功能金纳米材料的合成、应用及光学显微成像技术的开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,功能化的纳米材料(如碳纳米管,硅纳米线,贵金属纳米材料等)在物理学、化学和生物学等方面的广泛应用,引起了研究人员极大的关注。其中,金纳米材料由于其独特的光学性质成为研究工作的热点。目前,随着对金纳米材料的合成方法的不断改进和表征技术的探索,各种形状、各种尺寸、多种特性的金纳米材料层出不穷,使得它们在催化、传感、成像和生物医学等领域都扮演着重要的角色。尽管现在它们的应用范围已经很宽,然而,许多重要的问题仍然悬而未决。比如,当纳米材料作为载体时如何提高它们的载药效率,如何在生理环境下保持纳米胶体材料的稳定性,如何在较复杂的环境中(如活细胞体系中)去分辨哪些是纳米粒子等。为了解决这些问题,我们如果开发出一种简便但却功能强大的成像方法,对于研究和分析在高的时空分辨率下单个纳米颗粒的动态运动过程等现象则很有帮助。为此,在本论文中:
     (1)首先,我们选择了适合的方法分别合成了18nm,40nm和60nm的球形金纳米颗粒。由于球形的金纳米颗粒是一种等离子体共振的材料,所以它对于不同的波长的光有着不同的响应,尤其是在它的最大吸收波长处有着很高的散射截面积。利用这样的特性,在接下来的工作中,我们将金纳米颗粒作为一个模板粒子,分析探讨了前面所述的这些动态过程。
     (2)基于传统的暗场成像技术,我们开发了一个双波长的暗场显微系统。在这里,我们仅仅是把显微镜的传统光源替换成了两束不同波长的激光,其中一束是所要观察颗粒的最大吸收波长,另一束作为参比波长。利用这个系统,我们在复杂体系中能够实现将金纳米颗粒轻松地分辨出来,并用不同的生物分子修饰后的金纳米颗粒进行了成像,充分验证了该方法的可靠性(第二章)。除此以外,我们还利用了该方法详细地研究了纳米颗粒与细胞之间的作用状态,探讨分析了金纳米颗粒在细胞膜表面的扩散运动模式并合理解释了细胞内吞金纳米颗粒的动态过程(第三章)。另外,我们依旧使用双波长的暗场成像技术对单个的金纳米棒进行了成像。金纳米棒是具有各向异性的纳米材料,通过分析其长轴和短轴的振荡模式,我们实现了对单个金纳米棒在三维空间内的位置和角度的信息的获得(第四章)。接下来,我们应用该方法研究了金纳米棒在细胞膜表面的运动行为,发现修饰后的金纳米棒与细胞膜表面受体间的结合过程是独立的,与金纳米棒的横向扩散模式无关(第五章)。
     (3)细胞穿膜肽是一种有效的能够将颗粒带入细胞内部的生物分子。而人工磷脂双分子膜作为模拟活细胞膜的模型,来研究修饰了细胞穿膜肽的纳米颗粒在磷脂双分子膜上的运动行为十分具有意义。在这个工作中,我们发现,修饰了细胞穿膜肽的金纳米颗粒在磷脂膜上的吸附过程是十分缓慢的,但是一旦发生吸附,其扩散模式是运动受限的。我们又根据其他的一些实验现象推测,金纳米颗粒之所以有这样的运动行为是因为它在磷脂膜的表面形成了小的区域范围,并且我们用金纳米棒在磷脂双分子膜上的空间构型分析的实验也间接地证明了这一点(第六章)。
     (4)金纳米团簇由于具有很好的荧光效应,容易制备,低毒性等优点被逐渐地应用到多个方面。在这里,我们利用非常温和的反应条件,制备了能发出荧光的金纳米团簇,并将其修饰上了叶酸分子,来对肿瘤细胞进行特异性的识别。实验结果表明,利用普通的荧光显微镜,我们就非常容易地对金纳米团簇进行成像。这对于肿瘤细胞的标记是一个很好的应用。此外,我们又用同样的方法制备了银纳米团簇,它对于肿瘤细胞具有同样的标记效果(第七章)。
Recently, functional nanomaterials (e.g. carbon nanotubes, silica nanowires, noblemetal nanostructures and so on) have received great attention in physics, chemistry andbiology. Among those nanomaterials, the gold nanostructure has become a “hot-spot”due to its unique photo-physical properties. Along with the enormous exploration ofnew synthesis and characterization methods, variety of novel gold nanostructures withdifferent shape and size have been synthesized and they are playing important role incatalysis, biosensing, optical imaging, biomedicine and so on. Despite their significantapplications, some important questions have to be addressed in advance before theirfurther usage in these areas. For example, how to improve the drug-loading efficiencywhen they are served as functional nanocarrier? How to control the colloidal stabilityin physiological solutions? How to elucidate the interaction mechanism between goldnanostructures and cellular membrane for the improvement of translocation efficiency?How to discriminate the target nanoparticle from the interfering signals inside livingcells? In order to provide insightful information to these questions, we have to developrobust and convenient methods for the characterization and exploration of thosedynamic processes at single nanoparticle level with high spatial and temporalresolution. In this regard, we performed extensive researches as described in thefollowing four parts:
     (1) Firstly, we synthesized gold nanoparticles with different size (18nm,40nmand60nm, gold nanospheres) and shape (gold nanorod). Due to the extremely largescattering cross-section at the plasmon resonance frequency, the scattered light willrepresent distinct color when illuminated by white light. Therefore, these nanoparticlescan be adopted as efficient imaging contrast agent based on scattering detectionmodality to investigate those dynamic processes as described above.
     (2) Inspired from the traditional dark-field imaging technology, we developed anew optical imaging system named dual-wavelength dark field microscopy (DWD) forthe selective detection of plasmon nanoparticles in noisy surroundings. By replacingthe regular light source with two different wavelength lasers (one at the resonancefrequency, the other one is shifted away from that wavelength), gold nanoparticles canbe readily distinguished in complex environment by two wavelength differenceimaging.(chapter2). Besides, with this method, we further studied the interactionsbetween gold nanoparticles and cancer cells by DWD method. We analyzed the diffusion mode of gold nanoparticles on live cell membrane and explained the dynamiccellular uptake process (chapter3). Moreover, we also investigated the localizationand orientation of single gold nanorod in3D by dual-wavelength dark-field microscopy.Gold nanorods split their surface plasmon resonance into transverse and longitudinalmodes due to theirs inherent morphological anisotropy. By capturing the dynamicmovement of single gold nanorod in solution, we elucidated the translationallocalization information and rotational dynamics in3D (chapter4). Then, thediffusion dynamics of protein functionalized gold nanorods were studied on livingHela cell membrane with this imaging mode. We found that the conjugation processbetween gold nanorod and receptor on living cellular surface was independent anduncorrelated with their lateral diffusion mode (chapter5).
     (3) Cell penetrating peptides have been extensively applied as efficientintracellular delivery platform for drug and gene delivery. By using lipid bilayer as asimplified model, we can deduce basic interaction mechanisms occurred on living cellsystem. In this work, we discussed the motion of gold nanoparticles coupled with acommon cell penetrating peptide (Tat) on neutral lipid bilayer by total internalreflection technology. We found that the adsorption process of Tat functionalized goldnanoparticles on lipid bilayer was very slow. The diffusion motion of these particleswas confined once the adsorption occurs. Based on dynamic information, we foundthat the gold nanoparticles could form a small domain on lipid bilayer. This processwas further validated by the gold nanorod orientational information on lipid bilayer(chapter6).
     (4) Gold nanocluster has emerged as a robust fluorescent contrast agent recently.They exhibit many advantages like facile fabrication process, low cellular toxicity,highly quantum yield and so on. In this part, we fabricated gold nanoclusters under agentle condition. These nanoclusters were able to target tumor cells by conjugatingwith folic acid. With a regular fluorescent microscope, we successfully detectednanoclusters labeled tumor cells with high efficiency. In addition, we also developedanother kind of cluster with different color (i.e. silver nanoclusters) which alsoexhibited good targeting capability for tumor cells (chapter7).
引文
[1] Meyer M S. Patent citation analysis in a novel field of technology: anexploration of nano-science and nano-technology. Computer science,2001,51(1):163-183.
    [2] West J L, Halas N J. Engineered Nanomaterials For Biophotonics Applications:Improving Sensing, Imaging, and Therapeutics. Annual Review of BiomedicalEngineering,2003,5(1):285-292.
    [3]刘芳.纳米材料的结构与性质.光谱实验室,2008,28(2):735-738.
    [4] Murphy C J, Sau T K, Gole A M et al. Anisotropic Metal Nanoparticles:Synthesis, Assembly, and Optical Applications. Journal of Physical Chemistry B,2005,109(29):13857-13870.
    [5] Daniel M C, Astruc D. Gold nanoparticles: Assembly, Superamolecularchemistry, Quantum-size-related Properties, and Applications toward Biology,Catalysis, and Nanotechnology. Chemical Reviews,2004,104(1):293-346.
    [6] Schmid G, Chi L F. Metal Clusters and Colloids. Advanced Materials,1998,10:515-527.
    [7] Kamat P V. Photophysical, Photochemical and Photocatalytic Aspects of MetalNanoparticles. Journal of Physical Chemistry B,2002,106(32):7729-7744.
    [8] Ei-Sayed M A. Some interesting Properties of Metal Confined in Time andNanometer Space of Different Shapes. Accounts of Chemiscal Research,2001,34(4):257-264.
    [9] Wang Y, Herron N. Nanometer-Sized Semiconductor Clusters: MaterialsSynthesis, Quantum Size Effects, and Photophysical Properties. Journal ofPhysical Chemistry,1991,95:525-536.
    [10] Shipway A N, Katz E, Willner I. Nanoparticle arrays on surfaces for electronic,optical, and sensor applications. ChemPhysChem,2000,1(1):18-52.
    [11] Crooks R M, Zhao M Q, Sun L et al. Dendrimer-encapsulated metalnanoparticles: Synthesis, characterization, and applications to catalysis.Accounts of Chemical Research,2001,34(3):181-190.
    [12] Anker J N, Hall W P, Lyandres O, et al. Biosensing with plasmonic nanosensors.Natural Materials,2008,7(6):442-453.
    [13] Kamat P V. Photophysical, photochemical and photocatalytic aspects of metalnanoparticles. Journal of Physical Chemistry,2002,106(32):7729-7744.
    [14] Van Duyne R P, Willets K A. Localized surface plasmon resonance spectroscopyand sensing. Annual Review of Physical Chemistry,2007,58:267-297
    [15] Mornet S, Vasseur S, Grasset F, et al. Magnetic nanoparticle design for medicaldiagnosis and therapy. Journal of Materials Chemistry,2004,14(14):2161-2175.
    [16] Toshima N, Yonezawa T. Bimetallic nanoparticles-novel materials for chemicaland physical applications. New Journal of Chemistry,1998,22(11):1179-1201.
    [17] Ito A, Shinkai M, Honda H, et al. Medical application of functionalized magneticnanoparticles. Journal of Bioscience and Bioengineering,2005,100(1):1-11.
    [18] Kim J, Park S, Lee J E, et al. Designed fabrication of multifunctionalmagnetic gold nanoshells and their application to magnetic resonance imagingand photothermal therapy. Angewandte Chemie International Edition,2006,45(46):7754-7758.
    [19] Liu J M, Lu Y. Adenosine-dependent assembly of aptazyme-functionalizedgold nanoparticles and its application as a colorimetric biosensor. AnalyticalChemistry,2004,76(6):1627-1632.
    [20] Zhang Z F, Cui H, Lai C Z, et al. Gold nanoparticle-catalyzed luminolchemiluminescence and its analytical applications. Analytical Chemistry,2005,77(10):3324-3329.
    [21] Shan J, Tenhu H. Recent advances in polymer protected gold nanoparticles:synthesis, properties and applications. Chemical Communications,2007,44:4580-4598.
    [22] Storhoff J J, Marla S S, Bao P, et al. Gold nanoparticle-based detection ofgenomic DNA targets on microarrays using a novel optical detection system.Biosensors&Bioelectronics,2004,19(8):875-883.
    [23] Jain K K. Nanotechnology in clinical laboratory diagnostics. Clinica ChimicaActa,2005,358(1):37-54.
    [24] Chithrani B D, Ghazani A A, Chan W W. Determining the size and shapedependence of gold nanoparticle uptake into mammalian cells. Nano Letters,2006,6(4):662-668.
    [25] Loo C, Lowery A, Halas N J, et al. Immunotargeted nanoshells for integratedcancer imaging and therapy. Nano Letters,2005,5(4):709-711.
    [26] Lewinski N, Colvin V, Drezek R. Cytotoxicity of Nanoparticles. Small,2008,4(1):26-49.
    [27] Maxwell D J, Taylor J R, Nie S M. Self-assembled nanoparticle probes forrecognition and detection of biomolecules. Journal of the American ChemicalSociety,2002,124(32):9606-9612.
    [28] Hu M, Chen J Y, Li Z Y, et al. Gold nanostructures: engineering their plasmonicproperties for biomedical applications. Chemical Society Reviews,2006,35(11):1084-1094.
    [29] Bonnemann H, Richards R M. Nanoscopic metal particles-Synthetic methodsand potential applications. European Journal of Inorganic Chemistry,2001,10:2455-2480.
    [30] Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations,imaging, diagnostics, therapies and toxicity. Chemical Society Reviews,2009,38(6):1759-1782.
    [31] Perez-Juste J, Pastoriza-Santos I, Liz-Marzan L M, et al. Gold nanorods:Synthesis, characterization and applications. Coordination Chemistry Reviews,2005,249(18):1870-1901.
    [32] Johnson C J, Dujardin E, Davis S A, et al. Growth and form of gold nanorodsprepared by seed-mediated, surfactant-directed synthesis. Journal of MaterialsChemistry,2002,12(6):1765-1770.
    [33] Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of high aspect ratiocylindrical gold nanorods. Journal of Physical Chemistry B,2001,105(19):4065-4067.
    [34] Nikoobakht B, EI-Sayed M A. Preparation and growth mechanismof gold nanorods (NRs) using seed-mediated growth method,2003,15(10):1957-1962.
    [35] Kalele S, Gosavi S W, Urban J, et al. Nanoshell particles: synthesis, propertiesand applications. Current Science,2006,91(8):1038-1052.
    [36] Yong K T, Sahoo Y, Swihart M T, et al. Synthesis and plasmonic properties ofsilver and gold nanoshells on polystyrene cores of different size andof gold-silver core-shell nanostructures. Colloids and SurfaceA-Physicochemical and Engineering Aspects,2006,290(3):89-105.
    [37] Chen J Y, Wiley B, Li Z Y, et al. Gold nanocages: Engineering their structure forbiomedical applications. Advanced Materials,2005,17(18):2255-2261.
    [38] Zhang Y, Xu F G, Sun Y J, et al. Seed-Mediated Synthesis of Au Nanocages andTheir Electrocatalytic Activity towards Glucose Oxidation. Chemistry-AEuropean Journal,2010,16(30):9248-9256.
    [39] Cobley C M, Xia Y N. Engineering the properties of metal nanostructures viagalvanic replacement reactions. Materials Science&Engineering R-Reports,2010,70(3):44-62.
    [40]刘爱平,王琦琛.细胞生物学荧光技术原理和应用.合肥:中国科学技术大学出版社,2007,71-194.
    [41] Ueno H, Nishikawa S, Lino R, et al. Simple Dark-FieldMicroscopy withNanometer Spatial Precision and Microsecond Temporal Resolution. BiophysicalJournal,2010,98(9):2014-2023.
    [42] Grigorenko A N, Beloglazov A A, Nikitin P I, et al. Dark-field surface plasmonresonance microscopy. Optics Communications,2000,174(2):151-155.
    [43] Loo C, Hirsch L, Lee M H, et al. Gold nanoshell bioconjugates for molecularimaging in living cells. Optics Letters,2005,30(9):1012-1014.
    [44] Raschke G, Kowarik S, Franzl T, et al. Biomolecular Recognition Based onSingle Gold Nanoparticle Light Scattering. Nano Letters,2003,3(7):935-938.
    [45] Tokunaga M, Kitamura K, Saito K, et al. Single Molecule Imaging ofFluorophores and Enzymatic Reactions Achieved by Objective-Type TotalInternal Reflection FluorescenceMicroscopy. Biochemical and BiophysicalResearch Communications,1997,235(1),47-53.
    [46] Axelrod D. Total Internal Reflection Fluorescence Microscopy in Cell Biology.Traffic,2001,2(11):764-774.
    [47] Yonzon C R, Haynes C L, Zhang X, et al. A glucose biosensor based onsurface-enhanced Raman scattering: improved partition layer, temporal stability,reversibility, and resistance to serum protein interference. Analytical Chemistry,2004,76(1):78-85.
    [48] Zeman E J, Schatz G C. An accurate electromagnetic theory study of surfaceenhancement factors for silver, gold, copper, lithium, sodium, aluminum, gallium,indium, zinc, and cadmium. Journal of Physical Chemistry,1987,91(3):634-643.
    [49] Nie S, Emory S R. Probing singlemolecules and single nanoparticles bysurface-enhanced Raman scattering. Science,1997,275(5303):1102-1106.
    [50] Kneipp K, Wang Y, Kneipp H, et al. Single molecule detection usingsurface-enhancedRaman scattering (SERS). Physical Review Letters,1997,78(9):1667-1670.
    [51] Shimizu K T, Woo W K, Fisher B R, et al. Surface-enhanced emission fromsingle semiconductor nanocrystals. Physical Review Letters,2002,89(11):117401-117404.
    [52] Haes A J, Chang L, Klein W L, et al. Detection of a biomarker for Alzheimer’sdisease from synthetic and clinical samples using a nanoscale optical biosensor.Journal of the American Chemical Society,2005,127(7):2264-2271.
    [53] McFarland A D, Van Duyne R D. Single silver nanoparticles as real-time opticalsensors with zeptomole sensitivity. Nano Letters,2003,3(8):1057-1062.
    [54] Malinsky M D, Kelly K L, Schatz G C, et al. Chain length dependence andsensing capabilities of the localized surface plasmon resonance of silvernanoparticles chemicallymodified with alkanethiol self-assembled monolayers.Journal of the American Chemical Society,2001,123(7):1471-1482.
    [55] Englebienne P. Use of colloidal gold surface plasmon resonance peak shift toinfer affinity constants from the interactions between protein antigens andantibodies specific for single or multiple epitopes. Analyst,1998,123(7):1599-1603.
    [56] Raschke G, Kowarik S, Franzl T, et al. Biomolecular Recognition Based onSingle Gold Nanoparticle Light Scattering. Nano Letters,2003,3(7):935-938.
    [57] Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metalnanoparticles: the influence of size, shape, and dielectric environment. Journal ofPhysical Chemistry B,2003,107(3):668-677.
    [58] Nehl C L, Liao H W, Hafner J H. Optical properties of star-shaped goldnanoparticles. Nano Letters,2006,6(4):683-688.
    [59] Haynes C L, Mcfarland A D, Zhao L L, et al. Nanoparticle optics: the importanceof radiative dipole coupling in two-dimensional nanoparticle arrays. Journal ofPhysical Chemistry B,2003,107(30):7337-7342.
    [60] Elghanian R, Storhoff J J, Mucic R C, et al. Selective colorimetric detection ofpolynucleotides based on the distance-dependent optical propertiesofgold nanoparticles. Science,1997,277(5329):1078-1081.
    [61] Murphy C J, Gole A M, Stone J W, et al. Gold Nanoparticles in Biology: BeyondToxicity to Cellular Imaging. Accounts of Chemical Research,2008,41(12):1721-1730.
    [62] De M, Ghosh P S, Rotello V M. Applications of Nanoparticles in Biology.Advanced Materials,2008,20(22):4225-4241.
    [63] Pellegrino T, Kudera S, Liedl T, et al. On the development of colloidalnanoparticles towards multifunctional structures and their possible use forbiological applications. Small,2005,1(1):48-63.
    [64] Portney N G, Ozkan M. Nano-oncology: drug delivery, imaging and sensing.Analytical and Bioanalytical Chemistry,2006,384(3):620-630.
    [65] Huang X H, Neretina S, Ei-Sayed M A. Gold Nanorods: From Synthesis andProperties to Biological and Biomedical Applications. Advanced Materials,2009,21(48):4880-4910.
    [66] Xu Z P, Zeng Q H, Lu G Q, et al. Inorganic nanoparticles as carriers for efficientcellular delivery. Chemical Engineering Science,2006,61(3):1027-1040.
    [67] Xiao L H, Wei L, Liu C, et al. Unsynchronized translational and rotationaldiffusion of nanocargo on a living cell membrane. Angewandte ChemieInternational edition,2012,124(17):4257-4260.
    [68] Xiao L H, Ha J W, Wei L, et al. Determining the Full Three-DimensionalOrientation of Single Anisotropic Nanoparticles by Differential InterferenceContrast Microscopy. Angewandte Chemie International edition,2012,124(31):7854-7858.
    [69] Xiao L H, Qiao Y X, He Y, et al. Imaging Translational and Rotational Diffusionof Single Anisotropic Nanoparticles with Planar Illumination Microscopy.Journal of the American Chemistry Society,2011,133(27):10638-10645.
    [70] Shan J, Tenhu H. Recent advances in polymer protected gold nanoparticles:synthesis, properties and applications. Chemical Communications,2007,44:4580-4598.
    [71] Hao E, Schatz G C, Hupp J T. Synthesis and optical properties of anisotropicmetal nanoparticles. Journal of Fluorescence,2004,14(4):331-341.
    [72] Stoeva S I, Prasad BLV, Uma S, et al. Face-centered cubic and hexagonalclosed-packed nanocrystal superlattices of gold nanoparticles prepared bydifferent methods. Journal of Physical Chemistry B,2003,107(30):7441-7448.
    [73] Liu Y L, Shipton M K, Ryan J, et al. Synthesis, stability, and cellularinternalization of gold nanoparticles containing mixed peptide-poly(ethyleneglycol) monolayers. Analytical Chemistry,2007,79(6):2221-2229.
    [74] Xia Y N, Halas N J. Shape-controlled synthesis and surface plasmonic propertiesof metallic nanostructures. MRS Bulletin,2005,30(5):338-348.
    [75] Sun Y G, Xia Y N. Shape-controlled synthesis of gold and silver nanoparticles.Science,2002,298(5601):2176-2179.
    [76] Gao J X, Bender C M, Murphy C J. Dependence of the gold nanorod aspect ratioon the nature of the directing surfactant in aqueous solution. Langmuir,2003,19(21):9065-9070.
    [77] Gole A, Murphy C J. Seed-mediated synthesis of gold nanorods: Role of the sizeand nature of the seed. Chemistry of Materials,2004,16(19):3633-3640.
    [78] Smith D K, Korgel B A. The importance of the CTAB surfactant on the colloidalseed-mediated synthesis of gold nanorods. Langmuir,2008,24(3):644-649.
    [79] Homala J. Surface plasmon resonance sensors for detection of chemical andbiological species. Chemical Reviews,2008,108(2):462-493.
    [80] Murphy C J, San T K, Gole A M, et al. Anisotropic metal nanoparticles:Synthesis, assembly, and optical applications. Journal of Physical Chemistry B,2005,109(29):13857-13870.
    [81] EI-Sayed A M. Some interesting properties of metals confined in time andnanometer space of different shapes. Accounts of Chemical Research,2001,34(4):257-264.
    [82] Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metalnanoparticles: The influence of size, shape, and dielectric environment. Journalof Physical Chemistry B,2003,107(3):668-677.
    [83] He L, Musick M D, Nicewarner S R, et al. Colloidal Au-enhanced surfaceplasmon resonance for ultrasensitive detection of DNA hybridization. Journal ofthe American Chemical Society,2000,122(38):9071-9077.
    [84] Link S, Ei-Sayed M A. Size and temperature dependence of the plasmonabsorption of colloidal gold nanoparticles. Journal of Physical Chemistry B,1999,103(21):4212-4217.
    [85] Link S, Ei-Sayed M A. Shape and size dependence of radiative, non-radiativeand photothermal properties of gold nanocrystals. International Reviews inPhysical Chemistry,2000,19(3):409-453.
    [86] Moerner W E, Orrit M. Illuminating Single Molecules in Condensed Matter.Science,1999,283:1670-1676.
    [87] Stephens D J, Allan V J. Light Microscopy Techniques for Live Cell Imaging.Science,2003,300:82-86.
    [88] Joo C, Balci H, Ishitsuka Y J, et al. Advances in Single-Molecule FluorescenceMethods for Molecular Biology. Annual Review of Biochemistry,2008,77:51-76.
    [89] Vahid S, Enrico K, Volker J, et al. Optical Detection of Very SmallNonfluorescent Nanoparticles. Chimia,2006,60(11):761-764.
    [90] Schultz D A. Plasmon resonant particles for biological detection. CurrentOpinion in Biotechnology,2003,14(1):13-22.
    [91] Van Dijk M A, Tchebotareva A L, Orrit M, et al. Absorption and scatteringmicroscopy of single metal nanoparticles. Physical Chemistry Chemical Physics,2006,8(30):3486-3495.
    [92] Pelton M, Aizpurua J, Bryant G. Metal nanoparticle plasmonics. Laser&Photonics Reviews,2008,2(3):136-159.
    [93] Jain P K, Lee K S, EI-Sayed L H, et al. Calculated Absorption and ScatteringProperties of Gold Nanoparticles of Different Size, Shape, and Composition:Applications in Biological Imaging and Biomedicine. Journal of PhysicalChemistry B,2006,110(14):7238-7248.
    [94] Schultz S, Smith D R, Mock J J, et al. Single target molecule detection withnonbleaching multicolor optical immunolabels. Proceedings of the NationalAcademy of Science,2000,97(3):996-1001.
    [95] Van Dijk M A, Lippitz M, Orrit M. Far-field optical microscopy of single metalnanoparticle. Accounts of Chemical Research,2005,38(7):594-601.
    [96] Lippitz M, Van Dijk M A, Orrit M. Third-Harmonic Generation from SingleGold Nanoparticles. Nano Letters,2005,5(4):799-802.
    [97] Jin R C, Jureller J E, Kim H Y, et al. Correlating Second Harmonic OpticalResponses of Single Ag Nanoparticles with Morphology. Journal of theAmerican Chemistry Society,2005,127(36):12482-12483.
    [98] Durr N J, Larson T, Smith D K, et al. Two-Photon Luminescence Imaging ofCancer Cells Using Molecularly Targeted Gold Nanorods. Nano Letters,2007,7(4):941-945.
    [99] Tai S P, Wu Y, Shieh D B, et al. Molecular Imaging of Cancer Cells UsingPlasmon-Resonant-Enhanced Third-Harmonic-Generation in SilverNanoparticles. Advanced Materials,2007,19(24):4520-4523.
    [100] Aaron J, Rosa E, Travis K, et al. Polarization microscopy with stellated goldnanoparticles for robust monitoring of molecular assemblies and singlebiomolecules. Optics Express,2008,16(3):2153-2167.
    [101] Park J, Estrada A, Sharp K, et al. Two-photon-induced photoluminescenceimaging of tumors using near-infrared excited gold nanoshells. Optics Express,2008,16(3):1590-1599.
    [102] Jung J J, Solanki A, Memoli K A, et al. Selective Inhibition of Human BrainTumor Cells through Multifunctional Quantum-Dot-Based siRNA Delivery.Angewandte Chemie International Edition,2010,49(1):103-107.
    [103] Xiao L H, Zhou R, He Y, et al. Direct Observation of NanoparticleSelf-Assembly Dynamics at the Water Air Interface Using DifferentialInterference Contrast Microscopy. The Journal of Physical Chemistry C,2009,113(4):1209-1216.
    [104] Xiao L H, Wei L, He Y, et al. Single Molecule Biosensing Using Color CodedPlasmon Resonant Metal Nanoparticles. Analytical Chemistry,2010,82(14):6308-6314.
    [105] Sun W, Wang G F, Fang N, et al. Wavelength-Dependent DifferentialInterference Contrast Microscopy: Selectively Imaging Nanoparticle Probes inLive Cells. Analytical Chemistry,2009,81(22):9203-9208.
    [106] Nan X L, Sims P A, Xie X S. Organelle Tracking in a Living Cell withMicrosecond Time Resolution and Nanometer Spatial Precision. ChemPhysChem,2008,9(5):707-712.
    [107] Reinhard B M, Sheikholeslami S, Mastroiann A, et al. Use of plasmon couplingto reveal the dynamics of DNA bending and cleavage by single EcoRV restrictionenzymes. Proceedings of the National Academy of Science of the United Statesof America.2007,104(8):2667-2672.
    [108] House J E. Principles of Chemical Kinetics,2nd. Elsevier/Academic Press. SanDiego, CA,2007.
    [109] Sbalzarini I F, Koumoutsakos P. Feature point tracking and trajectory analysisfor video imaging in cell biology. Journal of Structural Biology,2005,151(2):182-195.
    [110] Rosi N L, Giljohann D A, Thaxton C S, et al. Oligonucleotide-Modified GoldNanoparticles for Intracellular Gene Regulation. Science,2006,312(5776):1027-1030.
    [111] Oancea g, Omara M L, Bennett D, et al. Structural arrangement of thetransmission interface in the antigen ABC transport complex TAP. Proceedingsof the National Academy of Science of the United States of America,2009,106(14):5551-5556.
    [112] Ghosh P, Yang X C, Arvizo R, et al. Intracellular Delivery of aMembrane-Impermeable Enzyme in Active Form Using Functionalized GoldNanoparticles. Journal of the American Chemistry Society,2010,132(8):2642-2645.
    [113] Patra H K, Banerjee S, Chaudhuri U, et al. Cell selective response to goldnanoparticles. Nanomedicine,2007,3(2):111-119.
    [114] Chithrani B D, Ghazani A A, Chan W C W. Determining the Size and ShapeDependence of Gold Nanoparticle Uptake into Mammalian Cells. Nano Letters,2006,6(4):662-668.
    [115] Chithrani B D, Chan W C W. Elucidating the Mechanism of Cellular Uptake andRemoval of Protein-Coated Gold Nanoparticles of Different Sizes and Shapes.Nano Letters,2007,7(6):1542-1550.
    [116] Doherty G J, Mcmahon H T. Mechanisms of Endocytosis. Annual Review ofBiochemistry,2009,78:857-902.
    [117] Kusumi A, Sako Y, Yamamoto M. Confined lateral diffusion of membranereceptors as studied by single particle tracking (nanovid microscopy). Effects ofcalcium-induced differentiation in cultured epithelial cells. Biophysical Journal,1993,65(5):2021-2040.
    [118] Sako Y, Kusumi A. Compartmentalized structure of the plasma membrane forreceptor movements as revealed by a nanometer-level motion analysis. TheJournal of Cell Biology,1994,125(6):1251-1264.
    [119] Tsuji A, Kawasaki K, Ohnishi S, et al. Regulation of band3mobilities inerythrocyte ghost membranes by protein association and cytoskeletal meshwork.Biochemistry,1988,27(19):7447-7452.
    [120] Kusumi A, Nakada C, Ritchie K, et al. Paradigm shift of the plasma membraneconcept from the two dimensional continuum fluid to the partitioned fluid: highspeed single molecule tracking of membrane molecules. Annual Review ofBiophysics and Biomolecular Structure.2005,34:351-378.
    [121] Saxton M J. Single particle tracking: applications to membrane dynamics.Annual Review of Biophysics and Biomolecular Structure.1997,26:373-399.
    [122] Metzger H. Transmembrane signaling: the joy of aggregation. The Journal ofImmunology.1992,149(5):1477-1487.
    [123] Schlessinger J. Allosteric regulation of the epidermal growth factor receptorkinase. The Journal of Cell Biology,1986,103(6):2067-2072.
    [124] Mcmahon H T, Gallop J L. Review Article Membrane curvature and mechanismsof dynamic cell membrane remodeling. Nature,2005,438:590-596.
    [125] Zorko M, Langel U. Cell-penetrating peptides: mechanism and kinetics of cargodelivery. Advanced Drug Delivery Reviews,2005,57(4):529-545.
    [126] Fonseca S B, Pereira M P, Kelley S O. Recent advances in the use ofcell-penetrating peptides for medical and biological applications. Advanced DrugDelivery Reviews,2009,61(11):953-964.
    [127] Torchilin V P. Tat peptide-mediated intracellular delivery of pharmaceuticalnanocarriers. Advanced Drug Delivery Reviews,2008,60(5):548-558.
    [128] Brooks H, Lebleu B, Vives E. Tat peptide-mediated cellular delivery: back tobasics. Advanced Drug Delivery Reviews,2005,57(4):559-577.
    [129] Gupta B, Levchenko T S, Torchilin V P. TAT peptide-modified liposomesprovide enhanced gene delivery to intracranial human brain tumor xenografts innude mice. Oncology Research,2007,16(8):351-359.
    [130] Torchilin V P, Rammohan R, Weissig V, et al. TAT peptide on the surface ofliposomes affords their efficient intracellular delivery even at low temperatureand in the presence of metabolic inhibitors. Proceedings of the NationalAcademy of Sciences,2001,98(15):8786-8791.
    [131] Ciobanasu C, Siebrasse J P, Kubitscheck U. Cell-Penetrating HIV1TAT PeptidesCan Generate Pores in Model Membranes. Biophysical Journal,2010,99(1):153-162.
    [132] Mishra A, Lai G H, Schmidt N W, et al. Translocation of HIV TAT peptide andanalogues induced by multiplexed membrane and cytoskeletal interactions.Proceedings of the National Academy of Sciences,2011,108(41):16883-16888.
    [133] Tiriveedhi V, Butko P. A Fluorescence Spectroscopy Study on the Interactions ofthe TAT-PTD Peptide with Model Lipid Membranes. Biochemistry,2007,46(12):3888-3895.
    [134] Ciobanasu C, Harms E, Tunnemann G, et al. Cell-Penetrating HIV1TAT PeptidesFloat on Model Lipid Bilayers. Biochemistry,2009,48(22):4728-4737.
    [135] Mishra A, Gordon V D, Yang L H, et al. HIV TAT Forms Pores in Membranes byInducing Saddle-Splay Curvature: Potential Role of Bidentate HydrogenBonding. Angewandte Chemie International Edition,2008,47(16):2986-2989.
    [136] Ziegler A, Blatter X C, Seelig A, et al. Protein Transduction Domains of HIV-1and SIV TAT Interact with Charged Lipid Vesicles. Binding Mechanism andThermodynamic Analysis. Biochemistry,2003,42(30):9185-9194.
    [137] Vives E, Brodin P, Lebleu B. A Truncated HIV-1Tat Protein Basic DomainRapidly Translocates through the Plasma Membrane and Accumulates in the CellNucleus. The Journal of Biological Chemistry,1997,272(25):16010-16017.
    [138] Thoren P E G, Persson D, Isakson P, et al. Uptake of analogs of penetratin,Tat(48–60) and oligoarginine in live cells. Biochemical and BiophysicalResearch Communications,2003,307(1):100-107.
    [139] Su Y C, Waring A J, Ruchala P, et al. Membrane-Bound Dynamic Structure of anArginine-Rich Cell-Penetrating Peptide, the Protein Transduction Domain ofHIV TAT, from Solid-State NMR. Biochemistry,2010,49(29):6009-6020.
    [140] Axelrod D, Burghardt T P, Thompson N L. Total internal reflection fluorescence.Annual Review of Biophysics&Bioengineering,1984,13:247-268.
    [141] Thompson R E, Larson D R, Webb W W. Precise Nanometer LocalizationAnalysis for Individual Fluorescent Probes. Biophysical Journal,2002,82(5):2775-2783.
    [142] Ober R J, Ram S, Ward E S. Localization Accuracy in Single-MoleculeMicroscopy. Biophysical Journal,2004,86(2):1185-1200.
    [143] Sbzlzarini I F, Koumoutsakos P. Feature point tracking and trajectory analysisfor video imaging in cell biology. Journal of Structural Biology,2005,151(2):182-195.
    [144] Xiao L H, Wei L, He Y, et al. Unsynchronized translational and rotationaldiffusion of nanocargo on a living cell membrane. Angewandte ChemieInternational edition,2012,124(17):4257-4260.
    [145] Xiao L H, Qiao Y X, He Y, et al. Imaging Translational and Rotational Diffusionof Single Anisotropic Nanoparticles with Planar Illumination Microscopy.Journal of the American Chemistry Society,2011,133(27):10638-10645.
    [146] Ferrari R, Manfroi A J, Young W R. Strongly and weakly self-similar diffusion.Physica D: Nonlinear Phenomena,2001,154(2):111-137.
    [147] Ewers H, Smith A E, Sbalzarini I F, et al. Single-particle tracking of murinepolyoma virus-like particles on live cells and artificial membranes. Proceedingof the National Academy Sciences of the United States of America,2005,102(42):15110-15115
    [148] Saffman P G, Delbruck M. Brownian motion in biological membranes.Proceeding of the National Academy Sciences of the United States of America,1975,72(8):3111-3113.
    [149] Brogden K A. Antimicrobial peptides: pore formers or metabolic inhibitors inbacteria? Nature Reviews Microbiology,2005,3(3):238-250.
    [150] Fox C B, Wayment J R, Myers G A, et al. Single-Molecule Fluorescence Imagingof Peptide Binding to Supported Lipid Bilayers. Analytical Chemistry,2009,81(13):5130-5138.
    [151] Bally M, Gunnarsson A, Svensson L, et al. Interaction of Single ViruslikeParticles with Vesicles Containing Glycosphingolipids. Physical Review Letters,107,18,188103-188107.
    [152] Xiao L H, Qiao Y X, He Y, et al. Three Dimensional Orientational Imaging ofNanoparticles with Darkfield Microscopy. Analytical Chemistry,2010,82(12):5268-5274.
    [153] Pierrat S, Hartinger E, Faiss S, et al. Rotational Dynamics of Laterally FrozenNanoparticles Specifically Attached to Biomembranes. The Journal of PhysicalChemistry C,2009,113(26):11179-11183.
    [154] Bonoiu A C, Mahajan S D, Ding H, et al. Nanotechnology approach for drugaddiction therapy: Gene silencing using delivery of gold nanorod-siRNAnanoplex in dopaminergic neurons. Proceedings of the National Academy ofSciences of the United States of America,2009,106(14),5546-5550.
    [155] Chakravarthy K V, Bonoiu A C, Davis W G, et al. Gold nanorod delivery of anssRNA immune activator inhibits pandemic H1N1influenza viral replication.Proceedings of the National Academy of Sciences of the United States ofAmerica,2010,107(22):10172-10177.
    [156] Schultz S, Smith D R, Mock J J, et al. Single-target molecule detection withnonbleaching multicolor optical immunolabels. Proceedings of the NationalAcademy of Sciences of the United States of America,2000,97(3):996-1001.
    [157] Cognet L, Tardin C, Boyer D, et al. Single metallic nanoparticle imaging forprotein detection in cells. Proceedings of the National Academy of Sciences ofthe United States of America,2003,100(20):11350-11355.
    [158] Jacobsen V, Stoller P, Brunner C, et al. Interferometric optical detection andtracking of very small gold nanoparticles at a water-glass interface. OpticsExpress,2006,14(1):405-414.
    [159] Toprak E, Enderlein J, Syed S, et al. Defocused orientation and position imaging(DOPI) of myosin V. Proceedings of the National Academy of Sciences of theUnited States of America,2006,103(17):6495-6499.
    [160] Gundelfinger E D, Kessels M M, Qualmann B. Temporal and spatialcoordination of exocytosis and endocytosis. Nature Reviews Molecular CellBiology,2003,4:127-139.
    [161] Sonnichsen C, Alivisatos A P. Gold Nanorods as Novel NonbleachingPlasmon-Based Orientation Sensors for Polarized Single-Particle Microscopy.Nano Letters,2005,5(2):301-304.
    [162] Chang W S, Ha J W, Slaugh L S, et al. Plasmonic nanorod absorbers asorientation sensors. Proceedings of the National Academy of Sciences of theUnited States of America,2010,107(7):2781-2786.
    [163] Wang G F, Sun W, Luo Y, et al. Resolving Rotational Motions of Nano-objects inEngineered Environments and Live Cells with Gold Nanorods and DifferentialInterference Contrast Microscopy. Journal of the American Chemistry Society,2010,132(46):16417-16422.
    [164] Greffet J J, Carminati R, Arias-Gonzalez J R. Single-molecule spontaneousemission close to absorbing nanostructures. Applied Physics Letters,2004,85(17):3863-3865.
    [165] Krenn J R, Wolf R, Leitner A, et al. Near-field optical imaging the surfaceplasmon fields of lithographically designed nanostructures. OpticsCommunications,1997,137(1):46-50.
    [166] Anceau C, Brasselet S, Zyss J, et al. Local second-harmonic generationenhancement on gold nanostructures probed by two-photon microscopy. OpticsLetters,2003,28(9):713-715.
    [167] Krenn J R, Salemo M, Felidj N, et al. Light field propagation by metal micro-and nanostructures. Journal of Microscopy,2001,202(1):122-128.
    [168] La S, Link S, Halas N. Nano-optics from sensing to waveguiding. NaturePhotonics,2007,1:641-648.
    [169] Martinou J C, Desagher S. Mitochondria as the central control point of apoptosis.Trends in Cell Biology,2000,10(9):369-377.
    [170] Susin S A, Zamzami N, Kroemer G. Mitochondria as regulators of apoptosis:doubt no more. Biochimica et Biophysica Acta,1998,1366(2):151-165.
    [171] Mae M, Langel U. Cell-penetrating peptides as vectors for peptide, protein andoligonucleotide delivery. Current Opinion in Pharmacology,2006,6(5):509-514.
    [172] Trehin R, Merkle H P. Chances and pitfalls of cell penetrating peptides forcellular drug delivery. European Journal of Pharmaceutics and Biopharmaceutics,2004,58(2):209-223.
    [173] Terrone D, Sang S LW, Roudaia L, et al. Penetratin and related cell-penetratingcationic peptides can translocate across lipid bilayers in the presence of atransbilayer potential. Biochemistry,2003,42(47):13787-13799.
    [174] Jarver P, Langel U. The use of cell-penetrating peptides as a tool for generegulation. Drug Discovery Today,2004,9(9):395-402.
    [175] Fonseca S B, Pereira M P, Kelly S O. Recent advances in the use ofcell-penetrating peptides for medical and biological applications. Advanced DrugDelivery Reviews,2009,61(11):953-964.
    [176] Delehanty J B, Mattoussi H, Medintz I L. Delivering quantum dots into cells:strategies, progress and remaining issues. Analytical and BioanalyticalChemistry,2009,393(4):1091-1105.
    [177] Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological andpharmaceutical applications. Advanced Drug Delivery Reviews,2003,55(3):403-419.
    [178] Ghosh P, Han G, De M, et al. Gold nanoparticles in delivery applications.Advanced Drug Delivery Reviews,2008,60(11):1307-1315.
    [179] Xu Z P, Zeng Q H, Lu GQ, et al. Inorganic nanoparticles as carriers for efficientcellular delivery. Chemical Engineering Science,2006,61(3):1027-1040.
    [180] Biju V, Itoh T, Anas A, et al. Semiconductor quantum dots and metalnanoparticles: syntheses, optical properties, and biological applications.Analytical and Bioanalytical Chemistry,2008,391(7):2469-2495.
    [181] Ross M F, Fillpovska A, Smith RAJ, et al. Cell-penetrating peptides do not crossmitochondrial membranes even when conjugated to a lipophilic cation: evidenceagainst direct passage through phospholipid bilayers. Biochemical Journal,2004,383:457-468.
    [182] Horton K L, Stewart K M, Fonseca S B, et al. Mitochondria-penetrating peptides.Chemistry&Biology,2008,15(4):375-382.
    [183] Zhao K S, Luo G X, Giannelli S, et al. Mitochondria-targeted peptide preventsmitochondrial depolarization and apoptosis induced by tert-butyl hydroperoxidein neuronal cell lines. Biochemical Pharmacology,70(12):1796-1806.
    [184] Fernandex-Cameado J, Van Gool M, Martos, V, et al. Highly efficient,nonpeptidic oligoguanidinium vectors that selectively internalize intomitochondria. Journal of the American Chemical Society,127(3):869-874.
    [185] Huang X H, EI-Sayed I H, Qian W, et al. Cancer cell imaging and photothermaltherapy in the near-infrared region by using gold nanorods. Journal of theAmerican Chemical Society,2006,128(6):2115-2120.
    [186] Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy anddiagnosis. Advanced Drug Delivery Reviews,2002,54(5):631-651.
    [187] Peer D, Karp J M, Hong S, et al. Nanocarriers as an emerging platform forcancer therapy. Nature Nanotechnology,2007,2(12):751-760.
    [188] Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles: Synthesis,stabilization, vectorization, physicochemical characterizations, and biologicalapplications. Chemical Reviews,2008,108(6):2064-2110.
    [189] Chithrani B D, Ghazani A A, Chan W C W. Determining the size and shapedependence of gold nanoparticle uptake into mammalian cells. Nano Letters,2006,6(4):662-668.
    [190] Ei-Sayed I H, Huang X H, Ei-Sayed M A. Surface plasmon resonance scatteringand absorption of anti-EGFR antibody conjugated gold nanoparticles in cancerdiagnostics: Applications in oral cancer. Nano Letters,2005,5(5):829-834.
    [191] Qian X M, Peng X H, Ansari D O, et al. In vivo tumor targeting andspectroscopic detection with surface-enhanced Raman nanoparticle tags. NatureBiotechnology,2008,26(1):83-90.
    [192] Jain P K, Huang X H, EI-Sayed I H, et al. Noble Metals on the Nanoscale:Optical and Photothermal Properties and Some Applications in Imaging, Sensing,Biology, and Medicine. Accounts of Chemical Research,2008,41(12):1578-1586.
    [193] Brannon-Peppas L, Blanchette J O. Nanoparticle and targeted systems for cancertherapy. Advanced Drug Delivery Reviews,2004,56(11):1649-1659.
    [194] Farokhzad O C, Cheng J J, Teply B A, et al. Targeted nanoparticle-aptamerbioconjugates for cancer chemotherapy in vivo. Proceeding of the NationalAcadmey of Sciences of the United States of America,2006,103(16):6315-6320.
    [195] Loo C, Lin A, Hirsch L, et al. Nanoshell-enabled photonics-based imaging andtherapy of cancer. Technology in Cancer Research&Treatment,2004,3(1):33-40.
    [196] Sokolov K, Follen M, Aaron J, et al. Real-time vital optical imaging of precancerusing anti-epidermal growth factor receptor antibodies conjugated to goldnanoparticles. Cancer Research,2003,63(9):1999-2004.
    [197] Liong M, Lu J, Kovochich M, et al. Multifunctional inorganic nanoparticles forimaging, targeting, and drug delivery. ACS Nano,2008,2(5):889-896.
    [198] Negishi Y, Nobusada K, Tsukuda T. Glutathione-protected gold clusters revisited:Bridging the gap between gold(I)-thiolate complexes and thiolate-protected goldnanocrystals. Journal of the American Chemical Society,2005,127(14):5261-5270.
    [199] Luo Z T, Yuan X, Yu Y, et al. From Aggregation-Induced Emission ofAu(I)-Thiolate Complexes to Ultrabright Au(0)@Au(I)-Thiolate Core-ShellNanoclusters. Journal of the American Chemical Society,2012,134(40):16662-16670.
    [200] Qian H F, Jiang D E, Li G, et al. Monoplatinum Doping of Gold Nanoclusters andCatalytic Application. Journal of the American Chemical Society,2012,134(39):16159-16162.
    [201] Hostetler M J, Wingate J E, Zhong C J, et al. Alkanethiolate gold clustermolecules with core diameters from1.5to5.2nm: Core and monolayerproperties as a function of core size. Langmuir,1998,14(1):17-30.
    [202] Hostetler M J, Templeton A C, Murray R W. Dynamics of place-exchangereactions on monolayer-protected gold cluster molecules. Langmuir,1999,15(11):3782-3789.
    [203] Lee K S, Ei-Sayed M A. Gold and silver nanoparticles in sensing and imaging:Sensitivity of plasmon response to size, shape, and metal composition. Journal ofPhysical Chemistry B,2006,110(39):19220-19225.
    [204] Zheng J, Zhang C W, Dickson R M. Highly fluorescent, water-soluble,size-tunable gold quantum dots. Physical Review Letters,2004,93(7):163-165.
    [205] Wen X M, Yu P, Toh Y R, et al. Fluorescence Dynamics in BSA-Protected Au-25Nanoclusters. Journal of Physical Chemistry C,2012,116(35):19032-19038.
    [206] Zheng J, Petty J T, Diskson R M. High quantum yield blue emission fromwater-soluble Au-8nanodots. Journal of the American Chemical Society,2003,125(26):7780-7781.
    [207] Qian H F, Zhu M Z, Wu Z K, et al. Quantum Sized Gold Nanoclusters withAtomic Precision. Accounts of Chemical Research,2012,45(9):1470-1479.
    [208] Furche F, Ahlrichs R, Weis P, et al. The structures of small gold cluster anions asdetermined by a combination of ion mobility measurements and densityfunctional calculations. Journal of Chemical Physics,2002,117(15):6982-6990.
    [209] Gao X H, Cui Y Y, Levenson R M, et al. In vivo cancer targeting and imagingwith semiconductor quantum dots. Nature Biotechnology,2004,22(8):969-976.
    [210] Wu X Y, Liu H J, Liu J Q, et al. Immunofluorescent labeling of cancer markerHer2and other cellular targets with semiconductor quantum dots. NatureBiotechnology,2003,21(1):41-46.
    [211] Medintz I L, Uyeda H T, Goldman E R, et al. Quantum dot bioconjugates forimaging, labelling and sensing. Nature Materials,2005,4(6):435-446.
    [212] Larson D R, Zipfel W R, Williams R M, et al. Water-soluble quantum dots formultiphoton fluorescence imaging in vivo. Science,2003,300(5624):1434-1436.
    [213] Chan W C W, Maxwell D J, Gao X H, et al. Luminescent quantum dots formultiplexed biological detection and imaging. Current Opinion in Biotechnology,2002,13(1):40-46.
    [214] Gerion D, Pinaud F, Willams S C, et al. Synthesis and properties ofbiocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantumdots. Journal of Physical Chemistry B,2001,105(37):8861-8871.
    [215] Ballou B, Lagerholm B C, Ernst L A, et al. Noninvasive imaging of quantum dotsin mice. Bioconjugate Chemistry,2004,15(1):79-86.
    [216] Templeton A C, Chen S W, Gross S M, et al. Water-Soluble, Isolable GoldClusters Protected by Tiopronin and Coenzyme A Monolayers. Langmuir,1999,15(1):66-76.
    [217] Palpant B, Prevel B, Lerme J, et al. Optical properties of gold clusters in the sizerange2–4nm. Physical Review B,1998,57(3):1963-1970.
    [218] Templeton A C, Cliffel D E, Murray R W. Redox and FluorophoreFunctionalization of Water-Soluble, Tiopronin-Protected Gold Clusters. Journalof the American Chemical Society,1999,121(30):7081-7089.
    [219] Huang T, Murray R W. Visible Luminescence of Water-SolubleMonolayer-Protected Gold Clusters. The Journal of Physical Chemistry B,2001,105(50):12498-12520.
    [220] Xie J P, Zheng Y G, Ying J Y. Protein-Directed Synthesis of Highly FluorescentGold Nanoclusters. Journal of the American Chemical Society,2009,131(3):888-889.
    [221] Sonvico F, Mornet S, Vasseur S, et al. Folate-conjugated iron oxide nanoparticlesfor solid tumor targeting as potential specific magnetic hyperthermia mediators:Synthesis, physicochemical characterization, and in vitro experiments.Bioconjugate Chemistry,2005,16(5):1181-1188.
    [222] Stella B, Arpicco S, Peracchia M T, et al. Design of folic acid-conjugatednanoparticles for drug targeting. Journal of Pharmaceutical Sciences,2000,89(11):1452-1464.
    [223] Kohler N, Fryxell G E, Zhang M Q. A bifunctional poly(ethylene glycol) silaneimmobilized on metallic oxide-based nanoparticles for conjugation with celltargeting agents. Journal of the American Chemical Society,2004,126(23):7206-7211.
    [224] Lewinski N, Colvin V, Drezek R. Cytotoxicity of Nanoparticles. Small,2008,4(1):26-49.
    [225] De Lima R, Seabra A B, Duran N. Silver nanoparticles: a brief review ofcytotoxicity and genotoxicity of chemically and biogenically synthesizednanoparticles. Journal of Applied Toxicology,2012,32(11):867-879.
    [226] Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: An emergingdiscipline evolving from studies of ultrafine particles. Environmental HealthPerspectives,2005,113(7):823-839.
    [227] Pan Y, Neuss S, Leifert A, et al. Size-dependent cytotoxicity of goldnanoparticles. Small,2007,3(11):1941-1949.
    [228] Bae Y, Nishiyama N, Kataoka K. In vivo antitumor activity of thefolate-conjugated pH-Sensitive polymeric micelle selectively releasingadriamycin in the intracellular acidic compartments. Bioconjugate Chemistry,2007,18(4):1131-1139.