一种新的人NK细胞系的特性及其抗肿瘤效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然杀伤细胞(Natural killer cell, NK细胞)作为固有免疫系统的重要成员在机体抗肿瘤免疫中扮演重要的角色。使用NK细胞进行抗肿瘤治疗已引起人们高度的重视,目前已有研究进入了临床实验阶段。基于NK细胞的肿瘤免疫治疗包括内源性NK细胞的诱导活化、同种反应性NK细胞输注、体外扩增的自体或供者NK细胞及NK细胞系的过继转输等。相比较而言,自体或同种异体NK细胞在进行抗瘤治疗时存在一定的局限性,而永生化的人NK细胞系因具有较强的细胞毒作用、体外易扩增培养、且不存在其他细胞污染等优点,可以克服自体或异体NK细胞的局限性,具有很好的临床应用前景。现有可用于肿瘤治疗的NK细胞系(NK-92细胞)由西方国家建立,尽管HLA分子不匹配是NK细胞行驶功能的有益因素,但是由于不同种族间HLA分子的差异很可能在受者体内产生抗HLA的抗体从而抑制免疫治疗的效果,故西方国家建立的NK细胞系可能不适合用于中国肿瘤病人的治疗。因此,建立国人的NK细胞系并将其用于肿瘤治疗尤为重要。
     另外,肿瘤的诊断及分期对于临床治疗方案的制定至关重要。肺癌作为恶性肿瘤中最常见的死亡原因,严重威胁人类的健康。肺癌的高转移率和复发率严重阻碍肺癌患者生存期的提高,寻找用于循环肿瘤细胞监测的标志物并建立合适的检测方法成为亟需解决的问题。
     本研究利用流式细胞术对本室已建立的人NK细胞系(NKG细胞)的表型、活化状态及功能分子的表达进行分析;利用3H掺入实验测定不同剂量辐照后NKG细胞的增殖情况;利用51Cr杀伤实验测定NKG细胞的细胞毒活性;建立人卵巢癌裸鼠腹水瘤模型评价NKG细胞的体内抗肿瘤活性;利用波浪式生物反应器建立NKG细胞大规模培养的工艺流程,建立NKG细胞主细胞库和工作细胞库,并按《药典》三部(2005年版)的相关要求进行了细胞鉴别试验、无菌试验、外源性因子检测、致瘤性检查及急性毒性试验。另外,应用实时荧光定量PCR的方法检测LunX等多种肿瘤标志物mRNA的水平,分析LunX mRNA与肺癌病理分期及临床治疗效果之间的关系。利用上述方法所取得的研究结果如下:
     1.NKG细胞表型及功能分子的表达
     NKG细胞是本研究室863课题组于2003年建立的永生化的人NK细胞株。NKG细胞悬浮生长,成团细胞较多,倍增时间为2-3天。NKG细胞的表型鉴定为CD56+CD 16-CD27- CD3-αβTCR-γδTCR- CD4- CD8- CD 19- CD 161- CD45+。NKG细胞表面表达高水平CD2、CD58、CD11a、CD54、CD11b及CD11c等粘附分子;高表达共刺激分子CD48。NKG细胞表面表达抑制性受体CD94/NKG2A、CD158b和CD85j,同时亦表达高水平NKp30、NKp44、NKp46、NKG2D和NKG2C等活化性受体。另外,与细胞杀伤功能相关的TRAIL、FasL、granzyme B、perforin和IFN-γ等均在NKG细胞中表达。上述结果表明,NKG细胞具有活化性NK细胞的特征。
     2.NKG细胞的抗肿瘤细胞毒活性及其分子机制
     NKG细胞对多种肿瘤细胞系均有较强的杀伤活性,尤其是对SGC7901和Ho-8910细胞的杀伤活性>80%(E/T=20/1)。NKG细胞对Ho-8910细胞的杀伤活性明显高于NK-92、NKL及YT细胞。体外抗体阻断及中和实验表明NKG细胞的细胞毒活性主要依赖于NKG2D和NKp30识别机制。当γ辐照剂量达800cGy时,辐照后的NKG细胞失去增殖能力,但在48小时内维持其对肿瘤细胞的杀伤活性。体外实验进一步证明800cGy辐照后的NKG细胞对原代分离的人卵巢癌细胞具有较强的杀伤活性(75%-45%,E/T=20/1)。
     3.人卵巢癌小鼠模型中NKG细胞的免疫治疗作用
     利用Ho-8910细胞以腹腔注射的方式接种裸鼠,成功建立人卵巢癌裸鼠腹水瘤模型。当将800cGy辐照后的NKG细胞与Ho-8910细胞按5:1混合后接种裸鼠,结果显示小鼠成瘤时间由28~44天延迟至90~135天,成瘤率由100%明显降低至50%。NKG细胞治疗组小鼠腹围明显减少,尽管在观察时间内50%小鼠死亡,但其平均生存时间由61.5天明显延长至210.2天。以上结果表明NKG细胞在小鼠体内对人卵巢癌细胞具有明显的杀伤功能。
     当在Ho-8910细胞接种后第21天,给予800cGy辐照后的NKG细胞进行治疗,结果表明治疗组小鼠成瘤时间由28~38天延后至56~66天,小鼠成瘤率由100%降低至62.5%,成瘤鼠病情进展较缓慢,平均生存时间由64.6天延长至119.6天。当在Ho-8910细胞接种后第35天选择已成瘤小鼠,给予800cGy辐照后的NKG细胞进行治疗,结果表明治疗后小鼠腹围变化较对照组明显减慢,尽管最终治疗组小鼠亦全部死亡,但其平均生存时间由64.2天明显延长至93.6天。上述动物模型的结果表明,辐照后NKG细胞具有明显的治疗卵巢癌的作用。
     4.NKG细胞大规模培养工艺的建立
     利用波浪式生物反应器建立NKG细胞大规模连续培养的工艺流程,具体流程如下:接种密度:2.0×104cells/ml;培养基:a-MEM完全培养基(a-MEM液体培养基含10%新生牛血清、10%马血清),添加终浓度为100U/ml的rhIL-2;接种体积:500ml,分别于接种后2、4、6天补加500ml完全培养基及rhIL-2溶液(终浓度为100U/ml);最大培养体积:<2000ml。培养条件:37℃,5.0%C02,C02流速为0.15L/min,7rpm/7。。按照该工艺流程培养得到的NKG细胞数量、纯度及杀伤活性等均可满足临床治疗的要求。
     5.NKG细胞急性毒性检测
     使用高于临床使用剂量150倍的NKG细胞(1×108cells/鼠),经800cGy辐照后通过腹腔注射的方式输入C57BL/6小鼠体内,连续观察7天,三批小鼠均为未发生毒性反应、过敏反应、局部刺激反应;实验组及对照组小鼠体重增加平稳,小鼠体重及体重增加量两组之间均无显著性差异,说明NKG细胞无急性毒性作用。
     6.NKG细胞种子库的建立及检定
     利用本研究建立的NKG细胞大规模培养工艺,建立主细胞库及工作细胞库。对工作细胞库的检定结果表明,NKG细胞的表型与原始库一致,无细菌、真菌及支原体污染,外源性病毒因子检测为阴性,体内外均无致瘤性。
     7. LunX mRNA在非小细胞肺癌转移早期诊断及疗效评价中的作用
     利用实时荧光定量RT-PCR方法检测肺癌患者、健康人、肺炎患者及其他肿瘤患者(包括乳腺癌和食道癌)的外周血或胸水样品中LunX、CEA、CK19、VEGF-c、hRNP A2/B1等肿瘤标志物nRNA的水平,结果表明LunX mRNA仅在非小细胞肺癌患者的外周血(75.0%,33/44)及胸水(92.9%,13/14)中有表达,而在健康人、肺炎、其他上皮来源的肿瘤患者外周血及结核性胸膜炎胸水中均无表达,明显优于其他各种标志物,而且外周血中LunX mRNA的水平及其阳性率与肺癌的临床分期成正相关。进一步对非小细胞肺癌患者治疗前后外周血中上述基因mRNA的表达情况进行检测分析,结果表明治疗后患者外周血中LunX、CK19 mRNA水平较治疗前明显降低,治疗前后VEGF-C、CEA、hnRNP A2/B1 mRNA表达水平无明显差异。LunX与CK19 mRNA均可作为疗效评价的指标,但因CK19mRNA在其他肿瘤患者外周血中亦有表达,故LunX mRNA作为肺痛患者治疗效果评价的指标更为灵敏和特异。
     结论:
     NKG细胞具有活化的人NK细胞特征,对多种肿瘤细胞具有很强的细胞毒作用。利用人卵巢癌裸鼠腹水瘤模型证明NKG细胞具有明显的抗肿瘤效应,特别是对晚期肿瘤亦具有明显的治疗效果。NKG细胞的应用将可能成为一种新的肿瘤免疫治疗方法。在此基础上,建立了体外大规模扩增NKG细胞的工艺流程,并建立了合格的主细胞库和工作细胞库,为NKG细胞用于临床的肿瘤治疗奠定了基础。此外,本研究证实检测外周血及胸水中LunX mRNA表达水平将在非小细胞肺癌转移早期诊断及治疗效果评价中具有重要作用。
Natural killer (NK) cells as part of the innate immune system are important players in the first line of defense against malignancies. The use of NK cells in immunotherapy of human cancers has been proposed and more recently trailed in a clinical context. NK cell-based cellular immunotherapy includes activation of endogenous NK cells, alloreactive NK cells, adoptive transfer of ex vivo expanded autologous NK cells or donor-derived NK cells, and adoptive transfer of NK cell line. By comparison, there are some limitations as to the efficacy of the reinfusion of ex vivo expanded autologous or allogeneic NK cells. Clinical use of human permanent NK cell lines would overcome some of the limitations, which are more cytotoxic and can be easily expanded and maintained in vitro without contamination by other lymphocytes. Until now, NK-92 is the only NK cell line that has entered clinical trials and proved to be safe and has generated anti-tumor effects. However, it was proposed that the NK cell line established in Western countries such as NK-92 might not be suitable for Chinese patients. Missing expression of donor KIR ligand(s) (HLA) in the recipient induces the function of NK cells, which would be a possible beneficial effector for the NK cell line immunotherapy; but the significant differences in HLA molecules among the races might induce HLA-antibodies in the recipient to inhibit the immune effects. So, it is important to use a NK cell line established in China for Chinese cancer patients.
     In addition, tumor diagnosis and staging is critical to the clinical decision-making for tumor therapy. Lung cancer as one of the leading causes of cancer death has increasingly been an urgent problem in the world, with high frequency of tumor metastases and recurrence. Development of sensitive and specific detection methods for circulating cancer cells in peripheral blood may have important implications.
     In this study, flow cytometry analysis was used to determine the phenotypical and functional characteristics of a new huaman NK cell line NKG cells. [3H] thymidine riboside incorporation was used for proliferation assay of irradiated NKG cells. Cytotoxicity assay (4 h 51Cr release) was used to detect the anti-tumor activity of NKG cells. Immunotherapy of human ovarian cancer with irradiated NKG cells was determined in xenograft mouse model. By the WAVE Bioreactor, the large-scale NKG cell culture procedure was established, and then master cell bank and working cell bank were established. The cell identification test, sterility test, exogenous factor detection, tumorigenicity and acute toxicity test were done according to (partⅢ,2005 version). Additionally, quantitative real-time RT-PCR was used to evaluate the molecular markers including LunX mRNA et al. for their specificity for lung cancer clinically. Our major findings are shown as followed:
     1. Phenotypical and functional characteristics of NKG cell
     NKG cell is a permanent NK cell line established by the 863 research group of Tian's lab in 2003. NKG cells as suspension cells grew with cell aggregator forming potential, and expanded for one generation in 2-3 days. The NKG cells were phenotypically identified as CD56+CD16-CD27-CD3-αβTCR-γδTCR-CD4-CD8-CD19-CD161-CD45+, and with high levels of adhesive molecules (CD2, CD58, CD11a, CD54, CD11b, CD11c) and co-stimulatory receptor CD48, an array of activating receptors (NKp30, NKp44, NKp46, NKG2D, NKG2C) and cytolysis-related receptors and molecules (TRAIL, FasL, granzyme B, perforin, IFN-y), although inhibitory receptors including CD94/NKG2A, CD158b and CD85j were detected. NKG cells displayed characteristics of activated NK cells.
     2. The anti-tumor activity and its molecular mechanisms of NKG cell
     NKG cells showed high cytotoxicity to several kinds of tumor cells. In particular, the cytotoxicity against the Ho-8910 and SGC7901 cells was more than 80% at the E/T ratio of 20/1. Compared with NK-92, NKL and YT cells, NKG cells were the most cytotoxic against Ho-8910 cells. High cytotoxicity of NKG cells was absolutely dependent on the recognition of NKG2D and NKp30. Irradiated at the dose up to 8 Gy, NKG cells were still with high cytotoxicity against tumor cells in 48 h, but not with proliferation. Further, the irradiated-NKG cells were demonstrated with strong cytotoxicity (75%-45%, E/T=20/1) against human primary ovarian cancer cells in vitro.
     3. Immunotherapy of human ovarian cancer with irradiated NKG cells in xenograft mouse model
     Ho-8910 cells were injected i.p into the nude mice to establish human ovarian tumor model. When the irradiated NKG cells were adoptively transferred into the mice together with Ho-8910 cells with ratio of 5/1, the tumorgenesis (%) was significantly decreased from 100%to 50%, and the palpable tumor developed time was delayed from 28~44 days to 90~135 days, the abdomen circumference (AC) was significantly decreased. Although 50% mice with NKG cell treatment were dead with tumor progress, the mean survival time was obviously prolonged from 61.5 to 210.2 days. These results demonstrated that the irradiated NKG cells owned the high cytotoxicity against the ovarian tumor cells in vivo.
     After the mice were challenged with Ho-8910 cells for 21 days, NKG cell treatment could significantly inhibit the tumorgenesis (from 100% to 62.5%) with the delayed time of palpable tumor development (from 28~38 days to 56~66 days). The severity of ovarian cancer was attenuated as indicated by the significantly decreased AC. The mean survival time was obviously prolonged from 64.6 to119.6 days. Further, after 35 days of Ho-8910 cell challenge, the mice with palpable tumor were selected for NKG cell treatment, which could also attenuate the severity of ovarian cancer, shown by the decreased AC in the early stage of treatment and obviously prolonged mean survival time (from 64.2 to 93.6 days) although all the mice were dead with tumor progress ultimately. These results demonstrate the immunotherapy of human ovarian cancer with irradiated NKG cells.
     4. Establishment of the large-scale NKG cell culture procedure
     By the WAVE Bioreactor, the large-scale NKG cell culture procedure was established. Inoculation density:2.0×104cells/ml; culture medium:a-MEM complete medium (a-MEM medium contain 10% new-born calf serum and 10% horse serum) with100U/ml rhIL-2; Inoculation volume:500ml, and 500ml complete medium containing rhIL-2 (final concentration 100U/ml) were added at 2,4 and 6 days of cell inoculation respectively. Max culture volume was less than 2000ml. Culture condition was 37℃,5.0% CO2 with flow rate of 0.15L/min,7rpm/7°. The number, purity and activity of the NKG cells cultured by this procedure well meet the clinical requirements.
     5. Acute toxicity test of NKG cell
     The C57BL/6 mice were i.p. injected 800cGy irradiated NKG cells at a dose of 150 fold of clinical application (1x108cells/mouse). No toxic reaction, allergic reaction and local stimulation reaction was observed in successive 7 days after NKG cell transfer. There is no significance difference in the body weight between the NKG cell transferred group and control group. NKG cells were demonstrated with no acute toxicity.
     6. NKG cell banks:the establishment and identification
     The master cell bank and working cell bank were established by the large-scale NKG cell culture procedure. The biological assay of the working cell bank indicated that the NKG cell phenotype is identical to the primary seed cells, and with no bacterial, fungus and mycoplasma contamination, no exogenous virokine and no tumorigenicity in vitro and in vivo.
     7. Diagnostic utility of LunX mRNA in early micrometastasis and therapeutic assessment for patients with primary non-small cell lung cancer
     Quantitative real-time RT-PCR was used to determine LunX, CK19, CEA, VEGF-C and hnRNP A2/B1 mRNA levels in peripheral blood and pleural fluid from NSCLC patients, compared with those from patients with other epithelial cancer (esophagus cancer and breast cancer), benign lung disease (pneumonia and tuberculo pleurisy) and from healthy volunteers. In peripheral blood LunX mRNA was detectable in 75.0%(33/44) of patients with NSCLC, but not in patients with other epithelial cancer, benign lung disease or in healthy volunteers. In contrast, all other genetic markers were detected in patients with either NSCLC, other epithelia cancer or benign lung disease, and in healthy volunteers. Furthermore, LunX mRNA was detected in 92.9%(13/14) of malignant pleural fluid samples and was the only marker whose expression level was significantly different between malignant and benign pleural fluid. The expression level and positive rate of LunX mRNA in peripheral blood correlated with the pathologic stage of NSCLC. Additionally, expression of LunX mRNA and CK19 mRNA in the peripheral blood of NSCLC patients decreased shortly after clinical treatment. As for the expression of CK19 mRNA in the peripheral blood from the other epithelia cancer patients, LunX mRNA is the most specific gene marker for lung cancer and has potential diagnostic utility when measured in the peripheral blood and pleural fluid of NSCLC patients.
     Conclusion:
     With the characteristics of activated NK cells, NKG cells were highly cytotoxic against a series of tumor cell lines. Immunotherapy of human ovarian cancer with irradiated NKG cells was firstly demonstrated in xenograft mouse model, even for the ovarian tumor in the advance stage. Use of the NKG cell line would represent a novel immunotherapy for the treatment of human cancer in clinic. The master cell bank and working cell bank were established by the established large-scale NKG cell culture procedure, which was the base for its clinical use. Additionally, it was demonstrated that LunX mRNA is the most specific gene marker for lung cancer and has potential diagnostic utility in early micrometastasis and therapeutic assessment when measured in the peripheral blood and pleural fluid of NSCLC patients.
引文
Akutsu, Y., T. Nakayama, et al. (2002). "Expansion of lung V alpha 14 NKT cells by administration of alpha-galactosylceramide-pulsed dendritic cells." Jpn J Cancer Res 93(4):397-403.
    Alexander, R. B. and S. A. Rosenberg (1990). "Long-term survival of adoptively transferred tumor-infiltrating lymphocytes in mice." J Immunol 145(5):1615-20.
    Arai, S., R. Meagher, et al. (2008). "Infusion of the allogeneic cell line NK-92 in patients with advanced renal cell cancer or melanoma:a phase I trial." Cytotherapy 10(6):625-32.
    Azuma, T., T. Takahashi, et al. (2003). "Human CD4+CD25+regulatory T cells suppress NKT cell functions." Cancer Res 63(15):4516-20.
    Bauernhofer, T., I. Kuss, et al. (2003). "Preferential apoptosis of CD56dim natural killer cell subset in patients with cancer." Eur J Immunol 33(1):119-24.
    Becker, Y. (1993). "Dendritic cell activity against primary tumors:an overview." In Vivo 7(3): 187-91.
    Beetz, S., L. Marischen, et al. (2007). "Human gamma delta T cells:candidates for the development of immunotherapeutic strategies." Immunol Res 37(2):97-111.
    Bennett, M. W., J. O'Connell, et al. (1998). "The Fas counterattack in vivo:apoptotic depletion of tumor-infiltrating lymphocytes associated with Fas ligand expression by human esophageal carcinoma." J Immunol 160(11):5669-75.
    Berezhnaya, N. M., Y. D. Vinnichuk, et al. (2008). "The use of doxorubicine at low doses for elevation of LAK-activity toward explants and cells of MC-rhabdomyosarcoma and B16 melanoma resistant to doxorubicin." Exp Oncol 30(1):52-5.
    Berry, L. J., M. Moeller, et al. (2009). "Adoptive immunotherapy for cancer:the next generation of gene-engineered immune cells." Tissue Antigens 74(4):277-89.
    Bevan, M. J. (2004). "Helping the CD8(+) T-cell response." Nat Rev Immunol 4(8):595-602.
    Blaese, R. M., K. W. Culver, et al. (1995). "T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years." Science 270(5235):475-80.
    Bolovan-Fritts, C. A. and S. A. Spector (2008). "Endothelial damage from cytomegalovirus-specific host immune response can be prevented by targeted disruption of fractalkine-CX3CR1 interaction." Blood 111(1):175-82.
    Boonman, Z. F., G. J. van Mierlo, et al. (2005). "Maintenance of immune tolerance depends on normal tissue homeostasis." J Immunol 175(7):4247-54.
    Borghaei, H., M. R. Smith, et al. (2009). "Immunotherapy of cancer." Eur J Pharmacol 625(1-3): 41-54.
    Bottino, C., R. Castriconi, et al. (2005). "Cellular ligands of activating NK receptors." Trends Immunol 26(4):221-6.
    Bourgeois, C., H. Veiga-Fernandes, et al. (2002). "CD8 lethargy in the absence of CD4 help." Eur J Immunol 32(8):2199-207.
    Brossay, L., M. Chioda, et al. (1998). "CD Id-mediated recognition of an alpha-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution." J Exp Med 188(8):1521-8.
    Bruenke, J., K. Barbin, et al. (2005). "Effective lysis of lymphoma cells with a stabilised bispecific single-chain Fv antibody against CD 19 and FcgammaRⅢ (CD 16)." Br J Haematol 130(2):218-28.
    Bryceson, Y. T., M. E. March, et al. (2006). "Activation, coactivation, and costimulation of resting human natural killer cells." Immunol Rev 214:73-91.
    Buggins, A. G., W. J. Hirst, et al. (1998). "Variable expression of CD3-zeta and associated protein tyrosine kinases in lymphocytes from patients with myeloid malignancies." Br J Haematol 100(4):784-92.
    Burns, L. J., D. J. Weisdorf, et al. (2003). "IL-2-based immunotherapy after autologous transplantation for lymphoma and breast cancer induces immune activation and cytokine release:a phase I/II trial." Bone Marrow Transplant 32(2):177-86.
    Capobianco, A., A. A. Manfredi, et al. (2008). "Melanoma and lymphoma rejection associated with eosinophil infiltration upon intratumoral injection of dendritic and NK/LAK cells." J Immunother 31(5):458-65.
    Carrega, P., B. Morandi, et al. (2008). "Natural killer cells infiltrating human nonsmall-cell lung cancer are enriched in CD56 bright CD16(-) cells and display an impaired capability to kill tumor cells." Cancer 112(4):863-75.
    Castriconi, R., A. Dondero, et al. (2004). "Natural killer cell-mediated killing of freshly isolated neuroblastoma cells:critical role of DNAX accessory molecule-1-poliovirus receptor interaction." Cancer Res 64(24):9180-4.
    Chang, W. C., Y. Fujimiya, et al. (1989). "Natural killer cell immunodeficiency in patients with chronic myelogenous leukemia. III. Defective interleukin-2 production by T-helper and natural killer cells." Int J Cancer 43(4):591-7.
    Cooper, M. A., T. A. Fehniger, et al. (2001). "The biology of human natural killer-cell subsets." Trends Immunol 22(11):633-40.
    Costello, R. T., S. Sivori, et al. (2002). "Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia." Blood 99(10): 3661-7.
    Dannull, J., Z. Su, et al. (2005). "Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells." J Clin Invest 115(12):3623-33.
    Degli-Esposti, M. A. and M. J. Smyth (2005). "Close encounters of different kinds:dendritic cells and NK cells take centre stage." Nat Rev Immunol 5(2):112-24.
    den Boer, A. T., G. J. van Mierlo, et al. (2005). "CD4+T cells are able to promote tumor growth through inhibition of tumor-specific CD8+T-cell responses in tumor-bearing hosts." Cancer Res 65(15):6984-9.
    Dhodapkar, M. V., K. M. Dhodapkar, et al. (2008). "Interactions of tumor cells with dendritic cells:balancing immunity and tolerance." Cell Death Differ 15(1):39-50.
    Di Santo, J. P. (2006). "Natural killer cell developmental pathways:a question of balance." Annu Rev Immunol 24:257-86.
    Dreno, B., J. M. Nguyen, et al. (2002). "Randomized trial of adoptive transfer of melanoma tumor-infiltrating lymphocytes as adjuvant therapy for stage Ⅲ melanoma." Cancer Immunol Immunother 51(10):539-46.
    Dudley, M. E., J. R. Wunderlich, et al. (2002). "Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes." Science 298(5594):850-4.
    Dudley, M. E., J. R. Wunderlich, et al. (2003). "Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients." J Immunother 26(4): 332-42.
    Dudley, M. E., J. R. Wunderlich, et al. (2005). "Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma." J Clin Oncol 23(10):2346-57.
    Dudley, M. E., J. C. Yang, et al. (2008). "Adoptive cell therapy for patients with metastatic melanoma:evaluation of intensive myeloablative chemoradiation preparative regimens." J Clin Oncol 26(32):5233-9.
    Farag, S. S. and M. A. Caligiuri (2004). "Cytokine modulation of the innate immune system in the treatment of leukemia and lymphoma." Adv Pharmacol 51:295-318.
    Farag, S. S. and M. A. Caligiuri (2006). "Human natural killer cell development and biology." Blood Rev 20(3):123-37.
    Farag, S. S., T. A. Fehniger, et al. (2002). "Natural killer cell receptors:new biology and insights into the graft-versus-leukemia effect." Blood 100(6):1935-47.
    Figlin, R. A., J. A. Thompson, et al. (1999). "Multicenter, randomized, phase III trial of CD8(+) tumor-infiltrating lymphocytes in combination with recombinant interleukin-2 in metastatic renal cell carcinoma." J Clin Oncol 17(8):2521-9.
    Frassanito, M. A., F. Silvestris, et al. (1997). "IgG M-components in active myeloma patients induce a down-regulation of natural killer cell activity." Int J Clin Lab Res 27(1):48-54.
    Fujii, S., K. Shimizu, et al. (2007). "Innate Valphal4(+) natural killer T cells mature dendritic cells, leading to strong adaptive immunity." Immunol Rev 220:183-98.
    Fujii, S., K. Shimizu, et al. (2003). "Detection and activation of human Valpha24+natural killer T cells using alpha-galactosyl ceramide-pulsed dendritic cells." J Immunol Methods 272(1-2):147-59.
    Gabrilovich, D. (2004). "Mechanisms and functional significance of tumour-induced dendritic-cell defects." Nat Rev Immunol 4(12):941-52.
    Galon, J., A. Costes, et al. (2006). "Type, density, and location of immune cells within human colorectal tumors predict clinical outcome." Science 313(5795):1960-4.
    Gasser, S., S. Orsulic, et al. (2005). "The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor." Nature 436(7054):1186-90.
    Gasser, S. and D. Raulet (2006). "The DNA damage response, immunity and cancer." Semin Cancer Biol 16(5):344-7.
    Gattinoni, L., D. J. Powell, Jr., et al. (2006). "Adoptive immunotherapy for cancer:building on success." Nat Rev Immunol 6(5):383-93.
    Ghiringhelli, F., C. Menard, et al. (2005). "CD4+CD25+regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner." J Exp Med 202(8):1075-85.
    Gilboa, E. (1999). "The makings of a tumor rejection antigen." Immunity 11(3):263-70.
    Gonzalez, S., V. Groh, et al. (2006). "Immunobiology of human NKG2D and its ligands." Curr Top Microbiol Immunol 298:121-38.
    Grimm, E. A., A. Mazumder, et al. (1982). "Lymphokine-activated killer cell phenomenon. Lysis of natural killer-resistant fresh solid tumor cells by interleukin 2-activated autologous human peripheral blood lymphocytes." J Exp Med 155(6):1823-41.
    Gross, S., A. Geldmacher, et al. (2009). "Immunosuppressive mechanisms in cancer: consequences for the development of therapeutic vaccines." Vaccine 27(25-26): 3398-400.
    Guimaraes, F., H. Guven, et al. (2006). "Evaluation of ex vivo expanded human NK cells on antileukemia activity in SCID-beige mice." Leukemia 20(5):833-9.
    Gumperz, J. E., S. Miyake, et al. (2002). "Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining." J Exp Med 195(5):625-36.
    Gyorffy, S., J. C. Rodriguez-Lecompte, et al. (2005). "Bone marrow-derived dendritic cell vaccination of dogs with naturally occurring melanoma by using human gp100 antigen." J Vet Intern Med 19(1):56-63.
    Hartmann, F., C. Renner, et al. (2001). "Anti-CD 16/CD30 bispecific antibody treatment for Hodgkin's disease:role of infusion schedule and costimulation with cytokines." Clin Cancer Res 7(7):1873-81.
    Hayakawa, Y., V. Screpanti, et al. (2004). "NK ceil TRAIL eliminates immature dendritic cells in vivo and limits dendritic cell vaccination efficacy." J Immunol 172(1):123-9.
    Healy, C. G., J. W. Simons, et al. (1998). "Impaired expression and function of signal-transducing zeta chains in peripheral T cells and natural killer cells in patients with prostate cancer." Cytometry 32(2):109-19.
    Heller, K. N., C. Gurer, et al. (2006). "Virus-specific CD4+T cells:ready for direct attack." J Exp Med 203(4):805-8.
    Ho, W. Y., J. N. Blattman, et al. (2003). "Adoptive immunotherapy:engineering T cell responses as biologic weapons for tumor mass destruction." Cancer Cell 3(5):431-7.
    Hunder, N. N., H. Wallen, et al. (2008). "Treatment of metastatic melanoma with autologous CD4+T cells against NY-ESO-1." N Engl J Med 358(25):2698-703.
    Huntington, N. D., C. A. Vosshenrich, et al. (2007). "Developmental pathways that generate natural-killer-cell diversity in mice and humans." Nat Rev Immunol 7(9):703-14.
    Imai, C., S. Iwamoto, et al. (2005). "Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells." Blood 106(1):376-83.
    Jinushi, M., T. Takehara, et al. (2005). "Impairment of natural killer cell and dendritic cell functions by the soluble form of MHC class I-related chain A in advanced human hepatocellular carcinomas." J Hepatol 43(6):1013-20.
    Johansson, S., L. Berg, et al. (2005). "NK cells:elusive players in autoimmunity." Trends Immunol 26(11):613-8.
    Jotereau, F., M. C. Pandolfino, et al. (1991). "High-fold expansion of human cytotoxic T-lymphocytes specific for autologous melanoma cells for use in immunotherapy." J Immunother(1991) 10(6):405-11.
    Kabelitz, D., D. Wesch, et al. (2007). "Perspectives of gammadelta T cells in tumor immunology." Cancer Res 67(1):5-8.
    Kammula, U. S., D. E. White, et al. (1998). "Trends in the safety of high dose bolus interleukin-2 administration in patients with metastatic cancer." Cancer 83(4):797-805.
    Kato, Y., Y. Tanaka, et al. (2001). "Targeting of tumor cells for human gammadelta T cells by nonpeptide antigens." J Immunol 167(9):5092-8.
    Katrinakis, G, D. Kyriakou, et al. (1996). "Defective natural killer cell activity in B-cell chronic lymphocytic leukaemia is associated with impaired release of natural killer cytotoxic factor(s) but not of tumour necrosis factor-alpha." Acta Haematol 96(1):16-23.
    Kawano, T., J. Cui, et al. (1997). "CD1d-restricted and TCR-mediated activation of valpha14 NKT cells by glycosylceramides." Science 278(5343):1626-9.
    Kawano, T., T. Nakayama, et al. (1999). "Antitumor cytotoxicity mediated by ligand-activated human V alpha24 NKT cells." Cancer Res 59(20):5102-5.
    Kershaw, M. H., J. A. Westwood, et al. (2006). "A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer." Clin Cancer Res 12(20 Pt 1):6106-15.
    Kiessling, R., E. Klein, et al. (1975). ""Natural" killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype." Eur J Immunol 5(2):112-7.
    Kiessling, R., K. Wasserman, et al. (1999). "Tumor-induced immune dysfunction." Cancer Immunol Immunother 48(7):353-62.
    Klingemann, H. G. (2005). "Natural killer cell-based immunotherapeutic strategies." Cytotherapy 7(1):16-22.
    Klingemann, H. G., E. Wong, et al. (1996). "A cytotoxic NK-cell line (NK-92) for ex vivo purging of leukemia from blood." Biol Blood Marrow Transplant 2(2):68-75.
    Knutson, K. L. and M. L. Disis (2005). "Tumor antigen-specific T helper cells in cancer immunity and immunotherapy." Cancer Immunol Immunother 54(8):721-8.
    Koh, C. Y., B. R. Blazar, et al. (2001). "Augmentation of antitumor effects by NK cell inhibitory receptor blockade in vitro and in vivo." Blood 97(10):3132-7.
    Koh, C. Y., J. R. Ortaldo, et al. (2003). "NK-cell purging of leukemia:superior antitumor effects of NK cells H2 allogeneic to the tumor and augmentation with inhibitory receptor blockade." Blood 102(12):4067-75.
    Kolb, H. J., B. Simoes, et al. (2004). "Cellular immunotherapy after allogeneic stem cell transplantation in hematologic malignancies." Curr Opin Oncol 16(2):167-73.
    Kono, K., A. Takahashi, et al. (2002). "Prognostic significance of adoptive immunotherapy with tumor-associated lymphocytes in patients with advanced gastric cancer:a randomized trial." Clin Cancer Res 8(6):1767-71.
    Konstantinidis, K. V., E. Alici, et al. (2005). "Targeting IL-2 to the endoplasmic reticulum confines autocrine growth stimulation to NK-92 cells." Exp Hematol 33(2):159-64.
    Kunzmann, V. and M. Wilhelm (2005). "Anti-lymphoma effect of gammadelta T cells." Leuk Lymphoma 46(5):671-80.
    Lai, P., H. Rabinowich, et al. (1996). "Alterations in expression and function of signal-transducing proteins in tumor-associated T and natural killer cells in patients with ovarian carcinoma." Clin Cancer Res 2(1):161-73.
    Lamers, C. H., S. Sleijfer, et al. (2006). "Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX:first clinical experience." J Clin Oncol 24(13):e20-2.
    Lanier, L. L. (2001). "On guard-activating NK cell receptors." Nat Immunol 2(1):23-7.
    Lanier, L. L. (2003). "Natural killer cell receptor signaling." Curr Opin Immunol 15(3):308-14.
    Lanier, L. L. (2005). "NK cell recognition." Annu Rev Immunol 23:225-74.
    Law, T. M., R. J. Motzer, et al. (1995). "Phase Ⅲ randomized trial of interleukin-2 with or without lymphokine-activated killer cells in the treatment of patients with advanced renal cell carcinoma." Cancer 76(5):824-32.
    Lee, R. K., J. Spielman, et al. (1996). "Perforin, Fas ligand, and tumor necrosis factor are the major cytotoxic molecules used by lymphokine-activated killer cells." J Immunol 157(5): 1919-25.
    Lesterhuis, W. J., E. H. Aarntzen, et al. (2008). "Dendritic cell vaccines in melanoma:from promise to proof?" Crit Rev Oncol Hematol 66(2):118-34.
    Ljunggren, H. G. and K. J. Malmberg (2007). "Prospects for the use of NK cells in immunotherapy of human cancer." Nat Rev Immunol 7(5):329-39.
    Long, E. O. (2008). "Negative signaling by inhibitory receptors:the NK cell paradigm." Immunol Rev 224:70-84.
    Lotze, M. T. and S. A. Rosenberg (1986). "Results of clinical trials with the administration of interleukin 2 and adoptive immunotherapy with activated cells in patients with cancer." Immunobiology 172(3-5):420-37.
    Lu, L., K, Ikizawa, et al. (2007). "Regulation of activated CD4+T cells by NK cells via the Qa-1-NKG2A inhibitory pathway." Immunity 26(5):593-604.
    Lu, P. H. and R. S. Negrin (1994). "A novel population of expanded human CD3+CD56+cells derived from T cells with potent in vivo antitumor activity in mice with severe combined immunodeficiency." J Immunol 153(4):1687-96.
    Lundqvist, A., S. I. Abrams, et al. (2006). "Bortezomib and depsipeptide sensitize tumors to tumor necrosis factor-related apoptosis-inducing ligand:a novel method to potentiate natural killer cell tumor cytotoxicity." Cancer Res 66(14):7317-25.
    Lundqvist, A., J. P. McCoy, et al. (2007). "Reduction of GVHD and enhanced antitumor effects after adoptive infusion of alloreactive Ly49-mismatched NK cells from MHC-matched donors." Blood 109(8):3603-6.
    Lutgendorf, S. K., A. K. Sood, et al. (2005). "Social support, psychological distress, and natural killer cell activity in ovarian cancer." J Clin Oncol 23(28):7105-13.
    Maki, G., Y. K. Tam, et al. (2003). "Ex vivo purging with NK-92 prior to autografting for chronic myelogenous leukemia." Bone Marrow Transplant 31(12):1119-25.
    Martin-Fontecha, A., L. L. Thomsen, et al. (2004). "Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming." Nat Immunol 5(12):1260-5.
    Matsuda, M., M. Petersson, et al. (1995). "Alterations in the signal-transducing molecules of T cells and NK cells in colorectal tumor-infiltrating, gut mucosal and peripheral lymphocytes:correlation with the stage of the disease." Int J Cancer 61(6):765-72.
    Mayordomo, J. I., T. Zorina, et al. (1995). "Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity." Nat Med 1(12):1297-302.
    Metelitsa, L. S., O. V. Naidenko, et al. (2001). "Human NKT cells mediate antitumor cytotoxicity directly by recognizing target cell CD1d with bound ligand or indirectly by producing IL-2 to activate NK cells." J Immunol 167(6):3114-22.
    Metkar, S. S., B. Wang, et al. (2002). "Cytotoxic cell granule-mediated apoptosis:perforin delivers granzyme B-serglycin complexes into target cells without plasma membrane pore formation." Immunity 16(3):417-28.
    Miller, J. S., Y. Soignier, et al. (2005). "Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer." Blood 105(8):3051-7.
    Miller, J. S., J. Tessmer-Tuck, et al. (1997). "Endogenous IL-2 production by natural killer cells maintains cytotoxic and proliferative capacity following retroviral-mediated gene transfer." Exp Hematol 25(11):1140-8.
    Mitsuyasu, R. T., P. A. Anton, et al. (2000). "Prolonged survival and tissue trafficking following adoptive transfer of CD4zeta gene-modified autologous CD4(+) and CD8(+) T cells in human immunodeficiency virus-infected subjects." Blood 96(3):785-93.
    Mocchegiani, E., A. Ciavattini, et al. (1999). "Role of zinc and alpha2 macroglobulin on thymic endocrine activity and on peripheral immune efficiency (natural killer activity and interleukin 2) in cervical carcinoma." Br J Cancer 79(2):244-50.
    Morandi, B., G. Bougras, et al. (2006). "NK cells of human secondary lymphoid tissues enhance T cell polarization via IFN-gamma secretion." Eur J Immunol 36(9):2394-400.
    Moretta, A., C. Bottino, et al. (2002). "What is a natural killer cell?" Nat Immunol 3(1):6-8.
    Moretta, A., C. Bottino, et al. (2001). "Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis." Annu Rev Immunol 19:197-223.
    Moretta, A., E. Marcenaro, et al. (2005). "Early liaisons between cells of the innate immune system in inflamed peripheral tissues." Trends Immunol 26(12):668-75.
    Moretta, L., G. Ferlazzo, et al. (2006). "Effector and regulatory events during natural killer-dendritic cell interactions." Immunol Rev 214:219-28.
    Moretta, L. and A. Moretta (2004). "Killer immunoglobulin-like receptors." Curr Opin Immunol 16(5):626-33.
    Moretta, L. and A. Moretta (2004). "Unravelling natural killer cell function:triggering and inhibitory human NK receptors." EMBO J 23(2):255-9.
    Morgan, R. A., M. E. Dudley, et al. (2006). "Cancer regression in patients after transfer of genetically engineered lymphocytes." Science 314(5796):126-9.
    Mortier, E., A. Quemener, et al. (2006). "Soluble interleukin-15 receptor alpha (IL-15R alpha)-sushi as a selective and potent agonist of IL-15 action through IL-15R beta/gamma. Hyperagonist IL-15 x IL-15R alpha fusion proteins." J Biol Chem 281(3): 1612-9.
    Motohashi, S., A. Ishikawa, et al. (2006). "A phase I study of in vitro expanded natural killer T cells in patients with advanced and recurrent non-small cell lung cancer." Clin Cancer Res 12(20 Pt 1):6079-86.
    Motohashi, S. and T. Nakayama (2008). "Clinical applications of natural killer T cell-based immunotherapy for cancer." Cancer Sci 99(4):638-45.
    Muranski, P., A. Boni, et al. (2006). "Increased intensity lymphodepletion and adoptive immunotherapy--how far can we go?" Nat Clin Pract Oncol 3(12):668-81.
    Muranski, P. and N. P. Restifo (2009). "Adoptive immunotherapy of cancer using CD4(+) T cells." Curr Opin Immunol 21(2):200-8.
    Nagashima, S., R. Mailliard, et al. (1998). "Stable transduction of the interleukin-2 gene into human natural killer cell lines and their phenotypic and functional characterization in vitro and in vivo." Blood 91(10):3850-61.
    Nakagomi, H., M. Petersson, et al. (1993). "Decreased expression of the signal-transducing zeta chains in tumor-infiltrating T-cells and NK cells of patients with colorectal carcinoma." Cancer Res 53(23):5610-2.
    Nieda, M., A. Nicol, et al. (2001). "TRAIL expression by activated human CD4(+)V alpha 24NKT cells induces in vitro and in vivo apoptosis of human acute myeloid leukemia cells." Blood 97(7):2067-74.
    O'Connell, J., M. W. Bennett, et al. (1998). "Fas ligand expression in primary colon adenocarcinomas:evidence that the Fas counterattack is a prevalent mechanism of immune evasion in human colon cancer." J Pathol 186(3):240-6.
    Orleans-Lindsay, J. K., L. D. Barber, et al. (2001). "Acute myeloid leukaemia cells secrete a soluble factor that inhibits T and NK cell proliferation but not cytolytic function--implications for the adoptive immunotherapy of leukaemia." Clin Exp Immunol 126(3):403-11.
    Pages, F., A. Berger, et al. (2005). "Effector memory T cells, early metastasis, and survival in colorectal cancer." N Engl J Med 353(25):2654-66.
    Palucka, A. K., H. Ueno, et al. (2007). "Taming cancer by inducing immunity via dendritic cells." Immunol Rev 220:129-50.
    Pardoll, D. M. and S. L. Topalian (1998). "The role of CD4+T cell responses in antitumor immunity." Curr Opin Immunol 10(5):588-94.
    Passweg, J. R., M. Stern, et al. (2005). "Use of natural killer cells in hematopoetic stem cell transplantation." Bone Marrow Transplant 35(7):637-43.
    Passweg, J. R., A. Tichelli, et al. (2004). "Purified donor NK-lymphocyte infusion to consolidate engraftment after haploidentical stem cell transplantation." Leukemia 18(11):1835-8.
    Pende, D., S. Parolini, et al. (1999). "Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells." J Exp Med 190(10):1505-16.
    Piccioli, D., S. Sbrana, et al. (2002). "Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells." J Exp Med 195(3):335-41.
    Pierson, B. A. and J. S. Miller (1996). "CD56+bright and CD56+dim natural killer cells in patients with chronic myelogenous leukemia progressively decrease in number, respond less to stimuli that recruit clonogenic natural killer cells, and exhibit decreased proliferation on a per cell basis." Blood 88(6):2279-87.
    Powell, D. J., Jr., L. L. Parker, et al. (2005). "Large-scale depletion of CD25+regulatory T cells from patient leukapheresis samples." J Immunother 28(4):403-11.
    Rajaram, N., R. J. Tatake, et al. (1990). "Natural killer and lymphokine-activated killer cell functions in chronic myeloid leukemia." Cancer Immunol Immunother 31(1):44-8.
    Re, F., C. Staudacher, et al. (2006). "Killer cell Ig-like receptors ligand-mismatched, alloreactive natural killer cells lyse primary solid tumors." Cancer 107(3):640-8.
    Rieben, R. and J. D. Seebach (2005). "Xenograft rejection:IgG1, complement and NK cells team up to activate and destroy the endothelium." Trends Immunol 26(1):2-5.
    Robertson, M. J. (2002). "Role of chemokines in the biology of natural killer cells." J Leukoc Biol 71(2):173-83.
    Rodella, L., L. Zamai, et al. (2001). "Interleukin 2 and interleukin 15 differentially predispose natural killer cells to apoptosis mediated by endothelial and tumour cells." Br J Haematol 115(2):442-50.
    Rodriguez-Lecompte, J. C., S. Kruth, et al. (2004). "Cell-based cancer gene therapy:breaking tolerance or inducing autoimmunity?" Anim Health Res Rev 5(2):227-34.
    Rosenberg, S. A. (2000). "Interleukin-2 and the development of immunotherapy for the treatment of patients with cancer." Cancer J Sci Am 6 Suppl 1:S2-7.
    Rosenberg, S. A., M. T. Lotze, et al. (1985). "Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer." N Engl J Med 313(23):1485-92.
    Rosenberg, S. A., N. P. Restifo, et al. (2008). "Adoptive cell transfer:a clinical path to effective cancer immunotherapy." Nat Rev Cancer 8(4):299-308.
    Rosenberg, S. A., J. R. Yannelli, et al. (1994). "Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2." J Natl Cancer Inst 86(15):1159-66.
    Ruggeri, L., F. Aversa, et al. (2006). "Allogeneic hematopoietic transplantation and natural killer cell recognition of missing self." Immunol Rev 214:202-18.
    Ruggeri, L., M. Capanni, et al. (2002). "Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants." Science 295(5562):2097-100.
    Ruggeri, L., A. Mancusi, et al. (2005). "Exploitation of alloreactive NK cells in adoptive immunotherapy of cancer." Curr Opin Immunol 17(2):211-7.
    Sandel, M. H., A. R. Dadabayev, et al. (2005). "Prognostic value of tumor-infiltrating dendritic cells in colorectal cancer:role of maturation status and intratumoral localization." Clin Cancer Res 11(7):2576-82.
    Sato, E., S. H. Olson, et al. (2005). "Intraepithelial CD8+tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer." Proc Natl Acad Sci U S A 102(51):18538-43.
    Sayers, T. J., A. D. Brooks, et al. (2003). "The proteasome inhibitor PS-341 sensitizes neoplastic cells to TRAIL-mediated apoptosis by reducing levels of c-FLIP." Blood 102(1):
    303-10.
    Schmidt-Wolf, I. G., P. Lefterova, et al. (1993). "Phenotypic characterization and identification of effector cells involved in tumor cell recognition of cytokine-induced killer cells." Exp Hematol 21(13):1673-9.
    Schmidt-Wolf, I. G., R. S. Negrin, et al. (1991). "Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity." J Exp Med 174(1):139-49.
    Schuurhuis, D. H., N. Fu, et al. (2006). "Ins and outs of dendritic cells." Int Arch Allergy Immunol 140(1):53-72.
    Sentman, C. L., M. A. Barber, et al. (2006). "NK cell receptors as tools in cancer immunotherapy." Adv Cancer Res 95:249-92.
    Shahied, L. S., Y. Tang, et al. (2004). "Bispecific minibodies targeting HER2/neu and CD16 exhibit improved tumor lysis when placed in a divalent tumor antigen binding format." J Biol Chem 279(52):53907-14.
    Shedlock, D. J. and H. Shen (2003). "Requirement for CD4 T cell help in generating functional CD8 T cell memory." Science 300(5617):337-9.
    Sheridan, C. (2006). "First-in-class cancer therapeutic to stimulate natural killer cells." Nat Biotechnol 24(6):597.
    Sivori, S., M. Vitale, et al. (1997). "p46, a novel natural killer cell-specific surface molecule that mediates cell activation." J Exp Med 186(7):1129-36.
    Skov, S., M. T. Pedersen, et al. (2005). "Cancer cells become susceptible to natural killer cell killing after exposure to histone deacetylase inhibitors due to glycogen synthase kinase-3-dependent expression of MHC class Ⅰ-related chain A and B." Cancer Res 65(23):11136-45.
    Smyth, M. J., E. Cretney, et al. (2005). "Activation of NK cell cytotoxicity." Mol Immunol 42(4): 501-10.
    Smyth, M. J., E. Cretney, et al. (2004). "Cytokines in cancer immunity and immunotherapy." Immunol Rev 202:275-93.
    Smyth, M. J., Y. Hayakawa, et al. (2002). "New aspects of natural-killer-cell surveillance and therapy of cancer." Nat Rev Cancer 2(11):850-61.
    Soiffer, R. J., E. P. Alyea, et al. (2002). "Randomized trial of CD8+T-cell depletion in the prevention of graft-versus-host disease associated with donor lymphocyte infusion." Biol Blood Marrow Transplant 8(11):625-32.
    Spada, F. M., Y. Koezuka, et al. (1998). "CD1d-restricted recognition of synthetic glycolipid
    antigens by human natural killer T cells." J Exp Med 188(8):1529-34.
    Steinman, R. M. and J. Banchereau (2007). "Taking dendritic cells into medicine." Nature 449(7161):419-26.
    Street, S. E., Y. Hayakawa, et al. (2004). "Innate immune surveillance of spontaneous B cell lymphomas by natural killer cells and gammadelta T cells." J Exp Med 199(6):879-84.
    Sun, J. C. and M. J. Bevan (2003). "Defective CD8 T cell memory following acute infection without CD4 T cell help." Science 300(5617):339-42.
    Sutlu, T. and E. Alici (2009). "Natural killer cell-based immunotherapy in cancer:current insights and future prospects." J Intern Med 266(2):154-81.
    Tajima, F., T. Kawatani, et al. (1996). "Natural killer cell activity and cytokine production as prognostic factors in adult acute leukemia." Leukemia 10(3):478-82.
    Takeda, K. and G. Dennert (1993). "The development of autoimmunity in C57BL/6 Ipr mice correlates with the disappearance of natural killer type 1-positive cells:evidence for their suppressive action on bone marrow stem cell proliferation, B cell immunoglobulin secretion, and autoimmune symptoms." J Exp Med 177(1):155-64.
    Takeda, K., K. Okumura, et al. (2007). "Combination antibody-based cancer immunotherapy." Cancer Sci 98(9):1297-302.
    Taketomi, A., M. Shimada, et al. (1998). "Natural killer cell activity in patients with hepatocellular carcinoma:a new prognostic indicator after hepatectomy." Cancer 83(1): 58-63.
    Tam, Y. K., J. A. Martinson, et al. (2003). "Ex vivo expansion of the highly cytotoxic human natural killer-92 cell-line under current good manufacturing practice conditions for clinical adoptive cellular immunotherapy." Cytotherapy 5(3):259-72.
    Tamura, K., H. Arai, et al. (2007). "Comparison of dendritic cell-mediated immune responses among canine malignant cells." J Vet Med Sci 69(9):925-30.
    Tamura, K., M. Yamada, et al. (2008). "Induction of dendritic cell-mediated immune responses against canine malignant melanoma cells." Vet J 175(1):126-9.
    Taniguchi, M., M. Harada, et al. (2003). "The regulatory role of Valpha14 NKT cells in innate and acquired immune response." Annu Rev Immunol 21:483-513.
    Taniguchi, M., K. Seino, et al. (2003). "The NKT cell system:bridging innate and acquired immunity." Nat Immunol 4(12):1164-5.
    Tonn, T, S. Becker,et al. (2001). "Cellular immunotherapy of malignancies using the clonal natural killer cell line NK-92." J Hematother Stem Cell Res 10(4):535-44.
    Trambas, C. M. and G. M. Griffiths (2003). "Delivering the kiss of death." Nat Immunol 4(5): 399-403.
    Ueda, Y., H. Yamagishi, et al. (1999). "Clinical application of adoptive immunotherapy and IL-2 for the treatment of advanced digestive tract cancer." Hepatogastroenterology 46 Suppl 1:1274-9.
    Uherek, C, T. Tonn, et al. (2002). "Retargeting of natural killer-cell cytolytic activity to ErbB2-expressing cancer cells results in efficient and selective tumor cell destruction." Blood 100(4):1265-73.
    van der Vliet, H. J., J. W. Moiling, et al. (2004). "The immunoregulatory role of CD Id-restricted natural killer T cells in disease." Clin Immunol 112(1):8-23.
    van Mierlo, G. J., Z. F. Boonman, et al. (2004). "Activation of dendritic cells that cross-present tumor-derived antigen licenses CD8+CTL to cause tumor eradication." J Immunol 173(11):6753-9.
    VanOosten, R. L., J. M. Moore, et al. (2005). "Histone deacetylase inhibitors modulate renal cell carcinoma sensitivity to TRAIL/Apo-2L-induced apoptosis by enhancing TRAIL-R2 expression." Cancer Biol Ther 4(10):1104-12.
    Veillette, A., S. Latour, et al. (2002). "Negative regulation of immunoreceptor signaling." Annu Rev Immunol 20:669-707.
    Viguier, M., F. Lemaitre, et al. (2004). "Foxp3 expressing CD4+CD25(high) regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells." J Immunol 173(2):1444-53.
    Vitale, M., C. Bottino, et al. (1998). "NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis." J Exp Med 187(12):2065-72.
    Vivier, E., E. Tomasello, et al. (2008). "Functions of natural killer cells." Nat Immunol 9(5): 503-10.
    Wakiguchi, H., H. Kubota, et al. (1994). "Defective natural killer cell activity and deficient production of interferon-gamma in children with acute lymphoblastic leukemia." Acta Paediatr Jpn 36(4):361-5.
    Walzer, T., M. Dalod, et al. (2005). "Natural-killer cells and dendritic cells:"I'union fait la force"." Blood 106(7):2252-8.
    Wang, R. F. (2006). "Immune suppression by tumor-specific CD4+regulatory T-cells in cancer." Semin Cancer Biol 16(1):73-9.
    Wang, X., J. Zheng, et al. (2005). "Increased population of CD4(+)CD25(high), regulatory T cells with their higher apoptotic and proliferating status in peripheral blood of acute myeloid leukemia patients." Eur J Haematol 75(6):468-76.
    Wilson, S. B. and T. L. Delovitch (2003). "Janus-like role of regulatory iNKT cells in autoimmune disease and tumour immunity." Nat Rev Immunol 3(3):211-22.
    Woo, E. Y., C. S. Chu, et al. (2001). "Regulatory CD4(+)CD25(+) T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer." Cancer Res 61(12):4766-72.
    Wrzesinski, C., C. M. Paulos, et al. (2007). "Hematopoietic stem cells promote the expansion and function of adoptively transferred antitumor CD8 T cells." J Clin Invest 117(2): 492-501.
    Wu, H. J., H. Sawaya, et al. (2007). "Inflammatory arthritis can be reined in by CpG-induced DC-NK cell cross talk." J Exp Med 204(8):1911-22.
    Wu, J. and L. L. Lanier (2003). "Natural killer cells and cancer." Adv Cancer Res 90:127-56.
    Yamauchi, A., K. Taga, et al. (1996). "Target cell-induced apoptosis of interleukin-2-activated human natural killer cells:roles of cell surface molecules and intracellular events." Blood 87(12):5127-35.
    Yang, X. O., R. Nurieva, et al. (2008). "Molecular antagonism and plasticity of regulatory and inflammatory T cell programs." Immunity 29(1):44-56.
    Yee, C., J. A. Thompson, et al. (2002). "Adoptive T cell therapy using antigen-specific CD8+T cell clones for the treatment of patients with metastatic melanoma:in vivo persistence, migration, and antitumor effect of transferred T cells." Proc Natl Acad Sci U S A 99(25): 16168-73.
    Yee, C., J. A. Thompson, et al. (2000). "Melanocyte destruction after antigen-specific immunotherapy of melanoma:direct evidence of t cell-mediated vitiligo." J Exp Med 192(11):1637-44.
    Yoneda, O., T. Imai, et al. (2000). "Fractalkine-mediated endothelial cell injury by NK cells." J Immunol 164(8):4055-62.
    Yu, G., X. Xu, et al. (2006). "NK cells promote transplant tolerance by killing donor antigen-presenting cells." J Exp Med 203(8):1851-8.
    Yue, S. C, A. Shaulov, et al. (2005). "CD1d ligation on human monocytes directly signals rapid NF-kappaB activation and production of bioactive IL-12." Proc Natl Acad Sci U S A 102(33):11811-6.
    Zamai, L., M. Ahmad, et al. (1998). "Natural killer (NK) cell-mediated cytotoxicity:differential use of TRAIL and Fas ligand by immature and mature primary human NK cells." J Exp Med 188(12):2375-80.
    Zhang, L., J. R. Conejo-Garcia, et al. (2003). "Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer." N Engl J Med 348(3):203-13.
    Zhang, T., A. Barber, et al. (2006). "Generation of antitumor responses by genetic modification of primary human T cells with a chimeric NKG2D receptor." Cancer Res 66(11): 5927-33.
    Zheng, B. J., K. W. Chan, et al. (2001). "Anti-tumor effects of human peripheral gammadelta T cells in a mouse tumor model." Int J Cancer 92(3):421-5.
    Zhou, J., M. E. Dudley, et al. (2005). "Persistence of multiple tumor-specific T-cell clones is associated with complete tumor regression in a melanoma patient receiving adoptive cell transfer therapy." J Immunother 28(1):53-62.
    Aoki, Y., K. Takakuwa, et al. (1991). "Use of adoptive transfer of tumor-infiltrating lymphocytes alone or in combination with cisplatin-containing chemotherapy in patients with epithelial ovarian cancer." Cancer Res 51(7):1934-9.
    Barber, A., A. Rynda, et al. (2009). "Chimeric NKG2D expressing T cells eliminate immunosuppression and activate immunity within the ovarian tumor microenvironment." J Immunol 183(11):6939-47.
    Barber, A., T. Zhang, et al. (2007). "Chimeric NKG2D receptor-bearing T cells as immunotherapy for ovarian cancer." Cancer Res 67(10):5003-8.
    Cannon, M. J. and T. J. O'Brien (2009). "Cellular immunotherapy for ovarian cancer." Expert Opin Biol Ther 9(6):677-88.
    Carlsten, M., H. Norell, et al. (2009). "Primary human tumor cells expressing CD155 impair tumor targeting by down-regulating DNAM-1 on NK cells." J Immunol 183(8): 4921-30.
    Chan, J. K., C. A. Hamilton, et al. (2006). "Enhanced killing of primary ovarian cancer by retargeting autologous cytokine-induced killer cells with bispecific antibodies:a preclinical study." Clin Cancer Res 12(6):1859-67.
    Chu, C. S., S. H. Kim, et al. (2008). "Immunotherapy opportunities in ovarian cancer." Expert Rev Anticancer Ther 8(2):243-57.
    Conejo-Garcia, J. R., F. Benencia, et al. (2004). "Ovarian carcinoma expresses the NKG2D ligand Letal and promotes the survival and expansion of CD28-antitumor T cells." Cancer Res 64(6):2175-82.
    Conejo-Garcia, J. R., F. Benencia, et al. (2003). "Letal, A tumor-associated NKG2D immunoreceptor ligand, induces activation and expansion of effector immune cells." Cancer Biol Ther 2(4):446-51.
    De Cesare, M., L. Sfondrini, et al. (2009). "Ascites Regression and Survival Increase in Mice Bearing Advanced-stage Human Ovarian Carcinomas and Repeatedly Treated Intraperitoneally With CpG-ODN." J Immunother.
    Drexler, H. G. and Y. Matsuo (2000). "Malignant hematopoietic cell lines:in vitro models for the study of natural killer cell leukemia-lymphoma." Leukemia 14(5):777-82.
    Fernandez, L. A., B. Pope, et al. (1986). "Aggressive natural killer cell leukemia in an adult with establishment of an NK cell line." Blood 67(4):925-30.
    Freedman, R. S. and C. D. Platsoucas (1996). "Immunotherapy for peritoneal ovarian carcinoma metastasis using ex vivo expanded tumor infiltrating lymphocytes." Cancer Treat Res 82: 115-46.
    Gong, J. H., G. Maki, et al. (1994). "Characterization of a human cell line (NK-92) with phenotypical and functional characteristics of activated natural killer cells." Leukemia 8(4):652-8.
    Hayakawa, Y. and M. J. Smyth (2006). "Innate immune recognition and suppression of tumors." Adv Cancer Res 95:293-322.
    Ikarashi, H., K. Fujita, et al. (1994). "Immunomodulation in patients with epithelial ovarian cancer after adoptive transfer of tumor-infiltrating lymphocytes." Cancer Res 54(1): 190-6.
    Isayeva, T., C. Ren, et al. (2005). "Recombinant adeno-associated virus 2-mediated antiangiogenic prevention in a mouse model of intraperitoneal ovarian cancer." Clin Cancer Res 11(3):1342-7.
    Kagami, Y., S. Nakamura, et al. (1998). "Establishment of an IL-2-dependent cell line derived from'nasal-type'NK/T-cell lymphoma of CD2+, sCD3-, CD3epsilon+, CD56+ phenotype and associated with the Epstein-Barr virus." Br J Haematol 103(3):669-77.
    Kershaw, M. H., J. A. Westwood, et al. (2006). "A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer." Clin Cancer Res 12(20 Pt 1):6106-15.
    Kim, H. M., J. S. Kang, et al. (2007). "Inhibition of human ovarian tumor growth by cytokine-induced killer cells." Arch Pharm Res 30(11):1464-70.
    Klingemann, H. G. (2005). "Natural killer cell-based immunotherapeutic strategies." Cytotherapy7(1):16-22.
    Klingemann, H. G. and J. Martinson (2004). "Ex vivo expansion of natural killer cells for clinical applications." Cytotherapy 6(1):15-22.
    Lanier, L. L. (2003). "Natural killer cell receptor signaling." Curr Opin Immunol 15(3):308-14.
    Law, K. S., H. C. Chen, et al. (2007). "Non-cytotoxic and sublethal paclitaxel treatment potentiates the sensitivity of cultured ovarian tumor SKOV-3 cells to lysis by lymphokine-activated killer cells." Anticancer Res 27(2):841-50.
    Li, K., M. Mandai, et al. (2009). "Clinical significance of the NKG2D ligands, MICA/B and ULBP2 in ovarian cancer:high expression of ULBP2 is an indicator of poor prognosis." Cancer Immunol Immunother 58(5):641-52.
    Ljunggren, H. G. and K. J. Malmberg (2007). "Prospects for the use of NK cells in immunotherapy of human cancer." Nat Rev Immunol 7(5):329-39.
    Malmberg, K. J., Y. T. Bryceson, et al. (2008). "NK cell-mediated targeting of human cancer and possibilities for new means of immunotherapy." Cancer Immunol Immunother 57(10): 1541-52.
    Margolin, K. A. (2000). "Interleukin-2 in the treatment of renal cancer." Semin Oncol 27(2): 194-203.
    Robertson, M. J., K. J. Cochran, et al. (1996). "Characterization of a cell line, NKL, derived from an aggressive human natural killer cell leukemia." Exp Hematol 24(3):406-15.
    Rosenberg, S. A., M. T. Lotze, et al. (1993). "Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer." J Natl Cancer Inst 85(8):622-32.
    Semino, C., L. Martini, et al. (1999). "Adoptive immunotherapy of advanced solid tumors:an eight year clinical experience." Anticancer Res 19(6C):5645-9.
    Smyth, M. J., Y. Hayakawa, et al. (2002). "New aspects of natural-killer-cell surveillance and therapy of cancer." Nat Rev Cancer 2(11):850-61.
    Suck, G., D. R. Branch, et al. (2006). "Irradiated KHYG-1 retains cytotoxicity:potential for adoptive immunotherapy with a natural killer cell line." Int J Radiat Biol 82(5):355-61.
    Suck, G., D. R. Branch, et al. (2005). "KHYG-1, a model for the study of enhanced natural killer cell cytotoxicity." Exp Hematol 33(10):1160-71.
    Tam, Y. K., G. Maki, et al. (1999). "Characterization of genetically altered, interleukin 2-independent natural killer cell lines suitable for adoptive cellular immunotherapy." Hum Gene Ther 10(8):1359-73.
    Tam, Y. K., J. A. Martinson, et al. (2003). "Ex vivo expansion of the highly cytotoxic human natural killer-92 cell-line under current good manufacturing practice conditions for clinical adoptive cellular immunotherapy." Cytotherapy 5(3):259-72.
    Tam, Y. K., B. Miyagawa, et al. (1999). "Immunotherapy of malignant melanoma in a SCID mouse model using the highly cytotoxic natural killer cell line NK-92."J Hematother 8(3):281-90.
    Tonn, T., S. Becker, et al. (2001). "Cellular immunotherapy of malignancies using the clonal natural killer cell line NK-92." J Hematother Stem Cell Res 10(4):535-44.
    Tsuchiyama, J., T. Yoshino, et al. (1998). "Characterization of a novel human natural killer-cell line (NK-YS) established from natural killer cell lymphoma/leukemia associated with Epstein-Barr virus infection." Blood 92(4):1374-83.
    Velardi, A., L. Ruggeri, et al. (2009). "Natural killer cell allorecognition of missing self in allogeneic hematopoietic transplantation:a tool for immunotherapy of leukemia." Curr Opin Immunol 21(5):525-30.
    Wu, J. and L. L. Lanier (2003). "Natural killer cells and cancer." Adv Cancer Res 90:127-56.
    Yagita, M., C. L. Huang, et al. (2000). "A novel natural killer cell line (KHYG-1) from a patient with aggressive natural killer cell leukemia carrying a p53 point mutation." Leukemia 14(5):922-30.
    Yodoi, J., K. Teshigawara, et al. (1985). "TCGF (IL 2)-receptor inducing factor(s). I. Regulation of IL 2 receptor on a natural killer-like cell line (YT cells)." J Immunol 134(3):1623-30.
    Yoneda, N., E. Tatsumi, et al. (1992). "Detection of Epstein-Barr virus genome in natural-killer-like cell line, YT." Leukemia 6(2):136-41.
    Bieche, I., M. Olivi, et al. (1998). "Novel approach to quantitative polymerase chain reaction using real-time detection:application to the detection of gene amplification in breast cancer." Int J Cancer 78(5):661-6.
    Bustin, S. A. (2000). "Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays." J Mol Endocrinol 25(2):169-93.
    Castaldo, G., R. Tomaiuolo, et al. (1997). "Lung cancer metastatic cells detected in blood by reverse transcriptase-polymerase chain reaction and dot-blot analysis." J Clin Oncol 15(11):3388-93.
    Chanin, T. D., D. T. Merrick, et al. (2004). "Recent developments in biomarkers for the early detection of lung cancer:perspectives based on publications 2003 to present." Curr Opin Pulm Med 10(4):242-7.
    D'Cunha, J., A. L. Corfits, et al. (2002). "Molecular staging of lung cancer:real-time polymerase chain reaction estimation of lymph node micrometastatic tumor cell burden in stage I non-small cell lung cancer--preliminary results of Cancer and Leukemia Group B Trial 9761." J Thorac Cardiovasc Surg 123(3):484-91; discussion 491.
    Datta, Y. H., P. T. Adams, et al. (1994). "Sensitive detection of occult breast cancer by the reverse-transcriptase polymerase chain reaction." J Clin Oncol 12(3):475-82.
    Fenton, K. N. and J. D. Richardson (1995). "Diagnosis and management of malignant pleural effusions." Am J Surg 170(1):69-74.
    Ghafouri, B., B. Stahlbom, et al. (2002). "Newly identified proteins in human nasal lavage fluid from non-smokers and smokers using two-dimensional gel electrophoresis and peptide mass fingerprinting." Proteomics 2(1):112-20.
    Ghossein, R. A., L. Carusone, et al. (2000). "Molecular detection of micrometastases and circulating tumor cells in melanoma prostatic and breast carcinomas." In Vivo 14(1): 237-50.
    Hung, C. J., D. G. Ginzinger, et al. (2003). "Expression of vascular endothelial growth factor-C in benign and malignant thyroid tumors." J Clin Endocrinol Metab 88(8):3694-9.
    Iwao, K., T. Watanabe, et al. (2001). "Isolation of a novel human lung-specific gene, LUNX, a potential molecular marker for detection of micrometastasis in non-small-cell lung cancer." Int J Cancer 91(4):433-7.
    Lantuejoul, S., B. Constantin, et al. (2003). "Expression of VEGF, semaphorin SEMA3F, and
    their common receptors neuropilins NP1 and NP2 in preinvasive bronchial lesions, lung tumours, and cell lines." J Pathol 200(3):336-47.
    Le Pimpec-Barthes, F., C. Danel, et al. (2005). "Association of CK19 mRNA detection of occult cancer cells in mediastinal lymph nodes in non-small cell lung carcinoma and high risk of early recurrence." Eur J Cancer 41(2):306-12.
    Lee, J. H. and J. H. Chang (2005). "Diagnostic utility of serum and pleural fluid carcinoembryonic antigen, neuron-specific enolase, and cytokeratin 19 fragments in patients with effusions from primary lung cancer." Chest 128(4):2298-303.
    Li, Y., X. Dong, et al. (2005). "BJ-TSA-9, a novel human tumor-specific gene, has potential as a biomarker of lung cancer." Neoplasia 7(12):1073-80.
    Light, R. W. (2001). "Pleural effusions following cardiac injury and coronary artery bypass graft surgery." Semin Respir Crit Care Med 22(6):657-64.
    Lindahl, M., B. Stahlbom, et al. (2001). "Identification of a new potential airway irritation marker, palate lung nasal epithelial clone protein, in human nasal lavage fluid with two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-time of flight." Electrophoresis 22(9):1795-800.
    Martini, N., M. S. Bains, et al. (1995). "Incidence of local recurrence and second primary tumors in resected stage I lung cancer." J Thorac Cardiovasc Surg 109(1):120-9.
    Matsunaga, H., N. Hangai, et al. (2002). "Application of differential display to identify genes for lung cancer detection in peripheral blood." Int J Cancer 100(5):592-9.
    Mitas, M., L. Hoover, et al. (2003). "Lunx is a superior molecular marker for detection of non-small cell lung cancer in peripheral blood [corrected]." J Mol Diagn 5(4):237-42.
    Mountain, C. F. and C. M. Dresler (1997). "Regional lymph node classification for lung cancer staging." Chest 111(6):1718-23.
    Nance, K. V., R. W. Shermer, et al. (1991). "Diagnostic efficacy of pleural biopsy as compared with that of pleural fluid examination." Mod Pathol 4(3):320-4.
    Nosotti, M., M. Falleni, et al. (2005). "Quantitative real-time polymerase chain reaction detection of lymph node lung cancer micrometastasis using carcinoembryonic antigen marker." Chest 128(3):1539-44.
    Pantel, K., R. J. Cote, et al. (1999). "Detection and clinical importance of micrometastatic disease." J Natl Cancer Inst 91(13):1113-24.
    Raj, G. V., J. G. Moreno, et al. (1998). "Utilization of polymerase chain reaction technology in the detection of solid tumors." Cancer 82(8):1419-42.
    Schroder, C. P., M. H. Ruiters, et al. (2003). "Detection of micrometastatic breast cancer by means of real time quantitative RT-PCR and immunostaining in perioperative blood samples and sentinel nodes." Int J Cancer 106(4):611-8.
    Snead, D. R., B. Perunovic, et al. (2003). "hnRNP B1 expression in benign and malignant lung disease." J Pathol 200(1):88-94.
    Wallace, M. B., M. I. Block, et al. (2005). "Accurate molecular detection of non-small cell lung cancer metastases in mediastinal lymph nodes sampled by endoscopic ultrasound-guided needle aspiration." Chest 127(2):430-7.
    Wieskopf, B., C. Demangeat, et al. (1995). "Cyfra 21-1 as a biologic marker of non-small cell lung cancer. Evaluation of sensitivity, specificity, and prognostic role." Chest 108(1): 163-9.