细胞因子IL-2,15联合自体DCs对人外周血来源的NK细胞体外扩增及功能影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的意义:供者异源反应性NK细胞在异基因造血干细胞移植中可以发挥移植物抗白血病(graft-versus-leukemia,GVL)效应,并减少移植物抗宿主病(graft-versus-host disease, GVHD)的发生;在实体瘤(如肾细胞癌、黑色素瘤)也有裂解肿瘤细胞的抗实体瘤作用。故输注供者异源反应性NK细胞已经成为临床移植及抗肿瘤辅助治疗的新策略。但外周血中NK细胞含量少,目前尚缺乏有效的体外扩增体系。本研究目的在于探讨从人外周血中分选及扩增高纯度NK细胞的方法,尤其是自体DCs作为饲养细胞的可行性及效果,并对扩增后NK细胞功能进行评价,以期筛选出有效的NK细胞体外扩增方法,为进一步的临床应用奠定基础。
     材料和方法:先采用miniMACS免疫磁珠分选方法,从外周血单个核细胞(PBMNC)得到纯化的CD14+单核细胞及NK细胞,随后体外经GM-CSF及IL4诱导单核细胞5天,成为非成熟DCs。在干细胞培养基条件下,NK细胞经IL2和IL15培养5天后,培养体系中加入不同比例的DCs,根据与DC混合的比例及方式将培养体系分为5组:A组:NK/DC=10:1,B组:NK/DC=5:1;C组:NK/DC=2:1,D组:NK/DC=1:1 transwel1非接触共培养,E组(对照组):不加DC。培养15天,每3天半量换液并补充细胞因子;检测分选及扩增前后(CD3~-CD56')NK细胞含量、扩增倍数及扩增前后各组NK细胞功能的变化(从以下三方面进行):在不同效靶比下对K562细胞的杀伤作用;realt ime-PCR方法定量检测IFN-γ、穿孔素、颗粒酶B mRNA的表达水平;流式检测NK细胞表面KIR3DL1. NKG2D表达的变化,并探寻可能的miRNA调控机制。结果:(1)经miniMACS阴性免疫磁珠分选后(CD3~-CD56~+)NK细胞含量由分选前的11.19±5.25%提高到94.23±3.50%。培养15天后除C组NK细胞纯度略有下降外,其余四组与扩增前无显著性差异(P>0.05);(2)在各培养体系中A、B、C、D组细胞的扩增倍数分别为168±64.4、170.5±82.6,244.8±148,和70.8±17.5,均显著高于对照组(未加DC)的50.46±4.3(P<0.01);(3)培养后NK细胞对K562细胞的杀伤活性呈A组≈B组(P>0.05)>C组>D组>E组(P<0.05)。(4)各扩增体系NK细胞IFN-γ、Perforin及GranzymeB基因的表达量均较扩增前(NKO组)明显增加(P<0.01)。(5)细胞因子扩增后CD158e+的细胞下降约10%(P<0.05)。荧光素酶报告实验显示miR-146b可与KIR3DL13'UTR在靶位点特异结合,很有可能调控KIR3DL1的基因表达。结论:经miniMACS免疫磁珠阴性分选得少量高纯度NK细胞后,在含IL2(200U/mL)+IL15(20ng/mL)的SCGM(含5%人AB血清的)培养条件下,以人外周血单核细胞诱导的未成熟DC作为饲养细胞,当NK细胞与DC比例为10:1时,我们可以获得纯度高、细胞毒活性强、增值倍数高的NK细胞。荧光素酶报告实验显示miR-146b很可能参与调控KIR3DL1的表达.
[Objective] Adoptive immunotherapy using allogeneic natural killer (NK) cells may prove useful in recipients after allogeneic hematopoietic stem cell transplantation (Allo-HSCT) and in patients with solid tumor. But it has been limited by the inability to obtain sufficient numbers of pure NK cells. The goal of our study was to optimize the expansion of high purity NK cells from human peripheral blood by cytokines IL2,15 and autologous DC Cells, and evaluate the changes in biological functions after ex vivo expansion.
     [Methods] First, we isolated CD14+cells and NK cells from PBMNC by using miniMACS (Magnetic cell-selection) (Miltenyi Biotec, Germany). DCs were induced f rom CD14~+cells by cytokines GM-CSF and IL4 for 5 days. The isolated NK cells were cultured in SCGM supplemented with 5% human AB serum and combination of interleukin IL2 and IL15 for 5 days, then DCs come from CD14~+cells was add to NK cells at different ratio. Cultures were fed with fresh media and cytokines every 3 days, and were evaluated for cell expansion, phenotype, and biological functions at the end of the culture period. The biological functions of NK cells were detected by 3 ways:(1) cytotoxicity to target K562 cells; (2) IFN-y, perforin and granzyme B mRNA expressions were assayed by realtime-PCR; (3)Expression of KIR3DL1 (CD158e) and NKG2D of NK cells were analyzed by flow cytometry. stimulate NK cells proliferation and strengthen NK cells vitality. When NK/DCs ratio were 10 to 1,5 tol,2 to l,or 1 to 1 but separated by transwell, cells were expanded 168±64.4,170.5±82.6,244.8±148 and 70.8±17.5 fold, respectively. But when NK/DCs ratio was 2 to 1, CD3~-CD56+NK cells purity dropping significantly, while in other groups was over 92%. The cytotoxicity of expanded NK cells cultured with DCs was significantly higher than the no DCs control, and NK/DCs ratio 10:1 group was slightly higher than other groups. The expressions of IFN-Y, perforin and granzyme B mRNA of expanded NK cells was significantly higher than the starting population (P<0.01). In NK/DCs ratio≤2:1 groups, IFN-Y mRNA expression level were higher, and in NK/DCs ratio≥5:1 group, perforin and granzyme B mRNA expression level were higher. After culture with cytokins for 15 days, CD158e~+NK cells number drop 10%, while there was no change in NKG2D expression. Using a luciferase reporter assay, we found miRNA 146b maybe regulate KIR3DL1 expression.
     [Conclusion]:Our data suggest that high purity NK cells could be efficiently expanded in culture with IL2+IL15 and autologous DCs at 10:1 NK/DCs ratio, and its biological functions were enhanced in this condition.The miRNA 146b maybe regulate KIR3DL1 expression..
引文
1. Ruggeri L, Capanni M, Casucci M, et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood.1999;94:333-339
    2. Nguyen S, Dhedin N, Vernant JP, et al. NK cell reconstitution after haploidentical hematopoietic stem cell transplants:immaturity of NK cells and inhibitory effect of NKG2A override GvL effect. Blood.2005 Feb 1;
    3.董陆佳.KIR基因与异基因造血干细胞移植.中国实验血液学杂志,2004;12(1):108-114
    4. Passweg JR, Stern M, Koehl U, et al. Use of natural killer cells in hematopoetic stem cell transplantation. Bone Marrow Transplant.2005 Apr;35(7):637-43.
    5.李晓红,高春记.异基因造血干细胞移植中NK细胞的作用.中国实验血液学杂志,2006;14(4):845-848
    6. Koehl U, Esser R, Zimmermann S, et al. Ex vivo expansion of highly purified NK cells for immunotherapy after haploidentical stem cell transplantation in children. Klin Padiatr.2005 Nov-Dec;217(6):345-50.
    7. Klingemann HG, Martinson J. Ex vivo expansion of natural killer cells for clinical applications. Cytotherapy.2004;6(1):15-22.
    8. Carlens S, Gilljam M, Chambers BJ, et al. A new method for in vitro expansion of cytotoxic human CD3-CD56+ natural killer cells. Hum Immunol.2001 Oct;62(10):1092-8.
    9.黎阳,黄绍良,吴燕峰等.联合使用干细胞因子、FLT3配基与白介素2,7,15体外扩增人脐血来源CIK/NK细胞.中国实验血液学杂志,2004;12(3): 350-354
    10. Mirandola P, Ponti C, Gobbi G, et al.The response of human natural killer cells to interleukin-2. J Endocrinol Invest.2004;27(6 Suppl):146-50.
    11. Carson, W. E., J. G. Giri, M. J. Lindemann, M. L. Linett, M. Ahdieh, R. Paxton, D. Anderson, J. Eisenman, K. Grabstein, and M. A. Caligiuri. Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor. J. Exp. Med.1994.180:1395-1403.
    12. Lin, S. J., H. C. Chao, and D. C. Yan. Phenotypic changes of T-lymphocyte subsets induced by interleukin-12 and interleukin-15 in umbilical cord vs peripheral blood mononuclear cells. Pediatr. Allergy Immunol. 2001.12:21-26.
    13. Lin, S. J., M. H. Yang, H. C. Chao, M. L. Kuo, and L. Huang. Effect of interleukin-15 and Flt3-ligand on natural killer cell expansion and activation: umbilical vs adult peripheral blood mononuclear cells. Pediatr. Allergy Immunol.200011:168-174.
    14.李晓红,高春记,达万明.细胞因子联合高效扩增高纯度人外周血来源NK细胞并观察其细胞功能的变化.中华血液学杂志,2009,30(6)404-407
    15. Luhm J, Brand JM, Koritke P,et al. Large-scale generation of natural killer lymphocytes for clinical application. J Hematother Stem Cell Res. 2002;11:651-7.
    16. Fujisaki H, Kakuda H, Shimasaki N, et al.Expansion of highly cytotoxic human natural killer cells for cancer cell therapy. Cancer Res.2009 May 1;69(9):4010-7
    17. Peng BG,Liang LJ, He Q, et al. Selective expansion of human natural killer cells[J]. Ai Zheng,2005,24 (10):128721289.
    18. Giovanni F. Torelli, Anna Guarini, et al. Expansion of natural killer cells with lytic activity against autologous blasts from adult and pediatric acute lymphoid leukemia patients in complete hematologic remission.haematologica 2005;90:785-792
    19. Berg M, Lundqvist A, McCoy P Jr,et al. Clinical-grade ex vivo-expanded human natural killer cells up-regulate activating receptors and death receptor ligands and have enhanced cytolytic activity against tumor cells. Cytotherapy. 2009;11(3):259-60.
    20. Ferlazzo G, Tsang ML, Moretta L, et al. Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J.Exp Med 2002; 195:343-51.
    21. PiccioliD, Sbrana S, Melandri E, et al. Contact2dependent stimulation and inhibition of dendritic cells by natural killer cells. J Exp Med,2002; 195:335-341
    22. Stefani G, Slack FJ. Small non-coding RNAs in animal development. Nat Rev Mol Cell,2008.Biol 9:219-230
    23. Williams AE. Functional aspects of animal micro RNAs. Cell Mol Life,2008. Sci 65:545-562.
    24. Yang YG,Wang H,Asavaroengchai W,Dey BR. Role of Interferon-gamma in GVHD and GVL.Cell Mol Immunol.2005 Oct;2(5):323-9
    25. Brown GR,Lee EL, El-Hayek J, Kintner K, Luck C.IL-12-independent LIGHT signaling enhances MHC class II disparate CD4+T cell alloproliferation, IFN-gamma responses, and intestinal graft-versus-host disease. J Immunol.2005 Apr 15;174(8):4688-95.
    26. Bender A, SappM, Schuler G, et al. Imp roved methods for the generation of dendritic cells from nonp roliferating p rogenitors in human blood. J ImmunolMethods,1996; 196:121-135
    1.Shlomchik WD, Couzens MS, Tang CB, et al. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science, 1999;285:412-415
    2.Ruggeri L, Capanni M, Casucci M, et al. Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation. Blood. 1999;94:333-339
    3.Malmberg KJ, Schaffer M, Ringden O, et al. KIR-ligand mismatch in allogeneic hematopoietic stem cell transplantation. Mol Immunol.2005 Feb;42(4):531-4.
    4.Schaffer M, Malmberg KJ, Ringden O, et al. Increased infection-related mortality in KIR-ligand-mismatched unrelated allogeneic hematopoietic stem-cell transplantation. Transplantation.2004 Oct 15;78(7):1081-5.
    5.Smyth MJ, Hayakawa Y, Takeda K, et al. New aspects of natural-killer-cell surveillance and therapy of cancer[J].Nat Rev Cancer,2002,2(11):850-861
    6.Cerwenka A, Lannier LI. Natural killer cells, viruses and cancer[J]. Nat Rev Immunol,2001,1(1):41-49
    7. Cooper M A, Fehniger T A, Caliginri M A. The biology of human natural killer cell subsets[J].Trends in Immunology,2001;22:633.
    8.Watzl C. The NKG2D receptor and its ligands-recogniton beyond the "missing self"? [J].Microbes Infect,2003,5(1):31-37
    9.Ruggeri L, Capanni M, Urbani E, et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science. 2002;295:2097-2100
    lO.Passweg JR, Tichelli A, Meyer-Monar, et al. Purified donor NK-lymphocyte infusion to consolidate engraftment after haploidentical stem cell transplantation. Leukemia.2004 Nov;18(11):1769-71.
    11.Ruggeri L, Capanni M, Martelli MF, Velardi A. Cellular therapy:exploiting NK cell alloreactivity in transplantation. Curr Opin Hematol.2001;8:355-359S
    12.Giebel S, Locatelli FW, Lamparelli T, et al. Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors. Blood.2003;102:814-819.
    13.Battiwala M, Barrett J. Allogeneic transplantation using nonmyeloablative transplant regimens. Best Pract Res Clin Haematol.2002;14:701-722
    14. Ruggeri L, Capanni M, Mancusi A,et al. Natural killer cell alloreactivity in haploidentical hematopoietic stem cell transplantation. Int J Hematol.2005 Jan;81(1):13-7.
    15. Nguyen S, Dhedin N, Vernant JP, et al. NK cell reconstitution after haploidentical hematopoietic stem cell transplants:immaturity of NK cells and inhibitory effect of NKG2A override GvL effect. Blood.2005 Feb 1;
    16.Lomghurst HJ, Taussig D, Haque T, et al. Non-myeloablative bone marrow transp;antation in an adult with Wiskott-Aldrich syndrome. Br J Haematol, 2002:116:497-499
    17.Colucci F, Di-Santo JP, Leibson PJ. Natural killer cell activation in mice and men:different triggers for similar weapons? N at Immunol,2002;3:807-813
    1. Stefani G, Slack FJ. Small non-coding RNAs in animal development. Nat Rev Mol Cell,2008.Biol 9:219-23.
    2. Williams AE. Functional aspects of animal microRNAs. Cell Mol Life,2008. Sci 65:545-562.
    3. Lim LP, GlasnerME, Yekta S, et al. Vertebrate microRNA genes, Science, 2003; 299 (5612):1540
    4. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin24 encodes small RNAswith antisense comp lementarity to lin214. Cell,1993; 75:843-854
    5. Reinhart BJ, Slack FJ, Basson M, et al. The 21-nucleotide let-7, RNA regulates developmental timing in Caenorhabditis elegans. Nature,2000; 403 (6772):901-906
    6. Cai X, Hagedorn CH, Cullen BR. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 2004,10(12):1957-1966.
    7. Lee Y, Kim M, Han J, et al. MicroRNA genes are transcribed by RNA polymerase Ⅱ. EMBO Journal,2004,23:4051-4060
    8. Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol,2006,13(12):1097-1101
    9. Lee Y, Ahn C, Han J, et al. The nuclear RNaseⅢ Drosha initiates microRNA processing. Nature,2003,425(6956):415-419.
    10. Zeng Y, Yi R, Cullen BR. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO Journal,2005, 24(1):138-148
    11. Yi R, Qin Y, Macara IG, et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev,2003,17(24): 3011-3016.
    12. Bohnsack MT, Czaplinski K, Gorlich D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA, 2004,10(2):185-191.
    13. Ketting RF, Fischer SE, Bernstein E, et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev,2001,15(20):2654-2659.
    14. Jiang F, Ye X, Liu X, et al. Dicer-1 and R3D1-L catalyze microRNA maturation inDrosophila. Genes Dev,2005,19(14):1674-1679
    15. Lee YS, Nakahara K, Pham JW, et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell,2004,117(1): 69-81.
    16. SHENG Xi-Hui, DU Li-Xin. Progress on the research of microRNAs and its function in humans and animals. Hereditas, (Beijing),2007,29(6): 651-658.
    17. Rodriguez A, Griffiths-Jones S, Ashurst JL, et al.Identification of mammalian microrna host genes and transcription units. Genome Res,2004,14(10A): 1902-1910.
    18. Altuvia Y, Landgraf P, Lithwick G, et a. Clustering and conservation patterns of human microRNAs. Nucleic Acids Res,2005,33(8):2697-2706.
    19. Zhao Y, Srivastava D. A developmental view of microRNA function [J]. Trends Biochem Sci,2007,32 (4):1892197.
    20. Bartel DP MicroRNAs:Genomics, biogenesis, mechanism, and function. Cell.2004.116:281-297
    21. Engels BM, Hutvagner G. Principles and effects of microRNA-mediated posttranscriptional gene regulation. Oncogene 2006.25:6163-6169.
    22. Bartel DP. MicroRNAs:genomics, biogenesismechanism, and function. Cell, 2004; 116:281-297
    23. Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science (New York, NY) 2007.318:1931-1934
    24. Bhattacharyya SN, Habermacher R, Martine U, et al. Relief of microRNA2mediated translational rep ression in human cells subjected tostress. Cell,2006; 125:1111-1124
    25. Wu L, Fan J, Belasco JG. MicroRNAs direct rapid dead enylation of mRNA. Proc Natl Acad Sci,2006; 103:4034-4039
    26. Calin G A, Sevignani C, Dumitru C D, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA,2004,101(9):2999-3004
    27. Chen C Z. MicroRNAs as oncogenes and tumor suppressors. N Engl J Med, 2005,353(17):1768-1771
    28. Ewquela-Kerscher A, Slack F J. Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer,2006,6(4):259-269
    29. Chen CZ, L i L, L odish HF, et a 1. MicroRNA s modulate hematopoietic lineage differentiation. Science,2004; 303 (5654) 83-86
    30. Felli N, Fontana L, Pelosi E, et a 1. MicroRNA s 221 and 222 inhibit normal erythropoiesis and erythroleukem ic cell grow th via kit recep tor dow n-modulation. Proc N atl A cad Sci USA,2005; 102:18081-18086
    31. Fazi F, Rosa A, Fatica A, et a 1. A m inicircuitry comp rised of microRNA-223 and transcrip tion factors N FI2A and C/EB Palpha regulates human granulopoiesis. Cell,2005; 123:819-831
    32. Garzon R, Pichiorri F, Palumbo T, et a 1. MicroRNA fingerprints during human megakaryocytopoiesis. Proc N atl A cad Sci USA,2006; 103:5078-5083
    33. Wang Q, Huang Z, Xue H, Jin C, Ju XL, Han JD, ChenYG. MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4. Blood,2008,111(2):588-595.
    34. Chen C Z, Li L, Lodish H F, et al. MicroRNAs modulate hematopoietic lineage differentiation [J]. Science,2004,303(5654):83286
    35. Johnnidis JB, HarrisMH, Wheeler RT, et al. Regulation of p rogenitor cell p roliferation and granulocyte function bymicroRNA2223 [J]. N ature,2008, 451 (7182):1125-1129.
    36. Rosa A, BallarinoM, Sorrentino A, et al. The interp lay between the master transcrip tion factor PU.1 and miR-424 regulates human monocyte /macrophage differentiation[J]. Proc N atl Acad Sci USA,2007,104 (50): 19849-19854.
    37. Taganov KD, Boldin MP, Chang KJ, et al. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA.2006.103:12481-12486
    38. Tili E, Michaille JJ, Cimino A, et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF2alpha stimulation and their possible roles in regulating the response to endotoxin shock [J]. J Imm unol, 2007,179 (8):5082-5089.
    39. Zhou B, Wang S, Mayr C, et al. miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely [J]. Proc Natl Acad Sci USA,2007,104 (17):708027085
    40. Xiao C, Calado D P, Galler G, et al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb [J]. Cell.2007,131 (1):1462159
    41. Rodriguez A, Vigorito E, Clare S, et al. Requirement of bicP microRNA-155 for normal immune function[J]. Science,2007, 316(5824):6082611
    42. Vigorito E, Perks K L, Abreu Goodger C, et al. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells [J] Immunity,2007,27(6):8472859
    43. Neilson JR, Zheng GX, Burge CB, et al. Dynamic regulation of miRNA expressionin ordered stages of cellular development. Genes Dev.2007. 21:578-589.
    44. Liu G, Min H, Yue S,et al.Pre-miRNA loop nucleotides control the distinct activities of mir-181a-1 and mir-181c in early T cell development. PLoS ONE. 2008;3(10):e3592. Epub 2008 Oct 31.
    45. Wu H, Neilson JR, Kumar P, et al. miRNA profiling of naive, effector and memory CD8 T cells. PLoS ONE.2007.2:e1020
    46. Li QJ, Chau J, Ebert PJ, et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell.2007129:147-161.
    47. Rodriguez A, Vigorito E, Clare S, et al. Requirement of bic/microRNA-155 for normal immune function. Science (NewYork, NY) 2007.316:608-611.
    48. Kohlhaas S, Garden OA, Scudamore C, et al. Cutting edge:the Foxp3 target miR-155 contributes to the development of regulatory T cells. J Immunol. 2009 Mar 1;182(5):2578-82
    49. Noam Stern-Ginossarl, Chamutal Gurl, Moshe Bitonl,et al. Human microRNAs r egulate stress-induced immune responses mediated by the receptor NKG2D.Nature immunology.2008 Sep;9(9):1065-73.