自然杀伤细胞受体NKp80与NKG2F的生物学功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自然杀伤细胞(NK细胞)是固有免疫系统中非常重要的成员,能够有效的清除机体内的异常细胞,包括受到病原微生物感染的细胞和发生癌变的细胞。与T细胞不同,NK细胞可以直接识别异常信号,不需要抗原递呈细胞对抗原进行加工、递呈,能够快速对机体内的异常信号产生免疫应答,是机体的第一道免疫防线。
     NK细胞能够有效的区分机体内的正常细胞和异常细胞,主要通过表达于NK细胞表面的NK细胞受体来完成自我与非我的识别过程。目前解释该现象公认的理论为'Missing Self"机制:机体正常细胞表面表达足量的HLA分子,它们能够结合位于NK细胞表面的抑制性受体(人白细胞抗原特异性抑制受体),抑制NK细胞的细胞毒活性;而在感染或癌变的细胞表面,HLA分子缺失或表达量大幅降低,不能有效的抑制NK细胞的杀伤功能,导致其被NK细胞清除。
     NK细胞受体根据它们传导的信号不同,主要分为活化性受体和抑制性受体。它们对于NK细胞发挥各项生物学功能起着至关重要的作用。目前已经发现了大量NK细胞受体,其中部分受体的生物学功能研究得已比较透彻,已经发现了相应的配体,制备了单克隆抗体,解析了三维空间结构等。但是随着NK细胞受体研究不断向前进展,新的NK细胞受体不断被发现,它们的生物学功能尚不明晰。
     NKp80和NKG2F是新近发现的两个NK细胞受体,目前关于它们的研究较少,生物学功能尚不清楚,我们的工作主要围绕这两个NK细胞受体展开,旨在更进一步了解这两个NK细胞受体的生物学功能。之前的两项研究发现NKp80能够向NK细胞内传递活化信号,增强NK细胞的细胞毒活性,提高NK细胞分泌炎性细胞因子的能力;同时还鉴定出了NKp80的配体——表达于单核细胞上的AICL分子。然而,目前NKp80和AICL的三维空间结构都未被解析,无法根据三维空间结构来推测它们相互结合的位点,难以了解它们相互作用的机理。为了探究NKp80与AICL相互作用的位点,我们首先在蛋白结构数据库(PDB)中找到了目前已经解析了三维空间结构、且同源性与AICL最高的蛋白分子CD69,然后根据CD69的三维空间结构,利用生物信息学工具3D-JIGSAW构建了AICL的模拟空间结构。
     随后在所有生物总蛋白库中对AICL氨基酸序列进行BLAST分析,找出同源性最高的7个蛋白,用ClustalW2软件分析比对这8个蛋白的氨基酸序列,在AICL氨基酸序列中确定出7个保守性区域。
     在AICL的模拟空间结构中展示这7个保守性区域发现,其中三个保守性区域位于AICL的模拟空间结构的外表面,按照这三个保守性序列合成了三条多肽。
     流式细胞术分析发现这三条多肽能够竞争性的抑制anti-NKp80单克隆抗体结合NK细胞表面的NKp80。细胞毒活性检测实验结果发现,其中的两条多肽能够部分阻断NKp80与AICL所介导的NK细胞的杀伤功能。结合生物信息学分析和功能实验的结果,我们认为两条多肽序列为潜在的分子相互作用位点。
     NKG2F的功能目前尚不清楚,之前的研究显示NKG2F胞内段有一个类似于免疫受体酪氨酸抑制性基序(ITIM)的序列,但在细胞膜表面,它又能与DAP12结合,通过DAP12胞内的免疫受体酪氨酸活化性基序(ITAM)传递活化信号。NKG2F是活化性受体还是抑制性受体,尚存在争论。我们第一次利用重组表达技术,在大肠杆菌表达系统中表达出了人NKG2F重组蛋白,然后以重组人NKG2F为免疫原,免疫小鼠制备了anti-NKG2F多克隆抗体,以此为工具,通过荧光定量PCR和流式细胞术检测发现:细胞因子IL-2和IL-15活化NK细胞后,NKG2F在NK细胞表面表达量上调,从侧面印证了NKG2F为活化性受体。此外,流式细胞术细胞表面标记检测的结果还证实:同其他NKG2家族受体类似,NKG2F表达于外周血NK细胞的细胞膜上。
Natural killer (NK) cells play important roles in innate immunity. They are able to distinguish malignant cells or pathogen-infected cells from normal cells and kill these abnormal cells without prior sensitization, as a result, natural killer cells react quickly to dangerous signals and act as the first line of defense against pathogens and transformed cells.
     NK cells are able to distinguish the abnormal cells from normal cells effectively, which is mediated by the NK cell receptors expressed on the NK cell surface.
     Currently accepted theory to explain this phenomenon as the "Missing Self" mechanism:NK cells received both activating signals and inhibitory signals through their surface receptors. Normal cells expressed sufficient HLA molecules, which was able to bind to the inhibitory receptors on the membrane of NK cell (human leukocyte antigen-specific inhibitory receptors) and transduce inhibitory signals, resulting in the inhibition of NK cell cytotoxicity. As a result, NK cells won't attack normal cells. However, expression of HLA molecules of pathogen-infected cells or transformed cells was greatly down-regulated. As a result, NK cells couldn't receive sufficient inhibitory signals, and NK cells were staying at activating state with strong cytotoxicity, resulting in elimination of these target cells.
     NK cell receptors were divided into two groups as activating receptors and inhibitory receptors depending on the signal they transduced. NK cell receptors play crucial roles in the biological functions of NK cells. A lot of NK cell receptors have been identified, some of which has been deeply investigated. The ligands and the 3-D structure information of these receptors has been identified, moreover, the specific monoclonal antibodies against these receptors has also been produced.
     However, few studies have been conducted for some newly identified NK cell receptors, whose biological functions were not clear yet.
     NKp80 and NKG2F were newly identified, whose biological functions were not clear. This work focused on the two NK cell receptors, aiming at a further progress of the biological functions.
     NKp80 has been reported to transduce activating signals, leading to NK cell activation and increase of NK cell cytotoxicity. AICL has been identified as the ligand of NKp80. But the interaction sites of NKp80-AICL were not clear. In this study,3-D model of AICL was constructed with the online server 3D-JIGSAW based on the crystal structure of CD69 which shared the highest sequence homology among released protein structures in PDB.7 proteins with highest sequence homology to AICL were listed by BLAST. Multiple sequence alignment of the amino acid sequence of these proteins was conducted by the tool Clustal W2, and 7 conserved sequences of AICL were found. Among these conserved sequences, three sequences were on the surface of the 3-D model of AICL which was constructed based on the crystal structure of CD69. Flow cytometric analysis demonstrated that these peptides were able to compete with anti-NKp80 mAb on NKp80 binding activity in a dose-dependent manner. Moreover, two peptides reduced NKp80-AICL mediated cytotoxicity of both fresh PBMCs and purified NK cells in 51Cr release cytotoxicity assay. Considering both the bioinformatic analysis and experimental results, we concluded that the P1 and P2 sequences on AICL might be the potential sites of NKp80-AICL interaction.
     Previous studies have demonstrated that NKG2F contained an immunoreceptor tyrosine-based inhibition motif (ITIM) like sequence in cytoplasmic domain, however, NKG2F also associated with DAP12 which contained an immunoreceptor tyrosine-based activation motif (ITAM). It was controversial whether NKG2F is an activating receptor or an inhibitory receptor.
     In this study, we recombinantly expressed the human NKG2F protein with the E. coli for the first time. Anti-NKG2F polyclonal antibody was produced by immunizing BALB/c mice with the recombinant NKG2F.
     With the anti-NKG2F polyclonal antibody, real-time PCR and flow cytometry were performed. The results demonstrated that IL-2 and IL-15 stimulation up-regulated the expression of NKG2F expression on the surface of peripheral blood NK cells. As NK cell were activated by IL-2 and IL-15 stimulation, we considered that NKG2F as an activating receptor. Furthermore, the flow cytometry results demonstrated that NKG2F was expressed on the surface of peripheral blood NK cells for the first time, which was consistent with other members of NKG2 family.
引文
[1]Aramburu, J., M. A. Balboa, et al. (1990). "A novel functional cell surface dimer (Kp43) expressed by natural killer cells and T cell receptor-gamma/delta+T lymphocytes. I. Inhibition of the IL-2-dependent proliferation by anti-Kp43 monoclonal antibody." J Immunol 144(8):3238-47.
    [2]Barten, R., M. Torkar, et al. (2001). "Divergent and convergent evolution of NK-cell receptors." Trends Immunol 22(1):52-7.
    [3]Bauer, S., V. Groh, et al. (1999). "Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA." Science 285(5428):727-9.
    [4]Beck, S. and B. G. Barrell (1988). "Human cytomegalovirus encodes a glycoprotein homologous to MHC class-I antigens." Nature 331(6153):269-72.
    [5]Benoit, L., X. Wang, et al. (2000). "Defective NK cell activation in X-linked lymphoproliferative disease." J Immunol 165(7):3549-53.
    [6]Bertone, S., F. Schiavetti, et al. (1999). "Transforming growth factor-beta-induced expression of CD94/NKG2A inhibitory receptors in human T lymphocytes." Eur J Immunol 29(1):23-9.
    [7]Biassoni, R., C. Cantoni, et al. (2001). "Human natural killer cell receptors and co-receptors." Immunol Rev 181:203-14.
    [8]Biassoni, R., A. Pessino, et al. (1999). "The murine homologue of the human NKp46, a triggering receptor involved in the induction of natural cytotoxicity." Eur J Immunol 29(3):1014-20.
    [9]Biron, C. A. (1997). "Activation and function of natural killer cell responses during viral infections." Curr Opin Immunol 9(1):24-34.
    [10]Boles, K. S., H. Nakajima, et al. (1999). "Molecular characterization of a novel human natural killer cell receptor homologous to mouse 2B4." Tissue Antigens 54(1):27-34.
    [11]Bolland, S. and J. V. Ravetch (1999). "Inhibitory pathways triggered by ITIM-containing receptors." Adv Immunol 72:149-77.
    [12]Borrego, F., M. Ulbrecht, et al. (1998). "Recognition of human histocompatibility leukocyte antigen (HLA)-E complexed with HLA class I signal sequence-derived peptides by CD94/NKG2 confers protection from natural killer cell-mediated lysis." J Exp Med 187(5):813-8.
    [13]Bosselut, R., W. Zhang, et al. (1999). "Association of the adaptor molecule LAT with CD4 and CD8 coreceptors identifies a new coreceptor function in T cell receptor signal transduction." J Exp Med 190(10):1517-26.
    [14]Bottino, C., R. Augugliaro, et al. (2000). "Analysis of the molecular mechanism involved in 2B4-mediated NK cell activation:evidence that human 2B4 is physically and functionally associated with the linker for activation of T cells." Eur J Immunol 30(12):3718-22.
    [15]Bottino, C.,R. Biassoni, et al. (2000). "The human natural cytotoxicity receptors (NCR) that induce HLA class I-independent NK cell triggering." Hum Immunol 61(1):1-6.
    [16]Boyington, J. C., S. A. Motyka, et al. (2000). "Crystal structure of an NK cell immunoglobulin-like receptor in complex with its class I MHC ligand." Nature 405(6786):537-43.
    [17]Braud, V., E. Y. Jones, et al. (1997). "The human major histocompatibility complex class Ib molecule HLA-E binds signal sequence-derived peptides with primary anchor residues at positions 2 and 9." Eur J Immunol 27(5):1164-9.
    [18]Brooks, A. G., P. E. Posch, et al. (1997). "NKG2A complexed with CD94 defines a novel inhibitory natural killer cell receptor." J Exp Med 185(4):795-800.
    [19]Brown, M. H., K. Boles, et al. (1998). "2B4, the natural killer and T cell immunoglobulin superfamily surface protein, is a ligand for CD48." J Exp Med 188(11):2083-90.
    [20]Burshtyn, D. N., A. M. Scharenberg, et al. (1996). "Recruitment of tyrosine phosphatase HCP by the killer cell inhibitor receptor." Immunity 4(1):77-85.
    [21]Campbell, K. S., M. Dessing, et al. (1996). "Tyrosine phosphorylation of a human killer inhibitory receptor recruits protein tyrosine phosphatase 1C." J Exp Med
    184(1):93-100.
    [22]Cantoni, C., C. Bottino, et al. (1999). "Molecular and functional characterization of IRp60, a member of the immunoglobulin superfamily that functions as an inhibitory receptor in human NK cells." Eur J Immunol 29(10):3148-59.
    [23]Carretero, M., C. Cantoni, et al. (1997). "The CD94 and NKG2-A C-type lectins covalently assemble to form a natural killer cell inhibitory receptor for HLA class I molecules." Eur J Immunol 27(2):563-7.
    [24]Cerwenka, A., A. B. Bakker, et al. (2000). "Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice." Immunity 12(6):721-7.
    [25]Chan, H. W., Z. B. Kurago, et al. (2003). "DNA methylation maintains allele-specific KIR gene expression in human natural killer cells." J Exp Med 197(2):245-55.
    [26]Chang, C., J. Dietrich, et al. (1999). "Cutting edge:KAP10, a novel transmembrane adapter protein genetically linked to DAP12 but with unique signaling properties." J Immunol 163(9):4651-4.
    [27]Chapman, T. L., A. P. Heikeman, et al. (1999). "The inhibitory receptor LIR-1 uses a common binding interaction to recognize class I MHC molecules and the viral homolog UL18." Immunity 11(5):603-13.
    [28]Cocks, B. G., C. C. Chang, et al. (1995). "A novel receptor involved in T-cell activation." Nature 376(6537):260-3.
    [29]Coffey, A. J., R. A. Brooksbank, et al. (1998). "Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene." Nat Genet 20(2):129-35.
    [30]Colonna, M., F. Navarro, et al. (1997). "A common inhibitory receptor for major histocompatibility complex class I molecules on human lymphoid and myelomonocytic cells." J Exp Med 186(11):1809-18.
    [31]Colonna, M. and J. Samaridis (1995). "Cloning of immunoglobulin-superfamily members associated with HLA-C and HLA-B recognition by human natural killer cells." Science 268(5209):405-8.
    [32]Colonna, M., T. Spies, et al. (1992). "Alloantigen recognition by two human natural killer cell clones is associated with HLA-C or a closely linked gene." Proc Natl Acad Sci U S A 89(17):7983-5.
    [33]Cosman, D., N. Fanger, et al. (1997). "A novel immunoglobulin superfamily receptor for cellular and viral MHC class I molecules." Immunity 7(2):273-82.
    [34]Cosman, D., J. Mullberg, et al. (2001). "ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor." Immunity 14(2):123-33.
    [35]D'Andrea, A., C. Chang, et al. (1995). "Molecular cloning of NKB1. A natural killer cell receptor for HLA-B allotypes." J Immunol 155(5):2306-10.
    [36]Davis, S. J. and P. A. van der Merwe (1996). "The structure and ligand interactions of CD2:implications for T-cell function." Immunol Today 17(4): 177-87.
    [37]de la Fuente, M. A., P. Pizcueta, et al. (1997). "CD84 leukocyte antigen is a new member of the Ig superfamily." Blood 90(6):2398-405.
    [38]Derre, L., M. Corvaisier, et al. (2002). "Expression of CD94/NKG2-A on human T lymphocytes is induced by IL-12:implications for adoptive immunotherapy." J Immunol 168(10):4864-70.
    [39]Diefenbach, A., A. M. Jamieson, et al. (2000). "Ligands for the murine NKG2D receptor:expression by tumor cells and activation of NK cells and macrophages." Nat Immunol 1(2):119-26.
    [40]Falco, M., R. Biassoni, et al. (1999). "Identification and molecular cloning of p75/AIRM1, a novel member of the sialoadhesin family that functions as an inhibitory receptor in human natural killer cells." J Exp Med 190(6):793-802.
    [41]Falco, M., C. Cantoni, et al. (1999). "Identification of the rat homologue of the human NKp46 triggering receptor." Immunol Lett 68(2-3):411-4.
    [42]Faure, M. and E. O. Long (2002). "KIR2DL4 (CD158d), an NK cell-activating receptor with inhibitory potential." J Immunol 168(12):6208-14.
    [43]Ferrini, S., A. Cambiaggi, et al. (1994). "T cell clones expressing the natural killer cell-related p58 receptor molecule display heterogeneity in phenotypic properties and p58 function." Eur J Immunol 24(10):2294-8.
    [44]Ferrini, S., S. Miescher, et al. (1987). "Phenotypic and functional characterization of recombinant interleukin 2 (rIL 2)-induced activated killer cells:analysis at the population and clonal levels." J Immunol 138(4):1297-302.
    [45]Fry, A. M., L. L. Lanier, et al. (1996). "Phosphotyrosines in the killer cell inhibitory receptor motif of NKB1 are required for negative signaling and for association with protein tyrosine phosphatase 1C." J Exp Med 184(1):295-300.
    [46]Fu, G. F., S. Hao, et al. (2009). "Changes in NK cell counts and receptor
    expressions and emergence of CD3(dim)/CD56+cells in HIV-1 infected patients in China." Viral Immunol 22(2):105-16.
    [47]Garni-Wagner, B. A., A. Purohit, et al. (1993). "A novel function-associated molecule related to non-MHC-restricted cytotoxicity mediated by activated natural killer cells and T cells." J Immunol 151(1):60-70.
    [48]Gavioli, R., Q. J. Zhang, et al. (1996). "HLA-A11-mediated protection from NK cell-mediated lysis:role of HLA-A11-presented peptides." Hum Immunol 49(1): 1-12.
    [49]Gilmour, K. C., T. Cranston, et al. (2000). "Diagnosis of X-linked lymphoproliferative disease by analysis of SLAM-associated protein expression." Eur J Immunol 30(6):1691-7.
    [50]Goodridge, J. P., C. S. Witt, et al. (2003). "KIR2DL4 (CD158d) genotype influences expression and function in NK cells." J Immunol 171(4):1768-74.
    [51]Groh, V., S. Bahram, et al. (1996). "Cell stress-regulated human major histocompatibility complex class I gene expressed in gastrointestinal epithelium." Proc Natl Acad Sci U S A 93(22):12445-50.
    [52]Groh, V., R. Rhinehart, et al. (1999). "Broad tumor-associated expression and recognition by tumor-derived gamma delta T cells of MICA and MICB." Proc Natl Acad Sci U S A 96(12):6879-84.
    [53]Guethlein, L. A., L. R. Flodin, et al. (2002). "NK cell receptors of the orangutan (Pongo pygmaeus):a pivotal species for tracking the coevolution of killer cell Ig-like receptors with MHC-C." J Immunol 169(1):220-9.
    [54]Gumperz, J. E., L. D. Barber, et al. (1997). "Conserved and variable residues within the Bw4 motif of HLA-B make separable contributions to recognition by the NKB1 killer cell-inhibitory receptor." J Immunol 158(11):5237-41.
    [55]Gumperz, J. E., V. Litwin, et al. (1995). "The Bw4 public epitope of HLA-B molecules confers reactivity with natural killer cell clones that express NKB1, a putative HLA receptor." J Exp Med 181(3):1133-44.
    [56]Gumperz, J. E., N. M. Valiante, et al. (1996). "Heterogeneous phenotypes of expression of the NKB 1 natural killer cell class I receptor among individuals of different human histocompatibility leukocyte antigens types appear genetically regulated, but not linked to major histocompatibililty complex haplotype." J Exp Med 183(4):1817-27.
    [57]Gunturi, A., R. E. Berg, et al. (2003). "Preferential survival of CD8 T and NK
    cells expressing high levels of CD94." J Immunol 170(4):1737-45.
    [58]Hansasuta, P., T. Dong, et al. (2004). "Recognition of HLA-A3 and HLA-A11 by KIR3DL2 is peptide-specific." Eur J Immunol 34(6):1673-9.
    [59]Hoelsbrekken, S. E., O. Nylenna, et al. (2003). "Cutting edge:molecular cloning of a killer cell Ig-like receptor in the mouse and rat." J Immunol 170(5):2259-63.
    [60]Holmes, M. A., P. Li, et al. (2002). "Structural studies of allelic diversity of the MHC class I homolog MIC-B, a stress-inducible ligand for the activating immunoreceptor NKG2D." J Immunol 169(3):1395-400.
    [61]Houchins, J. P., L. L. Lanier, et al. (1997). "Natural killer cell cytolytic activity is inhibited by NKG2-A and activated by NKG2-C." J Immunol 158(8):3603-9.
    [62]Houchins, J. P., T. Yabe, et al. (1991). "DNA sequence analysis of NKG2, a family of related cDNA clones encoding type II integral membrane proteins on human natural killer cells." J Exp Med 173(4):1017-20.
    [63]Jabri, B., J. M. Selby, et al. (2002). "TCR specificity dictates CD94/NKG2A expression by human CTL." Immunity 17(4):487-99.
    [64]Jackson, D. G, D. N. Hart, et al. (1992). "Molecular cloning of a novel member of the immunoglobulin. gene superfamily homologous to the polymeric immunoglobulin receptor." Eur J Immunol 22(5):1157-63.
    [65]Jevremovic, D., D. D. Billadeau, et al. (1999). "Cutting edge:a role for the adaptor protein LAT in human NK cell-mediated cytotoxicity." J Immunol 162(5): 2453-6.
    [66]Katz, G., G. Markel, et al. (2001). "Recognition of HLA-Cw4 but not HLA-Cw6 by the NK cell receptor killer cell Ig-like receptor two-domain short tail number 4." J Immunol 166(12):7260-7.
    [67]Khakoo, S. I., R. Rajalingam, et al. (2000). "Rapid evolution of NK cell receptor systems demonstrated by comparison of chimpanzees and humans." Immunity 12(6):687-98.
    [68]Krajci, P., K. H. Grzeschik, et al. (1991). "The human transmembrane secretory component (poly-Ig receptor):molecular cloning, restriction fragment length polymorphism and chromosomal sublocalization." Hum Genet 87(6):642-8.
    [69]Kubin, M. Z., D. L. Parshley, et al. (1999). "Molecular cloning and biological characterization of NK cell activation-inducing ligand, a counterstructure for CD48." Eur J Immunol 29(11):3466-77.
    [70]Kuttruff, S., S. Koch, et al. (2009). "NKp80 defines and stimulates a reactive
    subset of CD8 T cells." Blood 113(2):358-69.
    [71]Lanier, L. L. (1997). "Natural killer cell receptors and MHC class I interactions." CurrOpin Immunol 9(1):126-31.
    [72]Lanier, L. L. (1998). "NK cell receptors." Annu Rev Immunol 16:359-93.
    [73]Lanier, L. L. (2005). "NK cell recognition." Annu Rev Immunol 23:225-74.
    [74]Lanier, L. L., B. Corliss, et al. (1997). "Arousal and inhibition of human NK cells." Immunol Rev 155:145-54.
    [75]Lanier, L. L., B. Corliss, et al. (1998). "Association of DAP12 with activating CD94/NKG2C NK cell receptors." Immunity 8(6):693-701.
    [76]Lanier, L. L., B. C. Corliss, et al. (1998). "Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells." Nature 391(6668):703-7.
    [77]Latchman, Y., P. F. McKay, et al. (1998). "Identification of the 2B4 molecule as a counter-receptor for CD48." J Immunol 161(11):5809-12.
    [78]Lazetic, S., C. Chang, et al. (1996). "Human natural killer cell receptors involved in MHC class I recognition are disulfide-linked heterodimers of CD94 and NKG2 subunits." J Immunol 157(11):4741-5.
    [79]Le Drean, E., F. Vely, et al. (1998). "Inhibition of antigen-induced T cell response and antibody-induced NK cell cytotoxicity by NKG2A:association of NKG2A with SHP-1 and SHP-2 protein-tyrosine phosphatases." Eur J Immunol 28(1): 264-76.
    [80]Lee, N., D. R. Goodlett, et al. (1998). "HLA-E surface expression depends on binding of TAP-dependent peptides derived from certain HLA class I signal sequences." J Immunol 160(10):4951-60.
    [81]Lepin, E. J., J. M. Bastin, et al. (2000). "Functional characterization of HLA-F and binding of HLA-F tetramers to ILT2 and ILT4 receptors." Eur J Immunol 30(12):3552-61.
    [82]Li, P., D. L. Morris, et al. (2001). "Complex structure of the activating immunoreceptor NKG2D and its MHC class I-like ligand MICA." Nat Immunol 2(5):443-51.
    [83]Li, P., S. T. Willie, et al. (1999). "Crystal structure of the MHC class I homolog MIC-A, a gammadelta T cell ligand." Immunity 10(5):577-84.
    [84]Litwin, V., J. Gumperz, et al. (1994). "NKB1:a natural killer cell receptor involved in the recognition of polymorphic HLA-B molecules." J Exp Med
    180(2):537-43.
    [85]Llano, M., N. Lee, et al. (1998). "HLA-E-bound peptides influence recognition by inhibitory and triggering CD94/NKG2 receptors:preferential response to an HLA-G-derived nonamer." Eur J Immunol 28(9):2854-63.
    [86]Long, E. O. (1999). "Regulation of immune responses through inhibitory receptors." Annu Rev Immunol 17:875-904.
    [87]Malarkannan, S., P. P. Shih, et al. (1998). "The molecular and functional characterization of a dominant minor H antigen, H60." J Immunol 161(7): 3501-9.
    [88]Malnati, M. S., M. Peruzzi, et al. (1995). "Peptide specificity in the recognition of MHC class I by natural killer cell clones." Science 267(5200):1016-8.
    [89]Martin, A. M., J. K. Kulski,et al. (2004). "Comparative genomic analysis, diversity and evolution of two KIR haplotypes A and B." Gene 335:121-31.
    [90]Martin, M. P., G. Nelson, et al. (2002). "Cutting edge:susceptibility to psoriatic arthritis:influence of activating killer Ig-like receptor genes in the absence of specific HLA-C alleles." J Immunol 169(6):2818-22.
    [91]Mathew, P. A., B. A. Garni-Wagner, et al. (1993). "Cloning and characterization of the 2B4 gene encoding a molecule associated with non-MHC-restricted killing mediated by activated natural killer cells and T cells." J Immunol 151(10): 5328-37.
    [92]McFarland, B. J., T. Kortemme, et al. (2003). "Symmetry recognizing asymmetry: analysis of the interactions between the C-type lectin-like immunoreceptor NKG2D and MHC class I-like ligands." Structure 11(4):411-22.
    [93]McMahon, C. W., A. J. Zajac, et al. (2002). "Viral and bacterial infections induce expression of multiple NK cell receptors in responding CD8(+) T cells." J Immunol 169(3):1444-52.
    [94]Meyaard, L., G. J. Adema, et al. (1997). "LAIR-1, a novel inhibitory receptor expressed on human mononuclear leukocytes." Immunity 7(2):283-90.
    [95]Michaelsson, J., C. Teixeira de Matos, et al. (2002). "A signal peptide derived from hsp60 binds HLA-E and interferes with CD94/NKG2A recognition." J Exp Med 196(11):1403-14.
    [96]Miller, J. S. and V. McCullar (2001). "Human natural killer cells with polyclonal lectin and immunoglobulinlike receptors develop from single hematopoietic stem cells with preferential expression of NKG2A and KIR2DL2/L3/S2." Blood 98(3):
    705-13.
    [97]Mingari, M. C., M. Ponte, et al. (1998). "HLA class I-specific inhibitory receptors in human T lymphocytes:interleukin 15-induced expression of CD94/NKG2A in superantigen-or alloantigen-activated CD8+T cells." Proc Natl Acad Sci U S A 95(3):1172-7.
    [98]Mingari, M. C., C. Vitale, et al. (1997). "Interleukin-15-induced maturation of human natural killer cells from early thymic precursors:selective expression of CD94/NKG2-A as the only HLA class I-specific inhibitory receptor." Eur J Immunol 27(6):1374-80.
    [99]Momot, T., S. Koch, et al. (2004). "Association of killer cell immunoglobulin-like receptors with scleroderma." Arthritis Rheum 50(5):1561-5.
    [100]Moretta, A., R. Biassoni, et al. (2000). "Natural cytotoxicity receptors that trigger human NK-cell-mediated cytolysis." Immunol Today 21(5):228-34.
    [101]Moretta, A., R. Biassoni, et al. (1997). "Major histocompatibility complex class I-specific receptors on human natural killer and T lymphocytes." Immunol Rev 155:105-17.
    [102]Moretta, A., C. Bottino, et al. (1990). "Identification of four subsets of human CD3-CD16+natural killer (NK) cells by the expression of clonally distributed functional surface molecules:correlation between subset assignment of NK clones and ability to mediate specific alloantigen recognition." J Exp Med 172(6): 1589-98.
    [103]Moretta, A., C. Bottino, et al. (1992). "Novel surface molecules involved in human NK cell activation and triggering of the lytic machinery." Int J Cancer Suppl 7:6-10.
    [104]Moretta, A., C. Bottino, et al. (1996). "Receptors for HLA class-I molecules in human natural killer cells." Annu Rev Immunol 14:619-48.
    [105]Moretta, A., C. Bottino, et al. (2001). "Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis." Annu Rev Immunol 19: 197-223.
    [106]Moser, J. M., J. Gibbs, et al. (2002). "CD94-NKG2A receptors regulate antiviral CD8(+) T cell responses." Nat Immunol 3(2):189-95.
    [107]Nakajima, H., M. Cella, et al. (1999). "Activating interactions in human NK cell recognition:the role of 2B4-CD48." Eur J Immunol 29(5):1676-83.
    [108]Natarajan, K., N. Dimasi, et al. (2002). "Structure and function of natural killer cell receptors:multiple molecular solutions to self, nonself discrimination." Annu Rev Immunol 20:853-85.
    [109]Nichols, K. E., D. P. Harkin, et al. (1998). "Inactivating mutations in an SH2 domain-encoding gene in X-linked lymphoproliferative syndrome." Proc Natl Acad Sci U S A 95(23):13765-70.
    [110]Nicoll, G., J. Ni, et al. (1999). "Identification and characterization of a novel siglec, siglec-7, expressed by human natural killer cells and monocytes." J Biol Chem 274(48):34089-95.
    [111]Nomura, M., Z. Zou, et al. (1996). "Genomic structures and characterization of Rael family members encoding GPI-anchored cell surface proteins and expressed predominantly in embryonic mouse brain." J Biochem 120(5):987-95.
    [112]Olcese, L., A. Cambiaggi, et al. (1997). "Human killer cell activatory receptors for MHC class I molecules are included in a multimeric complex expressed by natural killer cells." J Immunol 158(11):5083-6.
    [113]Olcese, L., P. Lang, et al. (1996). "Human and mouse killer-cell inhibitory receptors recruit PTP1C and PTP1D protein tyrosine phosphatases." J Immunol 156(12):4531-4.
    [114]Parolini, S., C. Bottino, et al. (2000). "X-linked lymphoproliferative disease. 2B4 molecules displaying inhibitory rather than activating function are responsible for the inability of natural killer cells to kill Epstein-Barr virus-infected cells." J Exp Med 192(3):337-46.
    [115]Pende, D., C. Cantoni, et al. (20013). "Role of NKG2D in tumor cell lysis mediated by human NK cells:cooperation with natural cytotoxicity receptors and capability of recognizing tumors of nonepithelial origin." Eur J Immunol 31(4): 1076-86.
    [116]Pende, D., S. Parolini, et al. (1999). "Identification and molecular characterization of NKp30, a novel triggering receptor involved in natural cytotoxicity mediated by human natural killer cells." J Exp Med 190(10): 1505-16.
    [117]Peruzzi, M., K. C. Parker, et al. (1996). "Peptide sequence requirements for the recognition of HLA-B*2705 by specific natural killer cells." J Immunol 157(8):3350-6.
    [118]Peruzzi, M., N. Wagtmann, et al. (1996). "A p70 killer cell inhibitory receptor specific for several HLA-B allotypes discriminates among peptides bound to
    HLA-B*2705." J Exp Med 184(4):1585-90.
    [119]Pessino, A., S. Sivori, et al. (1998). "Molecular cloning of NKp46:a novel member of the immunoglobulin superfamily involved in triggering of natural cytotoxicity." J Exp Med 188(5):953-60.
    [120]Phillips, J. H., J. E. Gumperz, et al. (1995). "Superantigen-dependent, cell-mediated cytotoxicity inhibited by MHC class I receptors on T lymphocytes." Science 268(5209):403-5.
    [121]Plougastel, B. and J. Trowsdale (1997). "Cloning of NKG2-F, a new member of the NKG2 family of human natural killer cell receptor genes." Eur J Immunol 27(11):2835-9.
    [122]Poggi, A., N. Pella, et al. (1995). "p40, a novel surface molecule involved in the regulation of the non-major histocompatibility complex-restricted cytolytic activity in humans." Eur J Immunol 25(2):369-76.
    [123]Purtilo, D. T., C. Cassel, et al. (1974). "Letter:Fatal infectious mononucleosis in familial lymphohistiocytosis." N Engl J Med 291(14):736.
    [124]Radaev, S., B. Rostro, et al. (2001). "Conformational plasticity revealed by the cocrystal structure of NKG2D and its class I MHC-like ligand ULBP3." Immunity 15(6):1039-49.
    [125]Rajagopalan, S. and E. O. Long (1997). "The direct binding of a p58 killer cell inhibitory receptor to human histocompatibility leukocyte antigen (HLA)-Cw4 exhibits peptide selectivity." J Exp Med 185(8):1523-8.
    [126]Rajalingam, R., P. Parham, et al. (2004). "Domain shuffling has been the main mechanism forming new hominoid killer cell Ig-like receptors." J Immunol 172(1):356-69.
    [127]Roda-Navarro, P., I. Arce, et al. (2000). "Human KLRF1, a novel member of the killer cell lectin-like receptor gene family:molecular characterization, genomic structure, physical mapping to the NK gene complex and expression analysis." Eur J Immunol 30(2):568-76.
    [128]Rosenberg, S. A. and M. T. Lotze (1986). "Cancer immunotherapy using interleukin-2 and interleukin-2-activated lymphocytes." Annu Rev Immunol 4: 681-709.
    [129]Sandrin, M. S., T. P. Gumley, et al. (1992). "Isolation and characterization of cDNA clones for mouse Ly-9." J Immunol 149(5):1636-41.
    [130]Santourlidis, S., H. I. Trompeter, et al. (2002). "Crucial role of DNA methylation in determination of clonally distributed killer cell Ig-like receptor expression patterns in NK cells." J Immunol 169(8):4253-61.
    [131]Sayos, J., C. Wu, et al. (1998). "The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM." Nature 395(6701):462-9.
    [132]Schuhmachers, G., K. Ariizumi, et al. (1995). "Activation of murine epidermal gamma delta T cells through surface 2B4." Eur J Immunol 25(4): 1117-20.
    [133]Seemayer, T. A., T. G. Gross, et al. (1995). "X-linked lymphoproliferative disease:twenty-five years after the discovery." Pediatr Res 38(4):471-8.
    [134]Selvakumar, A., U. Steffens, et al. (1996). "NK cell receptor gene of the KIR family with two IG domains but highest homology to KIR receptors with three IG domains." Tissue Antigens 48(4 Pt 1):285-94.
    [135]Shilling, H. G., N. Young, et al. (2002). "Genetic control of human NK cell repertoire." J Immunol 169(1):239-47.
    [136]Shum, B. P., L. R. Flodin, et al. (2002). "Conservation and variation in human and common chimpanzee CD94 and NKG2 genes." J Immunol 168(1): 240-52.
    [137]Simmons, D. and B. Seed (1988). "Isolation of a cDNA encoding CD33, a differentiation antigen of myeloid progenitor cells." J Immunol 141(8):2797-800.
    [138]Sivakamasundari, R., A. Raghunathan, et al. (2000). "Expression and cellular localization of the protein encoded by the 1C7 gene:a recently described component of the MHC." Immunogenetics 51(8-9):723-32.
    [139]Sivori, S., S. Parolini, et al. (2000). "2B4 functions as a co-receptor in human NK cell activation." Eur J Immunol 30(3):787-93.
    [140]Sivori, S., D. Pende, et al. (1999). "NKp46 is the major triggering receptor involved in the natural cytotoxicity of fresh or cultured human NK cells. Correlation between surface density of NKp46 and natural cytotoxicity against autologous, allogeneic or xenogeneic target cells." Eur J Immunol 29(5): 1656-66.
    [141]Sivori, S., M. Vitale, et al. (1997). "p46, a novel natural killer cell-specific surface molecule that mediates cell activation." J Exp Med 186(7):1129-36.
    [142]Snyder, M. R., M. Lucas, et al. (2003). "Selective activation of the c-Jun NH2-terminal protein kinase signaling pathway by stimulatory KIR in the
    absence of KARAP/DAP12 in CD4+T cells." J Exp Med 197(4):437-49.
    [143]Storset, A. K., I. O. Slettedal, et al. (2003). "Natural killer cell receptors in cattle:a bovine killer cell immunoglobulin-like receptor multigene family contains members with divergent signaling motifs." Eur J Immunol 33(4): 980-90.
    [144]Suzuki, Y., Y. Hamamoto, et al. (2004). "Genetic polymorphisms of killer cell immunoglobulin-like receptors are associated with susceptibility to psoriasis vulgaris." J Invest Dermatol 122(5):1133-6.
    [145]Takahashi, T., M. Yawata, et al. (2004). "Natural killer cell receptors in the horse:evidence for the existence of multiple transcribed LY49 genes." Eur J Immunol 34(3):773-84.
    [146]Tangye, S. G., S. Lazetic, et al. (1999). "Cutting edge:human 2B4, an activating NK cell receptor, recruits the protein tyrosine phosphatase SHP-2 and the adaptor signaling protein SAP." J Immunol 162(12):6981-5.
    [147]Tangye, S. G., J. H. Phillips, et al. (2000). "The CD2-subset of the Ig superfamily of cell surface molecules:receptor-ligand pairs expressed by NK cells and other immune cells." Semin Immunol 12(2):149-57.
    [148]Tangye, S. G., J. H. Phillips, et al. (2000). "Functional requirement for SAP in 2B4-mediated activation of human natural killer cells as revealed by the X-linked lymphoproliferative syndrome." J Immunol 165(6):2932-6.
    [149]Thomas, M. L. (1995). "Of ITAMs and ITIMs:turning on and off the B cell antigen receptor." J Exp Med 181(6):1953-6.
    [150]Torkar, M., A. Haude, et al. (2000). "Arrangement of the ILT gene cluster:a common null allele of the ILT6 gene results from a 6.7-kbp deletion." Eur J Immunol 30(12):3655-62.
    [151]Toyama-Sorimachi, N., Y. Taguchi, et al. (2001). "Mouse CD94 participates in Qa-1-mediated self recognition by NK cells and delivers inhibitory signals independent of Ly-49." J Immunol 166(6):3771-9.
    [152]Trinchieri, G (1989). "Biology of natural killer cells." Adv Immunol 47: 187-376.
    [153]Uhrberg, M., N. M. Valiante, et al. (1997). "Human diversity in killer cell inhibitory receptor genes." Immunity 7(6):753-63.
    [154]Vales-Gomez, M., H. T. Reyburn, et al. (1999). "Kinetics and peptide dependency of the binding of the inhibitory NK receptor CD94/NKG2-A and the activating receptor CD94/NKG2-C to HLA-E." EMBO J 18(15):4250-60.
    [155]Vales-Gomez, M., H. T. Reyburn, et al. (1998). "Differential binding to HLA-C of p50-activating and p58-inhibitory natural killer cell receptors." Proc Natl Acad Sci U S A 95(24):14326-31.
    [156]Valiante, N. M. and G. Trinchieri (1993). "Identification of a novel signal transduction surface molecule on human cytotoxic lymphocytes." J Exp Med 178(4):1397-406.
    [157]Vance, R. E., A. M. Jamieson, et al. (1999). "Recognition of the class Ib molecule Qa-l(b) by putative activating receptors CD94/NKG2C and CD94/NKG2E on mouse natural killer cells." J Exp Med 190(12):1801-12.
    [158]Vitale, C., C. Romagnani, et al. (1999). "Engagement of p75/AIRM1 or CD33 inhibits the proliferation of normal or leukemic myeloid cells." Proc Natl Acad Sci U S A 96(26):15091-6.
    [159]Vitale, M., C. Bottino, et al. (1998). "NKp44, a novel triggering surface molecule specifically expressed by activated natural killer cells, is involved in non-major histocompatibility complex-restricted tumor cell lysis." J Exp Med 187(12):2065-72.
    [160]Vitale, M., M. Falco, et al. (2001). "Identification of NKp80, a novel triggering molecule expressed by human NK cells." Eur J Immunol 31(1): 233-42.
    [161]Vivier, E., E. Tomasello, et al. (2002). "Lymphocyte activation via NKG2D: towards a new paradigm in immune recognition?" Curr Opin Immunol 14(3): 306-11.
    [162]Wagtmann, N., R. Biassoni, et al. (1995). "Molecular clones of the p58 NK cell receptor reveal immunoglobulin-related molecules with diversity in both the extra-and intracellular domains." Immunity 2(5):439-49.
    [163]Watzl, C., C. C. Stebbins, et al. (2000). "NK cell inhibitory receptors prevent tyrosine phosphorylation of the activation receptor 2B4 (CD244)." J Immunol 165(7):3545-8.
    [164]Welch, A. Y., M. Kasahara, et al. (2003). "Identification of the mouse killer immunoglobulin-like receptor-like (Kirl) gene family mapping to chromosome X." Immunogenetics 54(11):782-90.
    [165]Welte, S., S. Kuttruff, et al. (2006). "Mutual activation of natural killer cells and monocytes mediated by NKp80-AICL interaction." Nat Immunol 7(12):
    1334-42.
    [166]Wilson, M. J., M. Torkar, et al. (2000). "Plasticity in the organization and sequences of human KIR/ILT gene families." Proc Natl Acad Sci U S A 97(9): 4778-83.
    [167]Winter, C. C., J. E. Gumperz, et al. (1998). "Direct binding and functional transfer of NK cell inhibitory receptors reveal novel patterns of HLA-C allotype recognition." J Immunol 161(2):571-7.
    [168]Wu, J., H. Cherwinski, et al. (2000). "DAP10 and DAP12 form distinct, but functionally cooperative, receptor complexes in natural killer cells." J Exp Med 192(7):1059-68.
    [169]Wu, J., Y. Song, et al. (1999). "An activating immunoreceptor complex formed by NKG2D and DAP10." Science 285(5428):730-2.
    [170]Yen, J. H., B. E. Moore, et al. (2001). "Major histocompatibility complex class I-recognizing receptors are disease risk genes in rheumatoid arthritis." JExp Med 193(10):1159-67.
    [171]Yokoyama, W. M. and B. F. Plougastel (2003). "Immune functions encoded by the natural killer gene complex." Nat Rev Immunol 3(4):304-16.
    [172]Yusa, S., T. L. Catina, et al. (2002). "SHP-1- and phosphotyrosine-independent inhibitory signaling by a killer cell Ig-like receptor cytoplasmic domain in human NK cells." J Immunol 168(10):5047-57.
    [173]Zappacosta, F., F. Borrego, et al. (1997). "Peptides isolated from HLA-Cw*0304 confer different degrees of protection from natural killer cell-mediated lysis." Proc Natl Acad Sci U S A 94(12):6313-8.
    [174]Zhang, W., J. Sloan-Lancaster, et al. (1998). "LAT:the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation." Cell 92(1): 83-92.
    [1]Bauer, S., V. Groh, et al. (1999). "Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA." Science 285(5428):727-9.
    [2]Bellon, T., A. B. Heredia, et al. (1999). "Triggering of effector functions on a CD8+T cell clone upon the aggregation of an activatory CD94/kp39 heterodimer." J Immunol 162(7):3996-4002.
    [3]Biassoni, R., C. Cantoni, et al. (2001). "Human natural killer cell receptors and co-receptors." Immunol Rev 181:203-14.
    [4]Borrego, F., J. Kabat, et al. (2002). "Structure and function of major histocompatibility complex (MHC) class I specific receptors expressed on human natural killer (NK) cells." Mol Immunol 38(9):637-60.
    [5]Brooks, A. G., P. E. Posch, et al. (1997). "NKG2A complexed with CD94 defines a novel inhibitory natural killer cell receptor." J Exp Med 185(4):795-800.
    [6]Brostjan, C., T. Bellon, et al. (2002). "Differential expression of inhibitory and activating CD94/NKG2 receptors on NK cell clones." J Immunol Methods 264(1-2):109-19.
    [7]Carretero, M., C. Cantoni, et al. (1997). "The CD94 and NKG2-A C-type lectins covalently assemble to form a natural killer cell inhibitory receptor for HLA class I molecules." Eur J Immunol 27(2):563-7.
    [8]Carretero, M., G. Palmieri, et al. (1998). "Specific engagement of the CD94/NKG2-A killer inhibitory receptor by the HLA-E class Ib molecule induces SHP-1 phosphatase recruitment to tyrosine-phosphorylated NKG2-A: evidence for receptor function in heterologous transfectants." Eur J Immunol 28(4):1280-91.
    [9]Carson, W. E., J. G. Giri, et al. (1994). "Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor." J Exp Med 180(4):1395-403.
    [10]Cerwenka, A. and L. L. Lanier (2003). "NKG2D ligands:unconventional MHC class I-like molecules exploited by viruses and cancer." Tissue Antigens 61(5): 335-43.
    [11]Cosman, D., J. Mullberg, et al. (2001). "ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity
    through the NKG2D receptor." Immunity 14(2):123-33.
    [12]Dissen, E., S. F. Berg, et al. (1997). "Molecular characterization of a gene in the rat homologous to human CD94." Eur J Immunol 27(8):2080-6.
    [13]Domzig, W., B. M. Stadler, et al. (1983). "Interleukin 2 dependence of human natural killer (NK) cell activity." J Immunol 130(4):1970-3.
    [14]Donnadieu, E., M. H. Jouvin, et al. (2003). "Competing functions encoded in the allergy-associated F(c)epsilonRIbeta gene." Immunity 18(5):665-74.
    [15]Farag, S. S. and M. A. Caligiuri (2006). "Human natural killer cell development and biology." Blood Rev 20(3):123-37.
    [16]Faure, M. and E. O. Long (2002). "KIR2DL4 (CD158d), an NK cell-activating receptor with inhibitory potential." J Immunol 168(12):6208-14.
    [17]Fu, G. F., S. Hao, et al. (2009). "Changes in NK cell counts and receptor expressions and emergence of CD3(dim)/CD56+cells in HIV-1 infected patients in China." Viral Immunol 22(2):105-16.
    [18]Glienke, J., Y. Sobanov, et al. (1998). "The genomic organization of NKG2C, E, F, and D receptor genes in the human natural killer gene complex." Immunogenetics 48(3):163-73.
    [19]Henney, C. S., K. Kuribayashi, et al. (1981). "Interleukin-2 augments natural killer cell activity." Nature 291(5813):335-8.
    [20]Hofer, E., Y. Sobanov, et al. (2001). "The centromeric part of the human natural killer (NK) receptor complex:lectin-like receptor genes expressed in NK, dendritic and endothelial cells." Immunol Rev 181:5-19.
    [21]Holmes, M. A., P. Li, et al. (2002). "Structural studies of allelic diversity of the MHC class I homolog MIC-B, a stress-inducible ligand for the activating immunoreceptor NKG2D." J Immunol 169(3):1395-400.
    [22]Houchins, J. P., T. Yabe, et al. (1991). "DNA sequence analysis of NKG2, a family of related cDNA clones encoding type Ⅱ integral membrane proteins on human natural killer cells." J Exp Med 173(4):1017-20.
    [23]Kabat, J., F. Borrego, et al. (2002). "Role that each NKG2A immunoreceptor tyrosine-based inhibitory motif plays in mediating the human CD94/NKG2A inhibitory signal." J Immunol 169(4):1948-58.
    [24]Karre, K. (1997). "How to recognize a foreign submarine." Immunol Rev 155: 5-9.
    [25]Kim, D. K., J. Kabat, et al. (2004). "Human NKG2F is expressed and can
    associate with DAP12." Mol Immunol 41(1):53-62.
    [26]Kuttruff, S., S. Koch, et al. (2009). "NKp80 defines and stimulates a reactive subset of CD8 T cells." Blood 113(2):358-69.
    [27]Lanier, L. L. (2001). "On guard-activating NK cell receptors." Nat Immunol 2(1): 23-7.
    [28]Lanier, L. L. (2005). "NK cell recognition." Annu Rev Immunol 23:225-74.
    [29]Lanier, L. L., B. Corliss, et al. (1998). "Association of DAP12 with activating CD94/NKG2C NK cell receptors." Immunity 8(6):693-701.
    [30]Lanier, L. L., B. C. Corliss, et al. (1998). "Immunoreceptor DAP12 bearing a tyrosine-based activation motif is involved in activating NK cells." Nature 391(6668):703-7.
    [31]Lazetic, S., C. Chang, et al. (1996). "Human natural killer cell receptors involved in MHC class I recognition are disulfide-linked heterodimers of CD94 and NKG2 subunits." J Immunol 157(11):4741-5.
    [32]Le Drean, E., F. Vely, et al. (1998). "Inhibition of antigen-induced T cell response and antibody-induced NK cell cytotoxicity by NKG2A:association of NKG2A with SHP-1 and SHP-2 protein-tyrosine phosphatases." Eur J Immunol 28(1): 264-76.
    [33]Li, P., D. L. Morris, et al. (2001). "Complex structure of the activating immunoreceptor NKG2D and its MHC class I-like ligand MICA." Nat Immunol 2(5):443-51.
    [34]Li, P., S. T. Willie, et al. (1999). "Crystal structure of the MHC class I homolog MIC-A, a gammadelta T cell ligand." Immunity 10(5):577-84.
    [35]Llano, M., N. Lee, et al. (1998). "HLA-E-bound peptides influence recognition by inhibitory and triggering CD94/NKG2 receptors:preferential response to an HLA-G-derived nonamer." Eur J Immunol 28(9):2854-63.
    [36]Lohwasser, S., P. Hande, et al. (1999). "Cloning of murine NKG2A, B and C: second family of C-type lectin receptors on murine NK cells." Eur J Immunol 29(3):755-61.
    [37]Long, E. O. and S. Rajagopalan (2000). "HLA class I recognition by killer cell Ig-like receptors." Semin Immunol 12(2):101-8.
    [38]McFarland, B. J., T. Kortemme, et al. (2003). "Symmetry recognizing asymmetry: analysis of the interactions between the C-type lectin-like immunoreceptor NKG2D and MHC class I-like ligands." Structure 11(4):411-22.
    [39]Moretta, A., C. Bottino, et al. (2002). "What is a natural killer cell?" Nat Immunol 3(1):6-8.
    [40]Moretta, A., C. Bottino, et al. (2001). "Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis." Annu Rev Immunol 19: 197-223.
    [41]Moretta, L., R. Biassoni, et al. (2000). "Human NK-cell receptors." Immunol Today 21(9):420-2.
    [42]Navarro, F., M. Llano, et al. (1999). "NK cell mediated recognition of HLA class Ib molecules:role of CD94/NKG2 receptors." J Reprod Immunol 43(2):167-73.
    [43]Plougastel, B. and J. Trowsdale (1997). "Cloning of NKG2-F, a new member of the NKG2 family of human natural killer cell receptor genes." Eur J Immunol 27(11):2835-9.
    [44]Radaev, S., B. Rostro, et al. (2001). "Conformational plasticity revealed by the cocrystal structure of NKG2D and its class I MHC-like ligand ULBP3." Immunity 15(6):1039-49.
    [45]Roda-Navarro, P., I. Arce, et al. (2000). "Human KLRF1, a novel member of the killer cell lectin-like receptor gene family:molecular characterization, genomic structure, physical mapping to the NK gene complex and expression analysis." Eur J Immunol 30(2):568-76.
    [46]Trinchieri, G. (1989). "Biology of natural killer cells." Adv Immunol 47:187-376.
    [47]Trinchieri, G., M. Matsumoto-Kobayashi, et al. (1984). "Response of resting human peripheral blood natural killer cells to interleukin 2." J Exp Med 160(4): 1147-69.
    [48]Vales-Gomez, M., H. Reyburn, et al. (2000). "Interaction between the human NK receptors and their ligands." Crit Rev Immunol 20(3):223-44.
    [49]Vales-Gomez, M., H. T. Reyburn, et al. (1999). "Kinetics and peptide dependency of the binding of the inhibitory NK receptor CD94/NKG2-A and the activating receptor CD94/NKG2-C to HLA-E." EMBO J 18(15):4250-60.
    [50]Vitale, M., M. Falco, et al. (2001). "Identification of NKp80, a novel triggering molecule expressed by human NK cells." Eur J Immunol 31(1):233-42.
    [51]Vivier, E., E. Tomasello, et al. (2002). "Lymphocyte activation via NKG2D: towards a new paradigm in immune recognition?" Curr Opin Immunol 14(3): 306-11.
    [52]Wang, C., J. Li, et al. (2004). "The role of innate immune cells in the response of heat-treated Mycobacterium tuberculosis (M.tb) antigens stimulating PBMCs." Cell Mol Immunol 1(6):467-70.
    [53]Welte, S., S. Kuttruff, et al. (2006). "Mutual activation of natural killer cells and monocytes mediated by NKp80-AICL interaction." Nat Immunol 7(12):1334-42.
    [54]Wilson, M. J., J. A. Lindquist, et al. (2000). "DAP12 and KAP10 (DAP10)-novel transmembrane adapter proteins of the CD3zeta family." Immunol Res 22(1): 21-42.
    [55]Wu, J., H. Cherwinski, et al. (2000). "DAP10 and DAP12 form distinct, but functionally cooperative, receptor complexes in natural killer cells." J Exp Med 192(7):1059-68.
    [56]Yokoyama, W. M. and B. F. Plougastel (2003). "Immune functions encoded by the natural killer gene complex." Nat Rev Immunol 3(4):304-16.