Regulation of WUSCHEL transcription in the stem cell niche of the Arabidopsis shoot meristem. Plant Cell, 2005, 17:2271–80
    [26] Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R.. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science, 2000, 289:617–19
    [27]Lenhard M, Laux T. Stem cell homeostasis in the Arabidopsis shoot meristem is regulated by intercellular movement of CLAVATA3 and its sequestration by CLAVATA1. Development, 2003, 130:3163–73
    [28]Rojo E, Sharma VK, Kovaleva V, Raikhel NV, Fletcher JC. CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signaling pathway. Plant Cell, 2002, 14:969–77
    [29] Schoof H, Lenhard M, Haecker A, Mayer KF, J¨urgens G, Laux T. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell, 2000, 100:635–44
    [30]Clark SE, Jacobsen SE, Levin JZ, Meyerowitz EM. The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis. Development, 1996, 122:1567–75
    [31]Endrizzi K, Moussian B, Haecker A, Levin JZ, Laux T. The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsisshoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J, 1996, 10:967–79
    [32] Gallois JL, Woodward C, Reddy GV, Sablowski R. Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis.Development, 2002,129:3207–17
    [33]Lenhard M, J¨urgens G, Laux T. The WUSCHEL and SHOOTMERISTEMLESS genes fulfil complementary roles in Arabidopsis shoot meristem regulation. Development, 2002, 129:3195–206
    [34]Long JA, Moan EI, Medford JI, Barton MK. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature, 1996, 379:66–69
    [35] Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE. 2005. Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell 17:61–76
    [36] Williams L, Grigg SP, Xie M, Christensen S, Fletcher JC. Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHDZIP target genes. Development, 2005, 132:3657–68
    [37]Wu X, Dabi T, Weigel D. Requirement of homeobox gene STIMPY/WOX9 for Arabidopsis meristem growth and maintenance. Curr. Biol, 2005, 15:436–40
    [38] Riou-Khamlichi C, Huntley R, Jacqmard A, Murray JA. Cytokinin activation of Arabidopsis cell division through a D-type cyclin. Science, 1999, 283:1541–44
    [39]Beveridge CA, Weller JL, Singer SR, Hofer JMI. Axillary meristem development. Budding relationships between networks controlling flowering, branching and photoperiod responsiveness. Plant Physiol, 2003, 131: 927-934.
    [40] Malayer JC, Guard AT. A comparative developmental study of the mutant sideshootless and normal tomato plants. Amer. J. Bot. 1964, 51:140-3.
    [41]Greb T, Clarenz O, Schafer E, Müller D, Herrero R, Schmitz G, Theres K Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes Dev, 2003, 17: 1175–1187
    [42]Schumacher K, Schmitt T, Rossberg M, Schmitz G, Theres K. The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. Proc. Natl. Acad. Sci. USA, 1999, 96: 290–295
    [43]Groot SPC, Keizer LCP, De Ruiter W, Dons JJM. Seed and fruit set of the lateral suppressor mutant of tomato. Sci. Horti. 1994, 59: 157–162.
    [44]Li XY, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li JY. Control of tillering in rice. Nature, 2003, 422: 618–621
    [45]Schmitz G. and Theres K. Shoot and Inflorescence branching. Current Opinion in Plant Biology, 2005, 8:506-511
    [46]Aida M, Ishida T, Tasaka M Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development, 1999, 126: 1563-1570
    [47]Takada S, Hibara K, Ishida T, Tasaka M The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 2001, 128:1127-1135
    [48]Shuai B, Reynaga-Pena CG, Springer PS The LATERAL ORGAN BOUNDARIES gene defines a novel, plant-specific gene family. Plant Physiol, 2002, 129:747-761
    [49]Laufs P, Peaucelle A, Morin H, Traas J: MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 2004, 131:4311-4322.
    [50]Weir I, Lu J, Cook H, Causier B, Schwarz-Sommer Z, Davies B: CUPULIFORMIS establishes lateral organ boundaries in Antirrhinum. Development 2004, 131:915-922.
    [51]Schmitz G, Tillmann E, Carriero F, Fiore C, Cellini F, Theres K: The tomato Blind gene encodes a MYB transcription factor that controls the formation of lateral meristems. Proc Natl Acad Sci USA 2002, 99:1064-1069.
    [52]Komatsu K, Maekawa M, Ujiie S, Satake Y, Furutani I, Okamoto H, Shimamoto K, Kyozuka J: LAX and SPA: major regulators of shoot branching in rice. Proc Natl Acad Sci USA 2003, 100:11765-11770.
    [53]Gallavotti A, Zhao Q, Kyozuka J, Meeley RB, Ritter M, Doebley JF, Pe ME, Schmidt RJ: The role of barren stalk1 in the architecture of maize. Nature 2004, 432:630-635
    [54]Mu¨ller D, Schmitz G, Theres K. Blind homologous R2R3 Myb genes control the pattern of lateral meristem initiation in Arabidopsis. Plant Cell, 2006, 18: 586–597.
    [55]Talbert, P.B., Alder, H.T., Parks, D.W. and Comai, L. The REVOLUTA gene is necessary for apical meristem development and for limiting cell divisions in the leaves and stems of Arabidopsis thaliana. Development, 1995, 121: 2723-2735.
    [56]Otsuga D, DeGuzman B, Prigge MJ, Drews GN, Clark SE. REVOLUTA regulates meristem initiation at lateral positions. Plant J, 2001, 25: 223–236.
    [57] Fambrini M., Cionini G., Bertini D., Michelotti V., Conti A., Pugliest C. MISSING FLOWERS Gene Controls Axillary Meristems Initiation in Sunflower. Genesis, 2003, 36: 25-33
    [58]Lincoln C, Britton JH, Estelle M. Growth and development of the axr1 mutants of Arabidopsis. Plant Cell, 1990, 2: 1071–1080.
    [59]Stirnberg, P., Chatfield, S.P., and Leyser, H.M.O.. AXR1 acts after lateral bud formation to inhibit lateral bud growth in Arabidopsis. Plant Physiol, 1999, 121: 839–847.
    [60]Leyser, O. Lincoln CA, Timpte C, Lammer D, Turner J, Estelle M. Arabidopsis auxin-resistance gene AXR1 encodes a protein related to ubiquitin-activating enzyme E1. Nature, 1993, 364: 161–164.
    [61]Beveridge, C. A., Symons, G. M., and Turnbull, C. G. Auxin inhibition of decapitation-induced branching is dependent on graft-transmissible signals regulated bygenes Rms1 and Rms2. Plant Physiol, 2000, 123: 689-698.
    [62]Rameau, C., Murfet, I. C., Laucou, V., Floyd, R. S., Morris, S. E., and Beveridge, C. A.. Pea rms6 mutants exhibit increased basal branching. Physiol Plant, 2002, 115: 458-467.
    [63]Ward, S.P. and Leyser, O. Shoot branching. Curr. Opin.Plant Biol. 2004, 7: 73–78.
    [64]McSteen P. and Leyser O. Shoot Branching. Annu. Rev. Plant Biol, 2005, 56: 353-374.
    [65]Napoli, C. Highly branched phenotype of the petunia dad1-1 mutant is reversed by grafting. Plant Physiol, 1996, 111: 27–37.
    [66]Simons J, Napoli C, Janssen B, Plummer K, Snowden K. Analysis of the DECREASED APICAL DOMINANCE (DAD) genes of petunia hybrida in the control of axillary branching. Plant Physiol, 2007, 143: 697-706.
    [67]Ishikawa, S., Maekawa, M., Arite, T., Ohnishi, K., Takamure, I. and Kyozuka, J. Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol, 2005, 46: 79–86.
    [68]Zou, J., Chen, Z., Zhang, S., Zhang, W., Jiang, G., Zhao, X., Zhai, W., Pan, X. and Zhu, L. Characterizations and fine mapping of a mutant gene for high tillering and dwarf in rice (Oryza sativa.). Planta, 2005, 222: 604–612.
    [69]Zou, J., Zhang, S., Zhang, W., Li, G., Chen, Z., Zhai, W., Zhao, X., Pan, X., Xie, Q. and Zhu, L. The rice HIGH-TILLERING DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J, 2006, 48: 687–696.
    [70]Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, et al. DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J, 2007, 51:1019– 1029.
    [71] Beveridge, C. A. Axillary bud outgrowth: sending a message. Curr. Opin. Plant Biol. 2006, 9: 35–40.
    [72]Doebley, J., Stec, A. and Gustus, C. (1995). Teosinte branched 1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics, 1995, 141: 333–346.
    [73]Doebley, J., Stec, A. and Hubbard, L. The evolution of apical dominance in maize. Nature (London), 1997, 386: 485–488.
    [74]Kosugi, S. and Ohashi, Y. DNA binding and dimerization specificity and potential targets for the TCP protein family. Plant J, 2002, 30: 337–348.
    [75]Hubbard, L., McSteen, P., Doebley, J., and Hake, S. Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte. Genetics, 2002, 162: 1927–1935.
    [76]Takeda, T., Suwa, Y., Suzuki, M., Kitano, H., Ueguchi-Tanaka, M., Ashikari, M.,Matsuoka, M.,andUeguchi, C. The OsTB1 gene negatively regulates lateral branching inrice. Plant J, 2003, 33: 513–520.
    [77]Aguilar-Mart?′nez, J. A., Poza-Carrio′n, C. and Cubus, P. Arabidopsis BRANCHED1 acts as an integrator of branching signals within axillary buds. Plant Cell, 2007, 19: 458–472.
    [78]Tantikanjana, T., Yong, J. W., Letham, D. S., Griffith, M., Hussain, M., Ljung, K., Sandberg, G., and Sundaresan, V.. Control of axillary bud initiation and shoot architecture in Arabidopsis through the SUPERSHOOT gene. Genes Dev, 2001, 15: 1577-1588.
    [79]Panigrahi, B. M., and Audus, L. Apical dominance in Vicia faba. Ann Bot, 1966, 30: 457-473.
    [80] Ljung K, Bhalerao RP, Sandberg G. Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. The Plant Journal, 2001, 28: 465–474
    [81]Klee, H. J., Horsch, R.B., Hinchee, M.A., Hein, M.B., Hoffmann, N.L.. The effects of overproduction of two Agrobacterium tumefaciens T-DNA auxin biosynthetic gene products in transgenic petunia plants. Genes Dev, 1987, 1: 86-96.
    [82]Romano, C. P., Cooper, M. L., and Klee, H. J.. Uncoupling Auxin and Ethylene Effects in Transgenic Tobacco and Arabidopsis Plants. Plant Cell, 1993, 5: 181-189.
    [83]Hall, S. M. H.J. Correlative inhibition of lateral bud growth in Phaseolus vulgaris L. Timing of bud growth following decapitation. Planta,1975, 123: 137-143.
    [84]Morris, D. A. Transport of exogenous auxin in two-branched pea seedlings (Pisum sativum L.), Planta, 1977, 136: 91-96.
    [85]Gocal, G. F., Pharis, R.P., Yeung, E.C., Pearce, D. Changes after decapitation in concentrations of indole-3-acetic acid and abscisic acid in the larger axillary bud of Phaseolus vulgaris L. cv Tender Green. Plant Physiol, 1991, 95: 344-350.
    [86]Hillman, J. Apical dominance. In Hormonal Plant Physiology (Wilkins, MB, ed) London: Pitman, 1984, 127-148.
    [87]Pearce, D. W., Taylor, J.S., Robertson, J.M., Harker, K.N., Daly, E.J. Changes in abscisic-acid and indole-3-acetic-acid in axillary buds of Elytrigia repens released from apical dominance. Physiol Plant, 1995, 94: 110-116.
    [88]Catterou, M., Dubois, F., Smets, R., Vaniet, S., Kichey, T., Van Onckelen, H., Sangwan-Norreel, B. S., and Sangwan, R. S. hoc: An Arabidopsis mutant overproducing cytokinins and expressing high in vitro organogenic capacity. Plant J, 2002, 30: 273-287.
    [89]Zubko, E., Adams, C. J., Machaekova, I., Malbeck, J., Scollan, C., and Meyer, P. Activation tagging identifies a gene from Petunia hybrida responsible for the production of active cytokinins in plants. Plant J, 2002, 29: 797-808
    [90]Leyser O. The fall and rise of apical dominance. Current Opinion in Genetics and Development, 2005, 15: 468–471.
    [91] Beveridge, C. A. Long-distance signaling and a mutational analysis of branching in pea. Plant Growth Regulation. 2000, 32: 193-200.
    [92]Beveridge CA, Ross JJ, Murfet IC. Branching mutant rms-2 in Pisum sutivum. Grafting studies and endogenous indole-3- acetic acid levels. Plant Physiol, 1994, 104: 953-959.
    [93]Beveridge, C. A., Symons, G. M., Murfet, I. C., and Ross, J. J. a. R. C. The rms1 Mutant of Pea Has Elevated Indole-3-Acetic Acid Levels and Reduced Root-Sap Zeatin Riboside Content but Increased Branching Controlled by Graft-Transmissible Signal(s). Plant Physiol , 1997, 115:1251-1258.
    [94]Morris, S. E., Turnbull, C. G., Murfet, I. C., and Beveridge, C. A. Mutational analysis of branching in pea. Evidence that Rms1 and Rms5 regulate the same novel signal. Plant Physiol, 2001, 126: 1205-1213.
    [95]Beveridge, C. A., Ross, J. J., and Murfet, I. C. Branching in Pea (Action of Genes Rms3 and Rms4). Plant Physiol, 1996, 110: 859-865.
    [96]Foo, E., Bullier, E., Goussot, M., Foucher, F., Rameau, C., and Beveridge, C. A. The Branching Gene RAMOSUS1 Mediates Interactions among Two Novel Signals and Auxin in Pea. Plant Cell, 2005, 17: 464-474.
    [97]Turnbull CGN, Booker JP, Leyser HMO. Micrografting techniques for testing long-distance signalling in Arabidopsis. Plant J, 2002, 32:255-262
    [98]Stirnberg, P., van De Sande, K., and Leyser, H. M. MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development, 2002, 129: 1131-1141.
    [99]Booker, J., Sieberer, T., Wright, W., Williamson, L., Willett, B., Stirnberg, P., Turnbull, C., Srinivasan, M., Goddard, P., and Leyser, O. MAX1 Encodes a Cytochrome P450 Family Member that Acts Downstream of MAX3/4 to Produce a Carotenoid-Derived Branch-Inhibiting Hormone. Dev Cell, 2005, 8: 443-449.
    [100]Booker, J., Auldridge, M., Wills, S., McCarty, D., Klee, H., and Leyser, O. MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr Biol, 2004, 14: 1232-1238.
    [101]Schwartz, S. H., Qin, X., and Loewen, M. C. The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound Inhibits lateral branching. J Biol Chem, 2004.
    [102]Sorefan, K., Booker, J., Haurogne, K., Goussot, M., Bainbridge, K., Foo, E., Chatfield, S., Ward, S., Beveridge, C., Rameau, C., and Leyser, O. (2003). MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev, 17: 1469-1474.
    [103]Napoli CA, Ruehle J. New mutations affect meristem growth and potential in Petunia hybrida Vilm. J Hered. 1996, 87: 371–377.
    [104]Snowden KC, Napoli CA. A quantitative study of lateral branching in petunia. FunctPlant Biol, 2003, 30: 987–994.
    [105]Snowden, K. C., Simkin, A. J., Janssen, B. J., Templeton, K. R., Loucas, H. M., Simons, J. L., Karunairetnam, S., Gleave, A. P., Clark, D. G., and Klee, H. J. The Decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 Gene Affects Branch Production and Plays a Role in Leaf Senescence, Root Growth, and Flower Development. Plant Cell, 2005, 17: 746-759.
    [106]Johnson X, Brcich T, Dun E, Goussot M, Haurogne′K, Beveridge CA, Rameau C. Branching genes are conserved across species: genes controlling a novel signal in pea are co-regulated by other long-distance signals. Plant Physiol, 2006, 142: 1014–1026.
    [107]Cook, C. E. et al. Germination stimulants. 2. The structure of strigol—a potent seed germination stimulant for witchweed (Striga lutea Tour.). J. Am. Chem. Soc, 1972, 94, 6198–6199.
    [108]Bouwmeester, H. J., Roux, C., Lopez-Raez, J. A. & Becard, G. Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci ,2007, 12, 224–230.
    [109]Gomez-Roldan V., Fermas S., Brewer PB. etc. Strigolactone Inhibition of Shoot Branching. Nature, 2008, 455:189-194
    [110]Yoneyama, K. et al. Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta, 2007, 227: 125–132.
    [111]Matusova, R. et al. The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol, 2005, 139, 920–934.
    [112]Umerhara M., Hanada A., Yoshida S., etc. Inhibition of Shoot Branching by New Terpenoid Plant Hormones. Nature 2008, 455:195-200
    [113]FAOSTAT. Agriculture. FAO Statistical Databases (http://faostat.fao.org, last accessed December 2005)
    [114]孙玉河,李文琴,马德华.我国黄瓜生产的现状、问题和发展趋势.天津农业科学,2003,9(3):54-56
    [115] Malepszy S, Niemirowicz-Szczytt K. Sex determination in cucumber (Cucumis sativus) as a model system for molecular biology. Plant Sci, 1991, 80: 39-47
    [116]Kirkbride JH Biosystematic monograph of the genus Cucumis (Cucurbitaceae). Boone, N.C., Parkway Publishers, 1993, 159
    [117]Knerr LD, Staub JE. Inheritance and linkage relationships of isozyme loci in cucumber (Cucumis sativus L.). Theor Appl Genet, 1992, 84:217-224
    [118]Dijkhuizen A, Kennard WC, Havey MJ, Staub JE. RFLP variation and geneticrelationships in cultivated cucumber. Euphytica, 1996, 90:79-87
    [119]Serquen FC, Bacher J, Staub JE. Mapping and QTL analysis of horticultural traits in a narrow cross in cucumber (Cucumis sativus L.) using random-amplified polymorphic DNA markers. Mol Breed, 1997a, 3:257-268
    [120]Horejsi T, Box JM, Staub JE Efficiency of randomly amplified polymorphic DNA to sequence characterized amplified region marker conversion and their comparative polymerase chain reaction sensitivity in cucumber. J Am Soc Hort Sci, 1999: 124:128-135
    [121]Horejsi T, Staub JE Genetic variation in cucumber (Cucumis sativus L.) as assessed by random amplified polymorphic DNA. Genet Resour Crop Evol, 1999, 46:337-350
    [122]侯锋.黄瓜.天津:天津科学技术出版社,1999,32-76
    [123]William L. and George J. Genetic and Environmental Modification of Determinate Plant Habit in Cucubers. J. Amer. Soc. Hort. Sci, 1970, 95(5):585-586
    [124]陶月良,曾广文,朱诚.黄瓜花芽启始分化的形态解剖学研究.广西植物2002,22(3):228-231
    [125]陶月良,曾广文,朱诚.黄瓜花原基启动细胞团及其组织化学的研究.浙江大学学报(农业与生命科学版),2001,27(2):134-138
    [126]李兴国,李全梓,张宪省.黄瓜性别决定的细胞学研究.山东农业大学学报(自然科学版)2001,32(4):411-417
    [127]李建吾,籍越.黄瓜的花芽分化在什么时候进行.西北园艺.2003, 9:47
    [128]Lower RL, Edwards MD Cucumber breeding. In: Bassett MJ (eds) Breeding Vegetable Crops. Westport, AVI Publishing Co., 1986, 173-207
    [129]Wehner TC. Breeding for improved yield in cucumber. Plant Breed Rev, 1989, 6:323-359
    [130]Wehner TC, Lower RL, Staub JE, Tolla GE. Convergent-divergent selection for cucumber fruit yield. HortScience, 1989, 24:667-669
    [131]Fazio G Comparative study of marker-assisted and phenotypic selecton and genetic analysis of yield components in cucumber. PhD dissertation University of Wisconsin Madison, 2001.
    [132]Van Henten E J. An autonomous robot for harvesting cucumbers in greenhouses. Autonomous Robots, 2002, 13(3):241.
    [133] Serquen F C, Bacher J, Staub J E. Mapping and QTL analysis of horticultural traits in a narrow cross in cucumber(Cucumis sativas L.) using random amplified polymorphic DNA makers. Molecular Breeding, 1997, 3(4):257-268
    [134] Fazio G, Staub J E. Genetic mapping and QTL analysis of horticultural traits in cucumber ( Cucumis sativus L.) using recombinant inbred lines. Theor Appl Genet, 2003, 107:864-874
    [135] Fazio G, Chung S. M., Staub J. E. Comparative analysis of response to pheno- typic and marker-assisted selection for multiple lateral branching in cucumber (Cucumis sativus L.). Theor Appl Genet, 2003, 107:875–883
    [136]Serquen FC, Bacher J, Staub JE. Genetic analysis of yield components in cucumber at low plant density. J Am Soc Hort Sci, 1997b, 122:522-528
    [137]Fazio G, Staub JE, Stevens MR. Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Theor Appl Genet, 2003b, 107:864-874
    [138]Serquen FC, Bacher J, Staub JE. Mapping and QTL analysis of horticultural traits in a narrow cross in cucumber (Cucumis sativus L.) using random-amplified polymorphic DNA markers. Mol Breed, 1997a, 3:257-268
    [139]王刚.黄瓜分子标记遗传连锁图构建与重要农艺性状定位.博士学位论文.上海交通大学,上海: 2005
    [140] Li X Z, Pan J S, Wang G,et al. Localization of genes for lateral branch and female sex expression and construction of a molecular linkage map in cucumber (Cucumis sativus L.) with RAPD markers. PROGRESS IN NATURAL SCIENCE, 2005, 15(2):143-148
    [141] Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laborary Mannual(2nd). Cold Spring Harbor Laboratory, cold Spring Harbor, New York, 1998
    [142]郑国昌,谷祝平.生物显微技术.第2版.北京高等教育出版社,1993
    [143] Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez D, Benfey PN. The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J, 1999, 18: 111–119
    [144] Peng, J., Carol, P., Richards, D. E., King, K. E., Cowling, R. J., Murphy, G. P. & Harberd, N. P. Genes Dev., 1997, 11: 3194–3205.
    [145] Silverstone, A. L., Ciampaglio, C. N. & Sun, T.-P. Plant Cell, 1998, 10: 155–169.
    [146]Heery, D. M., Kalkhoven, E., Hoare, S. & Parker, M. G. Nature (London), 1997, 387: 733–736.
    [147] Schumacher, K., Schmitt, T., Rossberg, M., Schmitz, G. & Theres, K. The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. Proc. Natl Acad. Sci. USA, 1999, 96: 290–295.
    [148] Peng, J. et al. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev, 1997, 11: 3194–3205.
    [149]Silverstone, A. L., Ciampaglio, C. N. & Sun, T. The Arabidopsis RGA gene encodes atranscriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell, 1998, 10: 155–169.
    [150]Itoh, H., Ueguchi-Tanaka, M., Sato, Y., Ashikari, M. & Matsuoka, M. The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell, 2002, 14: 57–70.
    [151] Bolle C. The role of GRAS proteins in plant signal transduction and development. Planta 2004, 218:683–92.
    [152] Di Laurenzio, L., Wysocka-Diller J., Malamy JE. etc. The SCARECROWgene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell, 1996, 86: 423–433.
    [153]Helariutta, Y. et al. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. Cell, 2000, 101: 555–567.
    [154]Bolle, C., Koncz, C. & Chua, N. H. PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction. Genes Dev, 2000, 14: 1269–1278.
    [155] Jiang Su, Yuan Xiaojun, Pan Junsong, He Huanle Cai Run. Quantitative trait locus analysis of lateral branch-related traits in cucumber(Cucumis sativus L.) using recombinant inbred lines. Science in China Series C: Life Sciences. 2008, 51(9): 833-841
    [157]Ward SP, Leyser O. Shoot branching. Current Opinion in Plant Biology, 2004, 7:73-78
    [158]Bowman JL, Eshed Y. Formation and Maintenance of the Shoot Apical Meristem. Trends in Plant Science, 2000, 3:110-115
    [159]Wang Gang, Pan Junsong, Li Xiaozun,et al.Construction of a cucumber genetic linkage map with SRAP markers and location of the genes for lateral branch traits. Science in China Ser.C Life Science, 2005, 48(3):213-220