生姜化学成分和水飞蓟宾衍生物的分析与活性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然产物研究已经成为发现创新药物的重要来源之一。本文在本实验室前期工作基础上,对我国云南省罗平产生姜的化学成分进行了进一步研究,并对13种生姜化学成分的抗氧化和细胞毒性等进行了评价;另外,对16种2,3-脱氢水飞蓟宾系列结构修饰物的抗氧化活性等进行了研究。
     一、生姜中化学成分的鉴定和生物活性评价
     生姜为姜科植物Zingiber officinale Roscoe的根茎,在全世界作为药用的历史悠久,其在我国中药处方中也经常在列。生姜主要用于治疗关节炎、风湿病、呕吐、十二指肠和胃溃疡、扭伤、肌肉痛、疼痛、喉咙痛、便秘、消化不良、高血压、老年痴呆、发热、感染性疾病和蠕虫病等。生姜的植物化学研究已经鉴定出许多具有生物活性的化合物,如姜辣素、姜二酮类、姜烯酚和二苯基庚烷类等;其中二苯基庚烷类化学成分具有抑制前列腺素和白三烯合成生物的活性,以及抗真菌、抗氧化和预防癌症等生物活性。
     通过对云南省罗平产生姜的深入植物化学研究,采用色谱技术分离和纯化了14个化合物;应用核磁共振波谱(~1H NMR,~(13)CNMR和DEPT)、质谱(EI-MS,ESI-MS & HR-ESI-MS)、红外光谱、元素分析、旋光测定等技术,鉴定了所获得化合物的结构,其中发现3个二苯基庚烷类和1个单萜类新化合物,分别为5-[4-羟基-6-(4-羟基苯乙基)四氢-2H-吡喃-2]-3-甲氧苯基-1,2-二醇(5-[4-hydroxy-6-(4-hydroxyphenethyl)tetrahydro-2H-pyran-2-y1]-3-methoxybenzene-1,2-diol)、一对对映体:(E)-7-羟基-1,7-双(4-羟基苯基)庚烷-5-烯-3S-磺酸钠(Sodium(E)-7-hydroxy-1,7-bis(4-hydroxyphenyl)hept-5-ene-3S-sulfonate)和(E)-7-羟基-1,7-双(4-羟基苯基)庚烷-5-烯-3R-磺酸钠(sodium(E)-7-hydroxy-1,7-bis(4-hydroxyphenyl)hept-5-ene-3R-sulfonate)、羟基桉-10-O-β-D葡萄糖苷(Hydroxycineole-10-O-β-D-glucopyranoside)。
     应用清除超氧阴离子自由基和抑制肝微粒体中过氧化脂质的形成之体外模型,对我们实验室分离获得的化合物的抗氧化活性进行了评价。为了考察这些化合物在更接近生理条件下的抗氧化特性,应用大鼠的肝脏分离原代培养细胞模型,进一步检测了化合物抑制叔丁基过氧化氢引起氧化损伤的活性。为了评价化合物的抗肿瘤活性,在9种体外培养肿瘤细胞株上,测定了它们的细胞毒性。这9种肿瘤细胞株包括KB细胞,BEL7404细胞,P388D1细胞,K562细胞,HL-60细胞,A549细胞,Hela细胞,CNE细胞,及PC-3细胞。在供试验的化合物中,大部分化合物对吩嗪甲基硫酸盐-NADH系统显示出强效的超氧阴离子自由基的清除能力。在更接近生物体条件的系统,这些化合物在鼠肝微粒体暴露于氧化条件之试验中,显示出对肝脏脂质过氧化,具有强的保护作用。另外,我们还发现这些化合物对原代培养大鼠肝细胞接触氧化损伤具有细胞保护活性。二苯基庚烷类化学成分在上述所有实验中,显示出有效的抗氧化生物活性。另一方面,实验也表明:这些化合物多数对肿瘤细胞不具备明显的细胞毒性。
     二、脱氢水飞蓟宾衍生物的抗氧化生物活性研究
     2,3-脱氢水飞蓟宾(2,3-Dehydrosilybin,DHS),一种天然水飞蓟宾的衍生物,存在于水飞蓟中的浓度相当低。不象水飞蓟宾,DHS的生物学研究非常有限,部分原因是其产率低和水溶性差(即低于水飞蓟宾)。然而,最近的研究报告表明,DHS具有非常强的抗氧化活性,其活性高于水飞蓟宾。因此,我们实验室对DHS进行了一系列结构修饰,本文对所有合成的16个DHS衍生物,以及水飞蓟宾和DHS的药理学活性进行了研究,包括2,2-二苯基-1-苦基肼(DPPH)、O_2~-氧自由基清除试验和抗脂质过氧化抑制试验、对抗过氧化氢诱导PC12细胞毒性的神经保护试验,以期获得更全面的有关DHS衍生物在体外对抗氧化损伤所造成的神经元损伤的有效性数据。我们还采用亚铁离子(Fe~(2+))螯合模型评价DHS类似物的生物学性质,以确定不同模型DHS类似物在AD和PD治疗中的抗氧化活性。研究结果表明,极性强的化合物,如C7-OH和C20-OH双醚以及C7-OH单醚具有脂肪族取代的乙酰胺,具有非常好的抑制脂质过氧化活性和Fe~(2+)离子的螯合效价。相反,C7-OH和C20-OH双-烯丙基醚对过氧化氢诱导损伤PC12细胞的保护作用比槲皮素还要强。总体而言,更亲脂的DHS烯烃取代类似物是比乙酰胺取代的衍生物更好的神经保护剂。本研究结果将有助于优化黄酮木脂素类的结构,提高治疗潜力,特别是研发神经退行性疾病治疗药物,如,老年痴呆症(AD)和帕金森氏症(PD)。
Analysis and Evaluation of Chemical Ingredients in Zingiber officinale Roscoe and Silybin Derivatives
     It has become an important source of innovative medicines to discovery new drugs via natural products research.In this paper,based on preliminary work in our laboratory, the chemical constituents of Ginger from Luoping county of China's Yunnan Province were further studied,and the antioxidant activities and cell toxicity for 13 chemical constituents from ginger were evaluated.In addition,the antioxidant activities of 16 dehydrosilybin derivatives with structural modification were studied.
     1.Identification and biological activity evaluation of chemical constituents in Ginger, the rhizomes of Zingiber officinale Roscoe(Zingiberaceae),has a long history as a medicinal in the world and was also often listed in traditional Chinese medicine prescriptions.Ginger is mainly used for treatment of arthritis,rheumatism,vomiting, duodenal and gastric ulcers,sprains,muscle pain,pain,sore throat,constipation, indigestion,hypertension,senile dementia,fever,infectious diseases and worms diseases.Chemical studies of this plant species have led to the isolation and identification of numerous biologically active compounds such as gingerols,gingerones, shogaols and diarylheptanoids,etc.The diarylheptanoids,exhibiting a variety of biological activities including inhibition of the biosynthesis of prostaglandins and leukotrienes as well as antifungal,antioxidative,and cancer chemopreventive activities. Fourteen compounds were separated and purified by using chromatographic techniques from the MeOH extract of Z.officinale collected in Yunnan Province,Southwestern China.Three new diarylheptanoids,one new monoterpenoid,and other known diarylheptanoids were structurally identified by using NMR(~1H NMR,~(13)C NMR and DEPT),MS(EI-MS,ESI-MS&HR-ESI-MS),infrared spectrometry,elemental analysis,optical measurement,etc.The new compounds are reported as: 5-[4-hydroxy-6-(4-hydroxyphenethyl)tetrahydro-2H-pyran-2-yl]-3-methoxybenzene-1, 2-diol,sodium(E)-7-hydroxy-1,7-bis(4-hydroxyphenyl)hept-5-ene-3S-sulfonate, sodium(E)-7-hydroxy-1,7-bis(4-hydroxyphenyl)hept-5-ene-3R-sulfonate, hydroxycineole-10-O-β-D-glucopyranoside.
     The antioxidant activities of the isolated compounds in our laboratory were evaluated by the in vitro models of scavenging superoxide anion radicals and inhibiting the formation of lipid peroxides in liver microsomes.To investigate the antioxidant properties of these compounds under more physiological conditions,the compounds were further tested in a primary culture of hepatocytes isolated from rat liver against the oxidative damage of tert-butyl hydroperoxide.In order to evaluate the anticancer activity,the compounds were tested the cell toxicities on 9 cancer cell lines,including KB cell,BEL7404 cell,P388D1 cell,K562 cell,HL-60 cell,A549 cell,Hela cell,CNE cell,and PC-3 cell.Among the tested compounds,most of compounds exhibited strong superoxide anion radical scavenging activities in a phenazine methosulfate-NADH system.In a more biological system,these compounds were demonstrated to exhibit potent protection against lipid peroxidation in mouse liver microsomes exposed to oxidative conditions.These compounds were subsequently tested on primary cultures of rat hepatocytes exposed to oxidative damage,and definitive cytoprotective actions were found.The diarylheptanoids were found to possess potent antioxidant properties in all the above assays.On the other hand,most of these compounds did not possess any appreciable cytotoxiciy on cancer cells.
     2.Study on the antioxidant biological activity of dehydrosilybin derivatives
     2,3-Dehydrosilybin(DHS),a natural derivative of silybin which presents at very low concentrations in Silybum marianum(L) Gaertn.Not as silybin,DHS's biological research is very limited,partly because of its low yield and poor water-soluble(ie,less than the silybin).However,a recent report shows that DHS has a very strong antioxidant activity,its activity is higher than silybin.Therefore,our laboratory conducted a series of structural modification on the DHS.So the pharmacological activity of 16 DHS synthetic derivatives,as well as silybin and DHS has been studied in this thesis.The In vitro models used included 2,2-diphenyl-1-picrylhydrazyl(DPPH) and O_2~- free radical scavenging assays,and an inhibition test against LPO.The neuroprotective evaluation of the compounds against H_2O_2-induced toxicity of PC12 cells were performed in order to obtain more comprehensive information of the DHS derivatives' in vitro efficacy against neuronal injury caused by oxidative damage.We also use ferrous ions(Fe~(2+)) chelating model to evaluate the biological nature of the DHS analogues to determine the different models DHS analogues in the treatment of AD and PD potential antioxidant activity.The study revealed that the more polar compounds, the di-ether at C7-OH and C20-OH as well as the mono-ether at C7-OH which possess aliphatic substituted acetamides,demonstrated excellent inhibition against LPO as well remarkable chelating potency on Fe~(2+) ions.Conversely,the di-allyl ether at C7-OH and C20-OH was more potent in protection of PC12 cells against H_2O_2-induced injury than DHS and quercetin.Overall,the more lipophilic alkenylated DHS analogs were better performing neuroprotective agents than the acetamidated derivatives.The results in this study would be beneficial for optimizing the therapeutic potential of lignoflavonoids,especially in neurodegenerative disorders such as Alzheimer's and Parkinson's disease.
引文
1.国家药典委员会,中华人民共和国药典.2005版一部:12,66.
    2.White B.Ginger:an overview.Am Fam Physician.2007;75:1689-1691.
    3.Carrasco FR,Schmidt G,Romero AL,Sartoretto JL,Caparroz-Assef SM,Bersani-Amado CA,Cuman RK,Immunomodulatory activity of Zingiber officinale Roscoe,Salvia officinalis L.and Syzygium aromaticum L.essential oils:evidence for humor- and cell-mediated responses.J Pharm Pharmacol.2009;61:961-967.
    4.Grzanna R,Lindmark L,Frondoza CG.,Ginger--an herbal medicinal product with broad anti-inflammatory actions.J Med Food.2005;8:125-132.
    5.Shim JH,Jeon YJ,Li H,Jiang H,Dong Z.6-姜酚 suppresses colon cancer growth by targeting leukotriene A4 hydrolase.Cancer Res.2009;69:5584-5591.
    6.孙永金,生姜药理作用研究进展.现代中西医结合杂志.2007:561-562.
    7.Uz E,Karatas OF,Mete E,Bayrak R,Bayrak O,Atmaca AF,Atis O,Yildirim ME,Akcay A.The effect of dietary ginger(Zingiber officinals Rosc) on renal ischemia/reperfusion injury in rat kidneys.Ren Fail.2009;31:251-260.
    8.胡炜彦,张荣平,唐丽萍,刘光,生姜化学和药理研究进展.中国民族民间医药.2008;17:10-14.
    9.Nicoll R,Henein MY.Ginger(Zingiber officinale Roscoe):a hot remedy for cardiovascular disease? Int J Cardiol.2009;131:408-409.
    10.Ali BH,Blunden G,Tanira MO,Nemmar A.Some phytochemical,pharmacological and toxicological properties of ginger(Zingiber officinale Roscoe):a review of recent research.Food Chem Toxicol.2008;46:409-420.
    11.卢传坚,欧明,王宁生,姜的化学成分分析研究概述.中药新药与临床药理.2003:14:215-217.
    12.何文珊,李琳,李炎,郭祀远,郭宝江,生姜不同有机溶剂提取物的GC-MS 分析.热带亚热带植物学报.2001;9:154-158.
    13.战琨友,王超,徐坤,尹洪宗,气相色谱-质谱技术分析姜油树脂中的挥发性及非挥发性成分.色谱.2008;26:692-696.
    14.李银塔,刘扬瑞,迟玉森,邵仁东,步营,李可伟,任召珍,王哲恩,于玲,超临界CO_2萃取生姜挥发油及GC-MS分析.食品研究与开发.2009;30:121-125.
    15.何文珊,严玉霞,生姜的化学成分及生物活性研究概况.中药材.2001;24:376-379.
    16.蒋苏贞,宓穗卿,王宁生,姜辣素的化学成分研究概述.中药新药与临床药理.2006;17:386-389.
    17.Jolad SD,Lantz RC,Solyom AM,Chen GJ,Bates RB,Timmermann BN.Fresh organically grown ginger(Zingiber officinale):composition and effects on LPS-induced PGE2 production.Phytochemistry.2004;65:1937-1954.
    18.Jolad SD,Lantz RC,Chen G J,Bates RB,Timmermann BN.Commercially processed dry ginger(Zingiber officinale):composition and effects on LP S-stimulated PGE2 production.Phytochemistry.20051;66:1614-1635.
    19.何文珊,郭宝江,魏孝义,李琳,郭祀远,李炎,生姜中一新的抗氧化二苯基环氧庚烷成分.植物学报.2001;43:757-759.
    20.Ma J,Jin X,Yang L,Liu ZL,Diarylheptanoids from the rhizomes of Zingiber officinale.Phytochemistry.2004;65:1137-1143.
    21.彭卫新,张阳德,杨科,肖业成,罗平产生姜的化学成分.云南植物研究.2007;29:125-128.
    22.宣伟东,卞俊,袁兵,钱晓蓉,李文辉,熊智,生姜化学成分的研究.中草药.2008;39:1616-1619.
    23.Wei QY,Ma JP,Cai YJ,Yang L,Liu ZL,Cytotoxic and apoptotic activities of diarylheptanoids and gingerol-related compounds from the rhizome of Chinese ginger.J Ethnopharmacol.2005;102:177-184.
    24.宋国新,邓春晖,吴丹,胡耀铭,固相微萃取-气相色谱/质谱分析生姜的挥发性成分.复旦学报(自然科学版).2003;42:939-943.
    25.刘源,徐幸莲,周光宏,顶空固相微萃取气质联用检测生生姜挥发性成分.中国调味品.2004;299:42-44.
    26.杨军,余德顺,代明权,超临界CO_2萃取不同部位生姜油的组成研究.2003;24:79-81.
    27.王维皓,王智民,徐丽珍,杨世林,HPLC法测定生姜中有效成分6-姜辣素的含量.中国中药杂志.2002;27:348-349.
    28.Rai S,Mukherjee K,Mal M,Wahile A,Saha BP,Mukherjee PK.Determination of 6-gingerol in ginger(Zingiber officinale) using high-performance thin-layer chromatography.J Sep Sci.2006;29:2292-2295.
    29.Lee S,Khoo C,Halstead CW,Huynh T,Bensoussan A.,Liquid chromatographic determination of 6-,8-,10-gingerol,and 6-Shogaol in ginger(Zingiber officinale) as the raw herb and dried aqueous extract.J AOAC Int.2007;90:1219-1226.
    30.Schwertner HA,Rios DC.High-performance liquid chromatographic analysis of 6-gingerol,8-gingerol,10-gingerol,and 6-Shogaol in ginger-containing dietary supplements,spices,teas,and beverages.J Chromatogr B.2007;856:41-47.
    31.吴冰,倪贺,李海航,李玲.固相萃取-HPLC法测定生生姜不同品种和器官中姜黄素含量.天然产物研究与开发.2008;20:859-862.
    32.王维皓,王智民,高慧敏,洪玉梅.干姜炮制品的质量研究.中国中药杂志.2009;34:564-566.
    33.宣伟东,卞俊,王朝武,袁兵,陈海飞,生姜中6-姜酚的提取方法比较及质量控制研究.解放军药学学报.2008;24:329-331.
    34.张丽,王智民,王维皓,高慧敏,作炮制辅料用姜汁的HPLC指纹图谱比较.中国中药杂志.2008;33:1010-1013.
    35.阎东海,生姜超临界提取物标准指纹图谱研究.中国中药杂志.2007;32:1525-1528.
    36.Bhattarai S,Tran VH,Duke CC.The stability of gingerols and Shogaols in aqueous solutions.J Pharm Sci.2001;90:1658-1664.
    37.Brandin H,Viitanen E,Myrberg O,Arvidsson AK.Effects of herbal medicinal products and food supplements on induction of CYP1A2,CYP3A4,and MDR1 in the human colon carcinoma cell line LS180.Phytother Res.2007;21:239-244.
    38.Raucy JL.Regulation of CYP3A4 expression in human hepatocytes by pharmaceuticals and natural products.Drug Metab Dispos.2003;31:533-539.
    39.Wang W,Li CY,Wen XD,Li P,Qi LW.Plasma pharmacokinetics,tissue distribution and excretion study of 6-gingerol in rat by liquid chromatography-electrospray ionization time-of-flight mass spectrometry.J Pharm Biomed Anal.2009;49:1070-1074.
    40.Ding GH,Naora K,Hayashibara M,Katagiri Y,Kano Y,Iwamoto K.Pharmacokinetics of[6]-gingerol aider intravenous administration in rats.Chem Pharm Bull(Tokyo).1991;39:1612-1614.
    41.Naora K,Ding G,Hayashibara M,Katagiri Y,Kano Y,Iwamoto K.Pharmacokinetics of[6]-gingerol after intravenous administration in rats with acute renal or hepatic failure.Chem Pharm Bull(Tokyo).1992;40:1295-1298.
    42.Bhattarai S,Tran VH,Duke CC.Stability of[6]-gingerol and 6-shogaol in simulated gastric and intestinal fluids.J Pharm Biomed Anal.2007;45:648-653.
    43.Pfeiffer E,Heuschmid FF,Kranz S,Metzler M.Microsomal hydroxylation and glucuronidation of[6]-gingerol.J Agric Food Chem.2006;54:8769-8774.
    44.Surh YJ,Lee SS.Enzymic reduction of[6]-gingerol,a major pungent principle of ginger,in the cell-free preparation of rat liver.Life Sci.1994;54:PL321-326.
    45.Zhang W,Lim LY.Effects of spice constituents on P-glycoprotein-mediated transport and CYP3A4-mediated metabolism in vitro.Drug Metab Dispos.2008;36:1283-1290.
    46.Surh Y J,Lee SS.Enzymatic reduction of xenobiotic alpha,beta-unsaturated ketones:formation of allyl alcohol metabolites from shogaol and dehydroparadol.Res Commun Chem Pathol Pharmacol.1994;84:53-61.
    47.Nakazawa T,Ohsawa K.Metabolism of[6]-gingerol in rats.Life Sci.2002;70:2165-2175.
    48.Wang W,Li CY,Wen XD,Li P,Qi LW.Simultaneous determination of 6-gingerol,8-gingerol,10-gingerol and 6-shogaol in rat plasma by liquid chromatography-mass spectrometry:Application to pharmacokinetics.J Chromatogr B.2009;877:671-679.
    49.Wang W,Li CY,Wen XD,Li P,Qi LW.Plasma pharmacokinetics,tissue distribution and excretion study of 6-gingerol in rat by liquid chromatography-electrospray ionization time-of-flight mass spectrometry.J Pharm Biomed Anal.2009;49:1070-1074.
    50.Jiang SZ,Wang NS,Mi SQ.Plasma pharmacokinetics and tissue distribution of [6]-gingerol in rats.Biopharm Drug Dispos.2008;29:529-537.
    51.Zick SM,Djuric Z,Ruffin MT,Litzinger AJ,Normolle DP,Alrawi S,Feng MR,Brenner DE.Pharmacokinetics of 6-gingerol,8-gingerol,10-gingerol,and 6-shogaol and conjugate metabolites in healthy human subjects.Cancer Epidemiol Biomarkers Prev.2008;17:1930-1936.
    1.Kikuzaki H,Tsai SM,Nakatani N.Gingerdiol related compounds from the rhizomes of Zingiber officinale.Phytochemistry.1992;31:1783-1786.
    2.Hori Y,Miura T,Hirai Y,Fukumura M,Nemoto Y,Toriizuka K and Ida Y.Pharmacognostic studies on ginger and related drugs--part 1:five sulfonated compounds from Zingiberis rhizome(Shokyo).Phytochemistry.2003;62:613-617.
    3.Flamme EM,Roush WR.Enantioselective synthesis of 1,5-anti- and 1,5-syn-diols using a highly diastereoselective one-pot double allylboration reaction sequence.J Am Chem Soc.2002;124:13644-13645.
    4.Flynn TM and Southwell IA.1,3-Dimethyl-2-oxabicyclo[2.2.2]-octane-3-methanol and 1,3-dimethyl-2-oxabicyclo[2.2.2]-octane-3-carboxylic acid,urinary metabolites of 1,8-cineole.Aust J Chem.1979;32:2093-2095.
    5.Carman RM,Klika KD.Partially racemic compounds as brushtail possum urinary metabolites.Aust J Chem.1992;45:651-657.
    6.Ma J,Jin X,Yang L,Liu Z.Diarylheptanoids from the rhizomes of Zingiber officinale.Phytochemistry.2004;65:1137-1143.
    7.He WS,Wei XY,Li L,Li Y,Guo SY,Guo BJ.A new antioxidant cyclic diarylheptanoid from the Rhizomes of Zingiber officinale.Acta Botanica Sin.2001;43:757-759.
    8.Kikuzaki H,Usuguchi J,Nakatani N.Constituents of.Zingiberaceae Ⅰ.Diarylheptanoid from the rhizomes of ginger.(Zingiber officinale Roscoe).Chem Pharm Bull (Tokyo).1991;39:120-122
    9.Endo K,Kanno E,Oshima Y.Structures of antifungal diarylheptenones,gingerenones A,B,C and isogingerenone B,isolated from the rhizomes of Zingiber officinale.Phytochemistry.1990;29:797-799.
    10.Huang QR,Iwamoto M,Aoki S,Tanaka N,Tajima K,Yamahara J,Takaishi Y,Yoshida M,Tomimatsu T,Tamai Y.Anti-5-hydroxytryptamine3 effect of galanolactone,diterpenoid isolated from ginger.Chem Pharm Bull(Tokyo).1991;39:397-399.
    11.Kiuchi F,Iwakami S,Shibuya M,Hanaoka F,Sankawa U.Inhibition of prostaglandin and leukotriene biosynthesis by gingerols and diarylheptanoids.Chem Pharm Bull(Tokyo).1992;40:387-391.
    12.Yoshikawa M,Yamaguchi S,Kunimi K,Matsuda H,Okuno Y,Yamahara J,Murakami N.Stomachic principles in ginger.Ⅲ.An anti-ulcer principle,6-gingesulfonic acid,and three monoacyldigalactosylglycerols,gingerglycolipids A,B, and C,from Zingiberis Rhizoma originating in Taiwan.Chem Pharm Bull(Tokyo).1994;42:1226-1230.
    13.Hori Y,MiuraT,Hirai Y,Fukumura M,Nemoto Y,Toriizuka K,Ida Y.Pharmacognostic studies on ginger and related drugs-part 1:five sulfonated compounds from Zingiberis rhizome(Shokyo).Phytochemistry.2003;62:613-617
    1.Ali BH,Blunden G,Tanira MO,Nemmar A.Some phytochemical,pharmacological and toxicological properties of ginger(Zingiber officinale Roscoe):a review of recent research.Food Chem Toxicol.2008;46:409-420.
    2.胡炜彦,张荣平,唐丽萍,刘光,生姜化学和药理研究进展.中国民族民间医药.2008;17:10-14.
    3.Kiuchi F,Iwakami S,Shibuya M,Hanaoka F,Sankawa U.Inhibition of prostaglandin and leukotriene biosynthesis by gingerols and diarylheptanoids.Chem Pharm Bull(Tokyo).1992;40:387-391.
    4.Endo K,Kanno E,Oshima Y.Structures of antifungal diarylheptenones,gingerenones A,B,C and isogingerenone B,isolated from the rhizomes of Zingiber officinale.Phytochemistry.1990;29:797-799.
    5.Jitoe A,Masuda T,Mabry TJ.Novel Antioxidants,Cassumunarin A,B,and.C,from.Zingiber cassumunar.Tetrahedron Lett.1994;35:981-984.
    6.Huang MT,Smart RC,Wong CQ,Conney AH.Inhibitory effect of curcumin,chlorogenic acid,cafleic acid,and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate.Cancer Res.1988;48:5941-5946.
    7.Mosmann,T.,Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays.J Immunol Methods.1983;65:55-63.
    8.Yang L,Gong J,Wang F,Zhang Y,Wang Y,Hao X,Wu X,Bai H,St(o|¨)ckigt J,Zhao Y.Synthesis and antioxidant evaluation of novel silybin analogues.J Enzym Inhib Med Chem,2006,21(4):399-404.
    9.Yang LX,Zhang L J,Huang KX,Kun Li X,Hu LH,Wang XY,Stockigt J,Zhao Y.Antioxidant and Neuroprotective effects of synthesized sintenin derivatives.J Enzym Inhib Med Chem,2009;24:425-431.
    10.Lee,S.E.,Ju,E.M.,Kim,J.H.Antioxidant activity of extracts from Euryale ferox seed,Exp Mol Med,2002;34:100-106.
    11.杨雷香,周长新,黄可新,宋丽艳,郑群雄,于荣敏,等.生姜中二苯庚烷类化合物的抗氧化和细胞毒活性研究.中国药学杂志2009;34:319-323.
    12.Chattaraj PK,Sarkar U,Roy DR.Electrophilicity Index.Chem Rev.2006;106:2065-2091.
    13.Ponti V,Dianzani MU,Cheeseman K,Slater TF.Studies on the reduction of nitroblue tetrazolium chloride mediated through the action of NADH and phenazine methosulphate. Chem-Biol Interact. 1978; 23: 281-291.
    
    14. Ponti V, Dianzani MU, Cheeseman K, Slater TF. Studies on the reduction of nitroblue tetrazolium chloride mediated through the action of NADH and phenazine methosulphate. Chem-Biol Interact. 1978; 23: 281-291.
    
    15. Zhou YC, Zheng RL. Phenolic compounds and an analog as Superoxide anion scavengers and antioxidants. Biochem Pharmacol. 1991; 42:1177-1179.
    
    16. Gebhardt R. Antioxidative and protective properties of extract from leaves of the artichoke (Cynara scolymnus L,) against hydro-peroxide-induced oxidative stress incultured rat hepatocytes. Toxicol Appl Pharmacol. 1997; 144:279-286.
    
    17. Lin WL, Wang CJ, Tsai YY, Liu CL, Hwang JM, Tseng TH. Inhibitory effect of esculetin on oxidative damage induced by t-butyl hydroperoxide in rat liver. Arch Toxicol 2000; 74: 467-72.
    
    18. Wang CJ, Wang JM, Lin WL, Chu CY, Chou FP, Tseng TH. Protective effect of Hibiscus anthocyanins against tert-butyl-hydroperoxide- induced hepatic toxicity in rats. Food Chem. Toxicol. 2000; 38: 411-416.
    
    19. Davis MJ. Detection of peroxyl and alkoxyl radicals produced by reaction of hydroperoxides with rat liver microsomal fractions. Biochem J. 1989;257:603-606.
    
    20. Minotti G, Borrello S, Palombini G, Galeotti T. Cytochrome P-450 deficiency and resistance to t-butyl hydroperoxide of hepatoma microsomal lipid peroxidation. Biochem Biophys Acta 1986;876:220-225.
    
    21. Masaki N, Kyle ME, Serroni A, Farber JL, Masaki N, Kyle ME, Serroni A, Farber JL. Mitochondrial damage as a mechanism of cell injury in the killing of cultured hepatocytes by tert-butyl hydroperoxide Arch. Biochem Biophys. 1989; 270:672-680.
    22.Martin C,Martinez R,Navarro R,Ruiz-Sanz JI,Lacort M,Ruiz-Larrea MB.tert-Butyl hydroperoxide-induced lipid signaling in hepatocytes:involvement of glutathione and free radicals.Biochem Pharmacol.2001;62:705-712.
    1,Flora K,Hahn M,Rosen H,Benner K.Milk thistle(Silybum marianum) for the therapy of liver disease.Am J Gastroenterol.1998;93:139-143.
    2,Saller R,Meier R,Brignoli R,The use of Silymarin in the treatment of liver disease.Drugs.2001;61:2035-2063.
    3,Venkataramanan R,Ramachandran V,Komoroski BJ,Zhang S,Schiff PL,Strom SC.Milk Thistle,a herbal supplement,decteases the activity of CYP3A4 and Uridine diphosphoglucuronosyl Transferase in human hepatocyte cultures.Drug Metab Dispos.2000;28:1270-1273.
    4,Zhao J,Agarwal R.Tissue distribution of silibinin,the major active constituent of silymarin,in mice and its association with enhancement of phase Ⅱ enzymes:implications in cancer chemoprevention.Carcinogenesis.1999;20;2101-2108.
    5,Schandalik R,Perucca E,Pharmacokinetic of silybin following oral administration of silipide in patients with extrahepatic biliary obstruction.Drug Exp Clin Res.1994;20:37-42.
    6,Barzaghi N,Crema F,Gatti G,Pifferi G,Perucca E.Pharmacokinetic studies on IdB 1016 a sylibin-phosphatidylcholine complex,in healthy human subjects,Eur J Drug Metab Pharmacokinet.1990;15:333-338.
    7,Lorenz D,L(u|¨)cker PW,Mennicke WH,Wetzelsberger N.Pharmacokinetic studies with silymarin in human serum and bile.Methods Find Exp Clin Pharmacol.1984;6:655-661.
    8,Kim YC,Kim EJ,Lee ED,Comparative bioavailability of silibinin in healthy male volunteers,Int J Clin Pharmacol Ther.2003;41:593-596.
    9,Cunaratna C,Zhang T,Application of liquid chromatography-electrospray ionization-ion trap mass spectrometry to investigate the metabolism of silibinin in human liver microsomes.J Chromatogr B.2003;794:303-310.
    10,Zuber R,Modriansky M,Dvorak Z,Rohovsky P,Ulrichova J,Simanek V,Anzenbacher P.Effect of silybin and its congeners on human liver microsomal cytochrome P450 activities.Phytother Res.2002;16:632-638.
    11,Weyhenmeyer R,Inhibitory effects of silibinin on cytochrome P450 enzymes in human liver microsomes.Pharmacol Toxicol.2000;86:250-256.
    12,Chrungoo VJ,Reen RK,Singh K,Singh J..Effects of silymarin on UDP-glucuronic acid and Glucuronidation activity in the rat isolated hepatocytes and liver in relation to D-galactosamine toxicity.Indian J Exp Biol.1997;35:256-263.
    13,Sridar C,Goosen TC,Kent UM,Williams JA,Hollenberg PF.Silybin inactivates cytochromes P450 3A4 and 2C9 and inhibits major hepatic glucuronosyltransferases.Drug Metab Dispos.2004;32:587-594.
    14,Zhang S,Morris ME.Effect of the Flavonoids Biochanin A and silymarin on the P-glycoprotein-Medidated transport of Dogoxin and Vinblastine in human intestinal caco-2 cells.Pharm Res.2003;20:1184-1191.
    1.GaZak R,Svobodova A,Psotova J,Sedmera P,Prikrylova V,Walterova D,Kren V.Oxidised derivatives of silybin and their antiradical and antioxidant activity.Bioorg Med Chem.2004;12:5677-5687.
    2.Yang LX,Zhang LJ,Huang KX,Kun Li X,Hu LH,Wang XY,Stockigt J,Zhao Y.Antioxidant and Neuroprotective effects of synthesized sintenin derivatives.J Enzym Inhib Med Chem.2009;24:425-431.
    3.Trouillas P,Marsal P,Svobodova A,Vostalovaa J,GaZak R,Hrbac J,Sedmera P,Kren V,Lazzaroni R,Duroux JL,Walterowa D.Mechanism of the antioxidant action of silybin and 2,3-dehydrosilybin flavonolignans:a joint experimental and theoretical study.J Phys Chem A.2008;112:1054-1063.
    4.Seyedi SM,Jafari Z,Attaran N,Sadeghian H,Saberi MR,Riazi MM.Design,synthesis and SAR studies of 4-allyoxyaniline amides as potent 15-lipoxygensae inhibitors.Bioorg Med Chem.2009;17:1614-1622.
    5.Konya K,Varga Zs,Antus S.Antioxidant properties of 8-O-4'-neolignans.Phytomedicine 2001;8:454-459.
    6.Joubert E,Winterton P,Britz TJ.Ferreira,D.Superoxide anion and α,α-diphenyl-β-picrylhydrazyl radical scavenging capacity of rooibos(Aspalathus linearis) aqueous extracts,crude phenolic fractions,tannin and flavonoids.Food Res Int.2004;37:133-138.
    7.Miranda CL,Stevens JF,Ivanov V,McCall M,Frei B,Deinzer ML,Buhler DR.Antioxidant and prooxidant actions of prenylated and nonprenylated chalcones and flavanones in vitro.J Agric Food Chem.2000;48:3876-3884.
    8.Nordberg J,Arner ESJ.Reactive oxygen species,antioxidans,and the mammalian thioredoxin system.Free Radic Biol Med.2001;31:1287-1312.
    9.Mukherjee S,Kumar V,Prasad AK,Raj HG,Bracke ME,Olsen CE,Jain SC,Parmar VS.Synthetic and biological activity evaluation studies on novel 1,3-diarylpropenones.Bioorg Med Chem.2001;9:337-345.
    10.van Acker FA,Hageman JA,H(a|¨)nen GR,van Der Vijgh WJ,Bast A,Menge WM.Synthesis of novel 3,7-substituted-2-(3′,4′-dihydroxyphenyl)flavones with improved antioxidant activity.J Med Chem.2000;43:3752-3760.
    11. Bennett CJ, Caldwell ST, McPhail DB, Morrice PC, Duthie GG, Hartley RC. Potential therapeutic antioxidants that combine the radical scavenging ability of myricetin and the lipophilic chain of vitamin E to effectively inhibit microsomal lipid peroxidation. Bioorg Med Chem. 2004; 12: 2079-2098.
    
    12. Seyedi SM, Jafari Z, Attaran N, Sadeghian H, Saberi MR, Riazi MM. Design, synthesis and SAR studies of 4-allyoxyaniline amides as potent 15-lipoxygensae inhibitors. Bioorg Med Chem. 2009;17:1614-1622.
    
    13. Takahashi K, Kunishiro K, Kasai M, Miike T, Kurahashi K, Shirahase H. Relationships between lipophilicity and biological activities in a series of indoline-based anti-oxidative acyl-CoA: cholesterol acyltransferase (ACAT) inhibitors. Arzneimittelforschung. 2008;58: 666-672.
    
    14. Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science. 1993; 262: 689-695.
    
    15. Leopoldini M, Russo N, Chiodo S, Toscano M. Iron chelation by the powerful antioxidant flavonoid quercetin. J Agric Food Chem. 2006; 54: 6343-6351.
    
    16. Borsari M, Gabbi C, Ghelfi F, Grandi R, Saladini M, Severi S, Borella F. Silybin, a new iron-chelating agent. J Inorg Biochem. 2001; 85: 123-129.
    
    17. Yermolaieva O, Xu R, Schinstock C, Brot N, Weissbach H, Heinemann S, Hoshi T. Methionine sulfoxide reductase A protects neuronal cells against brief hypoxia/reoxygenation. Proc Nat. Acad Sci USA 2004; 101: 1159-1164.
    
    18. van de Waterbeemd H, Kansy M. Hydrogen-bonding capacity and brain penetration. Chimia 1992; 46: 299-305
    
    19. Youdim KA, Dobbie MS, Kuhnle G, Proteggente AR, Abbott NJ, Rice-Evans CJ. Interaction between flavonoids and the blood-brain barrier: in vitro studies. Neurochem.2003;85:180-192.
    20.Ochiai T,Takenaka Y,Kuramoto Y,Kasuya M,Fukuda K,Kimura M,Shimeno H,Misasi R,Hiraiwa M,Soeda S.Molecular mechanism for neuro-protective effect of prosaposin against oxidative stress:its regulation of dimeric transcription factor formation.Biochim.Biophys Acta.2008;1780:1441-1447.
    21.Williams RJ,Spencer JP,Rice-Evans C.Flavonoids:antioxidants or signalling molecules? Free Radic Biol Med.2004;36:838-849.