肌球蛋白II缺失对粘附状态下哺乳动物细胞胞质分裂影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胞质分裂是一个涉及生物学和力学的复杂过程,其分裂模式也是多种多样。其中不依赖于肌球蛋白II、与细胞周期耦合的、黏附状态下的胞质分裂模式B在真核生物和动物细胞中普遍存在,可能是比经典的收缩环模式更原始的一种分裂方式。弄清胞质分裂模式B的机制,不仅可以深入了解促进细胞进行胞质分裂的各个调节途径之间的关系,从更广泛意义上阐明胞质分裂的机制,而且能够为揭示细胞增殖和生命延续的奥秘,认识与胞质分裂相关疾病(癌症等)的发病机理、药物设计和疾病治疗提供理论依据。
     以往研究主要针对粘菌细胞胞质分裂模式B机制进行了一定探索,但未见针对哺乳动物细胞的研究。本研究以贴壁生长的鼠肾上皮细胞(NRK)为研究对象,采用显微图像动态采集和分析、细胞免疫荧光和细胞力学等实验技术,研究了肌球蛋白II缺失对NRK细胞分裂的影响,首次从从细胞材料力学特性和细胞运动角度对粘附状态下、肌球蛋白II缺失的哺乳动物细胞胞质分裂机制进行了探索。主要工作内容和结论如下:
     1.对正常NRK细胞胞质分裂过程进行了观察和描述,讨论了起泡行为的可能机制和子细胞铺展模式与间期母细胞的关系。并利用微管吸吮技术及相关理论对正常间期NRK细胞的表面张力、粘弹性进行了测定。结合形态学、细胞力学特性和肌球蛋白II马达做功,分析了NRK细胞胞质分裂过程中分裂沟收缩产生的力和应力,验证了肌球蛋白II在正常NRK细胞分裂沟收缩中的作用。
     2.研究了肌球蛋白II缺失对NRK细胞分裂的影响。分别于分裂中期和后期施加肌球蛋白II抑制剂,通过CCD对肌球蛋白II缺失的NRK细胞胞质分裂进行动态图像采集,并利用显微图像分析软件对细胞间桥形态学进行了定量分析,采用细胞免疫荧光技术检测了肌动蛋白的分布。研究发现:
     (1)肌球蛋白II缺失并不影响间期NRK细胞突出运动和肌动蛋白在分裂沟的组装和定位;
     (2)肌球蛋白II缺失可引起NRK细胞核分裂受阻或延迟,并使子细胞突出运动丧失极性。
     (3)对细胞间桥变细形态学进行量化发现:无论是正常组还是肌球蛋白II缺失组细胞,其间桥变细曲线均先表现出指数衰减,而后为线性下降。在Dx点(细胞间桥直径和长度相等)之前,肌球蛋白II缺失的NRK细胞间桥变细曲线明显不同于对照组细胞,细胞间桥直径迅速变细,曲线明显变陡;而Dx点之后各参数无明显差别。
     3.对细胞材料特性在肌球蛋白II缺失的NRK细胞胞质分裂中的作用进行了研究。采用已有的细胞间桥变细力学模型,结合NRK细胞间桥变细形态学参数及细胞力学特性,对正常、DMSO处理组和肌球蛋白II抑制组的细胞间桥变细曲线进行分析发现:细胞表面张力对肌球蛋白II缺失的NRK细胞间桥变细曲线影响很大。细胞间桥与子细胞之间的压力差有助于肌球蛋白II缺失的NRK细胞完成胞质分裂。
     在考虑变边界、质膜为超弹性以及胞浆为粘性不可压缩流体的基础上,建立了可以动态反映细胞间桥变形过程中形态学和力学参数时空分布的力学模型。
     4.采用细胞免疫荧光以及肌动蛋白抑制剂对细胞运动在肌球蛋白II缺失的NRK细胞胞质分裂中的作用进行了研究。结果发现:肌球蛋白II缺失的NRK细胞在胞质分裂早期两极的扇形板状突出中富集了大量肌动蛋白纤维。对肌球蛋白II缺失的NRK子细胞施加肌动蛋白抑制剂使胞质分裂明显受阻,细胞两极相对距离明显下降,子细胞运动参与了肌球蛋白II缺失的NRK细胞胞质分裂。
     由此得出:粘附生长的NRK细胞在肌球蛋白II缺失的情况下,整个细胞表面张力降低,胞质分裂所需的缢缩力明显减小,由肌动蛋白介导的子细胞极区突出运动产生方向相反的牵张力,不仅促进了子细胞的分离,而且使分裂沟的表面张力增大,增大的表面张力加大了细胞间桥与子细胞之间的压力差,胞浆从细胞间桥向两个子细胞流动加速。细胞间桥不断变细,使间桥与子细胞之间的压力差效应更加显著,从而促进了肌球蛋白II缺失NRK细胞的胞质分裂。
Cytokinesis is a complicated life process involved biology and mechanics. Literature findings demonstrated a diversity of mechanisms by which animal cells carried out cytokinesis. Cytokinesis mode B was a cell cycle-coupled, adhesion-dependent cytokinesis that did not depend on myosin II. This cytokinesis mode existed universally in adherent eukaryotes and higher animal cells and might be a more primary cytokinesis mode than classic contractile ring-depended model. However, the mechanism of cytokinesis mode B was still not clear. Since not only adherent eukaryotes but also higher animal cells employed cytokinesis mode B, it must play an important role in cell division. Understanding the mechanism of cytokinesis mode B will not only provide insight into how the multiple modes of division worked in cooperative manner from a comprehensive view, but also provide theoretical evidence for revealing the mystery of cell proliferation and disease related cytokinesis failure (such as cancer).
     The previous studies of the mechanism of cytokinesis B were mainly focus on Dictyostelium cells. However, such investigation has not been done on the mammalian cells. In the present study, Micro-image dynamic collecting and analysis system, immunofluorescence method and cell mechanics techniques were used to explore the effects of myosin II absence on cytokinesis using NRK cells. Our findings provided the first direct evidences that cell material mechanical properties and cell motility orchestrated to dictate a well-controlled cytokinesis mode B of adherent mammalian cells. The main work and conclusions are as follows:
     1. First, the cytokinesis process of normal NRK cells was observed and described in detail. The possible mechanism of blebbing behavior and the relation between the daughter cells adhesion pattern and the mother cell at interphase were discussed. Second, cell surface tension and vicroelastic properties of NRK cells at interphase were determined using micropipette aspiration technique and its relative theoretical model. The change of force and strrss in dividing furrow regions during cytokinesis were analyzed according to the morphology parameters,cell mechanical properties and myosin II motor work.
     2. The behavior of NRK cells absence of myosin II undergoing division was explored. The Micro-images of NRK cells under division were collected and analyzed after myosin II inhibitor was released at metaphase and anaphase respectively. The distribution of actin at anaphase and early cytokinesis were examined using immunofluorescence method. Our findings showed that:
     (1) Myosin II absence neither affected the lamellipodia motion of NRK cells at interphase nor assembly and recruitment of actin to the dividing furrow.
     (2) Inhibition of myosin II activity at metaphase resulted in failure of karyokinesis or delay into cytokinesis. The lamellipodia motion of daughter cells lost their polarity.
     (3) The results of intercellular bridge thinning morphology analysis showed that whether in the control or NRK cells absence of myosin II, the trajectories of intercellular bridge thinning behaved a combination of a linear decrease and an exponential decay, with the exponential decay preceding the linear decrease. The intercellular bridge trajectories of cells absence of myosin II was obvious differently from the controls with relative diameter decrease more quickly before Dx point, while the trajectories were identical after Dx point.
     3. The role of cell material properties on the cytokinesis absence of myosin II was in investigated using the existed intercellular bridge thinning mechanics model. The intercellular bridge thinning trajectories of the control and NRK cells absence of myosin II were analyzed respectively. Intercellular bridge thinning morphology parameters and cell mechanical properties from experiments were employed during analysis. The results showed that cell surface tension contributed greatly to the intercellular bridge thinning trajectories. It indicated that internal pressure difference between the intercellular and the two daughters could help NRK cells absence of myosin II to complete cytokinesis.
     A new intercellular bridge thinning dynamics model was established on the base of fluid mechanics principle. This model can allow the parameters of morphology or mechanics to vary temporally or spatially as intercellular bridge-thinning proceeded.
     4. The role of cell motility in myosin II absent cytokinesis was investigated using cyto-immunofluorescence method and actin flament polymerization inhibitor (cytohalasin D). The results showed that a mass of actin filament recruited to the leading lamellipodia of daughter cells from the cytoplasm in cells treated with myosin II inhibitor. The process of cytokinesis absence of myosin II was obviously held back by releasing cytohalasin D. The relative pole to pole diatance decreased in contrast with other groups. Our results provided the first evidence that cell motility was involved the cytokinesis absence of myosin II.
     Our results indicated that the force required in cytokinesis might obviously reduce because the whole cell surface tension decreased during cytokinesis of adherent NRK cells absence of myosin II. Traction force generated from daughter cells motility not only facilitated two daughter cells separate, but also led to the surface tension increase in intercellular bridge, which resulted in the internal pressure difference increase between the intercellular bridge and two daughter cells, the latter accelerated the cytoplasm flow from the intercellular bridge into two daughter cells. While the intercellular bridge thinning further facilitated internal pressure difference effect to help the cytokinesis of adherent NRK cells absence of myosin II.
引文
[1]翟中和王.,丁明孝主编,细胞生物学[M].高等教育出版社,北京, 2003.
    [2] Rayment I., Rypniewski W., Schmidt-Base K., etc. Three-dimensional structure of myosin subfragment-1: a molecular motor. Science [J]. 1993,261(5117):50-58.
    [3]王志坚.分子马达肌球蛋白动力冲程研究进展.现代物理知识[J]. 2008,(04):20-23.
    [4]程超,王远亮,张军等.肌动蛋白的聚合动力学研究进展.重庆大学学报(自然科学版) [J]. 2005,(04):131-135.
    [5] Zang J., Cavet G., Sabry J., etc. On the role of myosin-II in cytokinesis: division of Dictyostelium cells under adhesive and nonadhesive conditions. Molecular Biology of the Cell [J]. 1997,8(12):2617-2629.
    [6] Schroeder T. The contractile ring. Cell and Tissue Research [J]. 1970,109(4):431-449.
    [7] Spudich J. In pursuit of myosin function. Cell Regul [J]. 1989,1(1):1-11.
    [8] Neujahr R. Myosin II-independent processes in mitotic cells of Dictyostelium discoideum: redistribution of the nuclei, re-arrangement of the actin system and formation of the cleavage furrow Joural of Cell Sscience [J]. 1997,110(pt2):123-137.
    [9] Zurek B. Differential effects of myosin-antibody complexes on contractile rings and circumferential belts in epitheloid cells. Joural of Cell Sscience [J]. 1990,97(pt2):297-306.
    [10] Komatsu S., Yano T., Shibata M., etc. Effects of the regulatory light chain phosphorylation of myosin II on mitosis and cytokinesis of mammalian cells. Journal of Biological Chemistry [J]. 2000,275(44):34512-34520.
    [11] McIntosh J., Somma M., Fasulo B., etc. Molecular dissection of cytokinesis by RNA interference in Drosophila cultured cells. Molecular Biology of the Cell [J]. 2002,13(7):2448-2460.
    [12] Young P., Richman A., Ketchum A., etc. Morphogenesis in Drosophila requires nonmuscle myosin heavy chain function. Genes & Development [J]. 1993,7(1):29-41.
    [13] Uyeda T. and Nagasaki A. Variations on a theme: the many modes of cytokinesis. Current Opinion in Cell Biology [J]. 2004,16(1):55-60.
    [14] O'Connell C W. S., Ahmed S. The small GTP-binding protein rho regulates cortical activities in cultured cells during division. Joural of Cell Biology [J]. 1999,144(2):305-313.
    [15] Nagasaki A., de Hostos E., and Uyeda T. Genetic and morphological evidence for two parallel pathways of cell-cycle-coupled cytokinesis in Dictyostelium. Journal of Cell Science [J]. 2002,115(10):2241-2251.
    [16] Knecht D. and Loomis W. Antisense RNA inactivation of myosin heavy chain gene expression in Dictyostelium discoideum. Science [J]. 1987,236(4805):1081-1086.
    [17] Biron D., Libros P., Sagi D., etc. Midwives" assist dividing amoebae. Nature [J]. 2001,410(6827):430.
    [18] Nagasaki A. and Uyeda T. Chemotaxis-mediated scission contributes to efficient cytokinesis in Dictyostelium. Cell Motility and the Cytoskeleton [J]. 2008,65(11):869-903.
    [19] Rappaport R R. B. Cytokinesis in animal cells. International Review of Cytology [J]. 1971,31:169-213.
    [20] Gardel M. L., Shin J. H., MacKintosh F. C., etc. Elastic behavior of cross-linked and bundled actin networks. Science [J]. 2004,304(5675):1301-1305.
    [21] Ingber D. Tensegrity I. Cell structure and hierarchical systems biology. Joural of Cell Sicence [J]. 2003,116(pt7):1157-1173.
    [22] Reichl E., Effler J., and Robinson D. The stress and strain of cytokinesis. Trends in Cell Biology [J]. 2005,15(4):200-206.
    [23] Wachsstock D., Schwartz W., and Pollard T. Affinity of alpha-actinin for actin determines the structure and mechanical properties of actin filament gels. Biophysical journal [J]. 1993,65(1):205-214.
    [24] Wachsstock D., Schwarz W., and Pollard T. Cross-linker dynamics determine the mechanical properties of actin gels. Biophysical journal [J]. 1994,66(3P1):801-809.
    [25] Xu J., Wirtz D., and Pollard T. Dynamic cross-linking byα-actinin determines the mechanical properties of actin filament networks. Journal of Biological Chemistry [J].1998,273(16):9570-9576.
    [26] Sato M., Schwarz W, and Pollard T. Dependence of the mechanical properties of actin/α-actinin gels on deformation rate. Nature [J]. 1987,325(6107):828-830.
    [27] Girard K., Chaney C., Delannoy M., etc. Dynacortin contributes to cortical viscoelasticity and helps define the shape changes of cytokinesis. The EMBO Journal [J]. 2004,23:1536-1546.
    [28] Feneberg W, Westphal M., and Sackmann E. Dictyostelium cells' cytoplasm as an active viscoplastic body. European Biophysics Journal [J]. 2001,30(4):284-294.
    [29] Zhang W. and Lister J. Similarity solutions for capillary pinch-off in fluids of differing viscosity. Physical Review Letters [J]. 1999,83(6):1151-1154.
    [30] Entov V. and Hinch E. Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid. Journal of Non-Newtonian Fluid Mechanics [J]. 1997,72(1):31-53.
    [31] Robinson D., Cavet G., Warrick H., etc. Quantitation of the distribution and flux of myosin-II during cytokinesis. BMC Cell Biol [J]. 2002,3(4):1-11.
    [32] Simson R., Wallraff E., Faix J., etc. Membrane bending modulus and adhesion energy of wild-type and mutant cells of Dictyostelium lacking talin or Cortexillins. Biophysical journal [J]. 1998,74(1):514-522.
    [33] Dai J., Ping Ting-Beall H., Hochmuth R., etc. Myosin I contributes to the generation of resting cortical tension. Biophysical journal [J]. 1999,77(2):1168-1176.
    [34] Gerald N., Dai J., Ting-Beall H., etc. A role for Dictyostelium racE in cortical tension and cleavage furrow progression. Journal of Cell Biology [J]. 1998,141(2):483-492.
    [35] Rosenblatt J., Cramer L., Baum B., etc. Myosin II-dependent cortical movement is required for centrosome separation and positioning during mitotic spindle assembly. Cell [J]. 2004,117(3):361-372.
    [36] Scholey JM B.-M. I., and Mogilner A. cell division. Nature. [J]. 2003,422:746-752.
    [37] Hiramoto Y. Mechanical Properties of the Cortex before and during Cleavage a. Annals of the New York Academy of Sciences [J]. 1990,582(1 Cytokinesis: Mechanisms of Furrow Formation During Cell Division):22-30.
    [38] Yoneda M. and Dan K. Tension at the surface of the dividing sea-urchin egg. Journal ofExperimental Biology [J]. 1972,57(3):575-587.
    [39] Uyeda T. and Yumura S. Molecular biological approaches to study myosin functions in cytokinesis of Dictyostelium. Microscopy Research and Technique [J]. 2000,49:136-144.
    [40] Matzke R., Jacobson K., and Radmacher M. Direct, high-resolution measurement of furrow stiffening during division of adherent cells. Nature cell biology [J]. 2001,3:607-610.
    [41] Hiramoto Y. Mechanical properties of sea urchin eggs. II. changes in mechanical properties from fertilization to cleavage Exp Cell Res [J]. 1963,32:76-89.
    [42] Liu T., Williams J., and Clarke M. Inducible expression of calmodulin antisense RNA in Dictyostelium cells inhibits the completion of cytokinesis. Molecular Biology of the Cell [J]. 1992,3(12):1403-1413.
    [43] Tuxworth R., Cheetham J., Machesky L., etc. Dictyostelium RasG is required for normal motility and cytokinesis, but not growth. Journal of Cell Biology [J]. 1997,138(3):605-614.
    [44] Adachi H., Takahashi Y., Hasebe T., etc. Dictyostelium IQGAP-related protein specifically involved in the completion of cytokinesis. Journal of Cell Biology [J]. 1997,137(4):891-898.
    [45] Swan K. Cyk-1: a C. elegans FH gene required for a late step in embryonic cytokinesis. Joural of Cell Sscience [J]. 1998,111(pt14):2017-2027.
    [46] Nagasaki A. and Uyeda T. DWWA, a novel protein containing two WW domains and an IQ motif, is required for scission of the residual cytoplasmic bridge during cytokinesis in Dictyostelium. Molecular Biology of the Cell [J]. 2004,15(2):435-446.
    [47] Ono S. Mechanism of depolymerization and severing of actin filaments and its significance in cytoskeletal dynamics. International Review of Cytology: A Survey of Cell Biology [J]. 2007:1-82.
    [48] Robinson D. and Spudich J. Dynacortin, a genetic link between equatorial contractility and global shape control discovered by library complementation of a Dictyostelium discoideum cytokinesis mutant. Journal of Cell Biology [J]. 2000,150(4):823-838.
    [49] Hickson G., Echard A., and O'Farrell P. Rho-kinase controls cell shape changes duringcytokinesis. Current Biology [J]. 2006,16(4):359-370.
    [50] Narumiya S. and Yasuda S. Rho GTPases in animal cell mitosis. Current Opinion in Cell Biology [J]. 2006,18(2):199-205.
    [51] Piekny A., Werner M., and Glotzer M. Cytokinesis: welcome to the Rho zone. Trends in Cell Biology [J]. 2005,15(12):651-658.
    [52] Larochelle D. A novel member of the rho family of small GTP-binding proteins is specifically required for cytokinesis. Journal of Cell Biology [J]. 1996,133(6):1321-1329.
    [53] Larochelle D., Vithalani K., and De Lozanne A. Role of Dictyostelium racE in cytokinesis: mutational analysis and localization studies by use of green fluorescent protein. Molecular Biology of the Cell [J]. 1997,8(5):935-944.
    [54] Robinson D., Ocon S., Rock R., etc. Dynacortin is a novel actin bundling protein that localizes to dynamic actin structures. Journal of Biological Chemistry [J]. 2002,277(11):9088-9095.
    [55] Zhang W. and Robinson D. Balance of actively generated contractile and resistive forces controls cytokinesis dynamics. Proceedings of the National Academy of Sciences [J]. 2005,102(20):7186-7191.
    [56] Robinson D. Cell division: Biochemically controlled mechanics. Current Biology [J]. 2001,11(18):737-740.
    [57] Maniak M., Rauchenberger R., Albrecht R., etc. Coronin involved in phagocytosis: dynamics of particle-induced relocalization visualized by a green fluorescent protein tag. Cell [J]. 1995,83(6):915-924.
    [58] Fukui Y., Engler S., Inoue S., etc. Architectural dynamics and gene replacement of coronin suggest its role in cytokinesis. Cell motility and the cytoskeleton [J]. 1999,42(3):204-217.
    [59] De Hostos E., Bradtke B., Lottspeich F., etc. Coronin, an actin binding protein of Dictyostelium discoideum localized to cell surface projections, has sequence similarities to G protein beta subunits. The EMBO Journal [J]. 1991,10(13):4097-4104.
    [60] de Hostos E. The coronin family of actin-associated proteins. Trends in Cell Biology [J]. 1999,9(9):345-350.
    [61] Goode B., Wong J., Butty A., etc. Coronin promotes the rapid assembly and cross-linking of actin filaments and may link the actin and microtubule cytoskeletons in yeast. Journal of Cell Biology [J]. 1999,144(1):83-98.
    [62] De Hostos E. Dictyostelium mutants lacking the cytoskeletal protein coronin are defective in cytokinesis and cell motility. Journal of Cell Biology [J]. 1993,120(1):163-173.
    [63] Haugwitz M., Noegel A., Karakesisoglou J., etc. Dictyostelium amoebae that lack G-actin-sequestering profilins show defects in F-actin content, cytokinesis, and development. Trends in Cell Biology [J]. 2000,10(6):228-237.
    [64] Furukawa R. and Fechheimer M. Differential localization ofα-actinin and the 30 kD actin-bundling protein in the cleavage furrow, phagocytic cup, and contractile vacuole of Dictyostelium discoideum. Cell motility and the cytoskeleton [J]. 1994,29(1):46-56.
    [65] Faix J., Steinmetz M., Boves H., etc. Cortexillins, major determinants of cell shape and size, are actin-bundling proteins with a parallel coiled-coil tail. Cell [J]. 1996,86(4):631-642.
    [66] Weber I., Gerisch G., Heizer C., etc. Cytokinesis mediated through the recruitment of Cortexillins into the cleavage furrow. The EMBO Journal [J]. 1999,18:586-594.
    [67] Faix J., Weber I., Mintert U., etc. Recruitment of Cortexillin into the cleavage furrow is controlled by Rac1 and IQGAP-related proteins. The EMBO Journal [J]. 2001,20:3705-3715.
    [68]安美文,吴文周,陈维毅等.基于微丝主动收缩的细胞分裂的力学模型.力学学报[J]. 2005,(03):317-312.
    [69] Wolpert L. The mechanical properties of the membrane of the sea urchin egg during cleavage. Exp Cell Res [J]. 1966,41(2):385-396.
    [70] Octtaviani E., Effler J., and Robinson D. Enlazin, a natural fusion of two classes of canonical cytoskeletal proteins, contributes to cytokinesis dynamics. Molecular Biology of the Cell [J]. 2006,17(12):5275-5286.
    [71] Evans E. and Yeung A. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophysical journal [J]. 1989,56(1):151-160.
    [72] Cole K. Surface forces of the Arbacia egg. Journal of Cellular and ComparativePhysiology [J]. 1932,1(1):1-9.
    [73] Miyoshi H., Satoh S., Yamada E., etc. Temporal change in local forces and total force all over the surface of the sea urchin egg during cytokinesis. Cell motility and the cytoskeleton [J]. 2006,63(4):208-221.
    [74] Revenu C., Athman R., Robine S., etc. The co-workers of actin filaments: from cell structures to signals. Nat Rev Mol Cell Biol [J]. 2004,5(8):635-646.
    [75] Rappaport R. Cell division: direct measurement of maximum tension exerted by furrow of echinoderm eggs. Science [J]. 1967,156(3779):1241-1243.
    [76] Chaudhuri O., Parekh S., and Fletcher D. Reversible stress softening of actin networks. Nature [J]. 2007,445:295-298.
    [77] Robinson D. and Spudich J. Towards a molecular understanding of cytokinesis. Trends in Cell Biology [J]. 2000,10(6):228-237.
    [78] Bringmann H. and Hyman A. A cytokinesis furrow is positioned by two consecutive signals. Nature [J]. 2005,436(7051):731-734.
    [79] Svaldo Lanero T., Cavalleri O., Krol S., etc. Mechanical properties of single living cells encapsulated in polyelectrolyte matrixes. J Biotechnol [J]. 2006,124(4):723-731.
    [80] Girard K. D., Kuo S. C., and Robinson D. N. Dictyostelium myosin II mechanochemistry promotes active behavior of the cortex on long time scales. Proc Natl Acad Sci U S A [J]. 2006,103(7):2103-2108.
    [81] Van Citters K., Hoffman B., Massiera G., etc. The role of F-actin and myosin in epithelial cell rheology. Biophysical journal [J]. 2006,91(10):3946-3956.
    [82] Bausch A., Ziemann F., Boulbitch A., etc. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophysical journal [J]. 1998,75(4):2038-2049.
    [83] Seifert U. and Lipowsky R. Adhesion of vesicles. Physical Review A (Atomic, Molecular, and Optical Physics) [J]. 1990,42(8):4768-4771.
    [84] Bruinsma R. Adhesion and rolling of leukocytes: a physical model. Proc NATO Adv Inst Phys Biomater [J]. 1995, 332:61-75.
    [85] Pujara P L. T. A model for cell division. Journal of Biomechanics [J]. 1979,12:293-299.
    [86] Akkas N. On the biomechanics of cytokinesis in animal cells. Journal of Biomechanics[J]. 1980,13(12):977-988.
    [87] Akkas N. A viscoelastic model for cytokinesis in animal cells. J Biomech [J]. 1981,14(9):621-631.
    [88] Greenspan H. On the dynamics of cell cleavage. J Theor Biol [J]. 1977,65(1):79-99.
    [89] Zinemanas D. and Nir A. On the viscous deformation of biological cells under anisotropic surface tension. Journal of Fluid Mechanics Digital Archive [J]. 1988,193:217-241.
    [90] Zinemanas D. and Nir A. Surface viscoelastic effects in cell cleavage. J Biomech [J]. 1990,23(5):417-424.
    [91] Straight A C. A., Limouze J. Dissecting temporal and spatial control of cytokinesis with a myosin II Inhibitor. Sicence [J]. 2003,299(5613):1743-1747.
    [92] Fisher A., Smith C., Thoden J., etc. X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP. BeFx and MgADP. AlF4. Biochemistry [J]. 1995,34(28):8960-8972.
    [93] Kovacs M., Toth J., Hetenyi C., etc. Mechanism of blebbistatin inhibition of myosin II. Journal of Biological Chemistry [J]. 2004,279(34):35557-35563.
    [94]历朝龙,《生物化学与生物分子实验技术》[M].浙江大学出版社, 1999.
    [95] Ramagli L. Quantifying protein in 2-D PAGE solubilization buffers. METHODS IN MOLECULAR BIOLOGY-CLIFTON THEN TOTOWA- [J]. 1999,112:99-104.
    [96] Clarke M. and Spudich J. Nonmuscle contractile proteins: the role of actin and myosin in cell motility and shape determination. Annual Review of Biochemistry [J]. 1977,46(1):797-822.
    [97] Charras G., Yarrow J., Horton M., etc. Non-equilibration of hydrostatic pressure in blebbing cells. Nature [J]. 2005,435(7040):365-369.
    [98] Tournaviti S., Hannemann S., Terjung S., etc. SH4-domain-induced plasma membrane dynamization promotes bleb-associated cell motility. Journal of Cell Science [J]. 2007,120(21):3820-3829.
    [99] Paluch E., Sykes C., Prost J., etc. Dynamic modes of the cortical actomyosin gel during cell locomotion and division. Trends in Cell Biology [J]. 2006,16(1):5-10.
    [100] Théry M. and Bornens M. Cell shape and cell division. Current Opinion in Cell Biology[J]. 2006,18(6):648-657.
    [101] Usui N. and Yondeda M. Ultrastructural Basis of the Tension Increase in Sea-Urchin Eggs Prior to Cytokinesis.(microfilament/sea-urchin egg/tension). Development Growth and Differentiation [J]. 1982,24(5):453-465.
    [102] Tsai M., Frank R., and Waugh R. Passive mechanical behavior of human neutrophils: effect of cytochalasin B. Biophysical journal [J]. 1994,66(6):2166-2172.
    [103] Cramer L., "Organization and polarity of actin filament networks in cells: implications for the mechanism of myosin-based cell motility," [C], 1999:173-205.
    [104] Sellers J. Regulation of cytoplasmic and smooth muscle myosin. Current Opinion in Cell Biology [J]. 1991,3(1):98-104.
    [105] Theret D., Levesque M., Sato M., etc. The application of a homogeneous half-space model in the analysis of endothelial cell micropipette measurements. Journal of biomechanical engineering [J]. 1988,110(3):190-199.
    [106] Sato M., Theret D., Wheeler L., etc. Application of the micropipette technique to the measurement of cultured porcine aortic endothelial cell viscoelastic properties. Journal of biomechanical engineering [J]. 1990,112(3):263-268.
    [107]徐晋斌,樊学军.微管吸吮和半无限体模型在鼠成骨细胞粘弹性研究中的应用.生物物理学报[J]. 1998,14(002):360-366.
    [108] Burgess D. and Chang F. Site selection for the cleavage furrow at cytokinesis. Trends in Cell Biology [J]. 2005,15(3):156-162.
    [109] Finer J., Simmons R., and Spudich J. Single myosin molecule mechanics: piconewton forces and nanometre steps. Nature [J]. 1994,368(6467):113-119.
    [110] Murphy C., Rock R., and Spudich J. A myosin II mutation uncouples ATPase activity from motility and shortens step size. Nature cell biology [J]. 2001,3:311-315.
    [111] Kanada M., Nagasaki A., and Uyeda T. Adhesion-dependent and contractile ring-independent equatorial furrowing during cytokinesis in mammalian cells. Molecular Biology of the Cell [J]. 2005,16(8):3865-3872.
    [112] Wang Z., Shah J., Chen Z., etc. Fluorescence correlation spectroscopy investigation of a GFP mutant-enhanced cyan fluorescent protein and its tubulin fusion in living cells with two-photon excitation. Journal of Biomedical Optics [J]. 2004,9(2):395-403.
    [113]李晓娜,吴文周,安美文等.胞质分裂力学及其分子生物学机制的研究.力学进展[J]. 2008,38(4):495-501.
    [114]Coskun H., Li Y., and Mackey M. Ameboid cell motility: A model and inverse problem, with an application to live cell imaging data. Journal of theoretical biology [J]. 2007,244(2):169-179.
    [115] Kress H., Stelzer E., Holzer D., etc. Filopodia act as phagocytic tentacles and pull with discrete steps and a load-dependent velocity. Proceedings of the National Academy of Sciences [J]. 2007,104(28):11633-11638.
    [116] Burton K. and Taylor D. Traction forces of cytokinesis measured with optically modified elastic substrata. Nature [J]. 1997,385(6615):450-454.
    [117] Mogilner A. and Oster G. Force generation by actin polymerization II: the elastic ratchet and tethered filaments. Biophysical journal [J]. 2003,84(3):1591-1605.
    [118] Reichl E., Ren Y., Morphew M., etc. Interactions between myosin and actin crosslinkers control cytokinesis contractility dynamics and mechanics. Current Biology [J]. 2008,18(7):471-480.
    [119] Canman J., Cameron L., Maddox P., etc. Determining the position of the cell division plane. Nature [J]. 2003,424(6952):1074-1078.
    [120] del Pozo M A. N., Kiosses W, Chiang H, Anderson R, Schwartz M. Integrins regulate Rac targeting by internalization of membrane domains. Science [J]. 2004,303(5459):839-842.
    [121] Gerisch G. and Weber I. Cytokinesis without myosin II. Current Opinion in Cell Biology [J]. 2000,12(1):126-132.
    [122] Janetopoulos C. and Firtel R. Directional sensing during chemotaxis. FEBS letters [J]. 2008,582(14):2075-2085.