机织物机械物理性能的计算机模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究讨论在纹织CAD过程中,机织物的拉仲、撕裂的预测和模拟问题,是在原课题基础上的进一步延续和扩充,主要完成了两方面的内容,即:①模型的建立和拓展、②计算机模拟实现。
     首先,以平纹织物的单元分析法为基础,将前面已建立的平纹织物的拉仲断裂强力的数学模型进行改进和拓展推广,使之适应更多的品种范围。本文主要将平纹织物扩充到斜纹织物上去,对斜纹织物的不同织物品种(这里主要讨论了2/1,2/2,3/1等相关斜纹织物)的横断面处的各根经纱进行受力分析,而后运用平纹织物得出的结论为基础进一步分析得出斜纹织物的拉伸断裂的数学模型,分析比较已建立的模型,发现2/2和3/1斜纹织物拉伸断裂的数学模型一致。将已得到的织物拉伸断裂强力的数学模型组织起来建立了一个适用范围较为广泛的模型库,为以后的计算机模拟提供数学基础。
     其次,把建立的数学模型反映到计算机中,实现模拟软件的编制。以已建立的织物拉伸断裂强力和撕裂强力的数学模型为基础,应用程序设计语言(PDL),对织物的拉伸断裂过程进行动态模拟,并且编制相关应用程序,用户可以通过GDI在界面上输入相关的织物结构参数,从而得到相关的拉伸断裂强力和撕裂强力,也可以通过参数看到织物的拉伸断裂强力与织物各项参数之间的关系。
     最后,以平纹织物和斜纹织物为例,采集样品进行实验,并将实验数据与系统得出的数据进行对比,验证模型的准确性,结果差距较小,从而验证了数学模型的准确和系统的可用性。
     本文的意义在于:通过建立织物参数与织物机械物理性能之
    
    间的数学关系,在计算机上进行织物机械物理性能的模拟;实现
    了较为宽广范围的织物结构适应性,在设计织物的同时,得到其
    机械物理性能的指标和效果的近似参考值,为织物的开发和设计
    提供了理论依据,并大大缩短了产品设计的周期。
The article mainly study the prediction and modeling of the woven fabric during the process of textile CAD. The thesis improve and extend the former one ,and it mainly complete two contents ,that is, establishing model and extending.(2)the realization of the computer modeling .
    At first, on the foundation of the plain-woven fabrics' unit analysis method, the article aims at improving and amplifying the mathematical model about the tensile and tearing strength of plain-woven fabrics and twill fabrics, so as that the mathematical model can be applied in more species .The thesis mainly apply the plain-woven fabrics in twill fabrics; The strength which act on the warp of different species(here, the thesis mainly argue about twill fabrics including 2/1,2/2 and 3/1 twill fabrics) during the process of tearing have been dealt with ,and then get the mathematical models of twill weaves after having analyzed them according to the conclusion about plain-woven fabrics .Analyzing and constructing the models having been built ,we can find the result:2/2 and 3/1 twill fabric have the same tensile model .The article founds a general model base after organizing the tensile strength's mathematical model ,and offer a base for the later computer modeling.
    Secondly, the thesis realizes the design of the computer simulation software with the tensile and tearing mathematical models. With the establishing mathematical models about the tearing and tensile strength of plain-woven and twill weaves, applying program design language(PDL), we can imitate the development pulling the
    
    
    fabric after programming. The customer can pass the GDI on the interface to input the related fabric structural parameters ,and then get the related tensile and tearing strength ;we also can see the relation between the tensile strength and the various fabric parameters.
    At last, to confirm those models, many plain-woven and twill samples have been collected. By means of experiment and numerical calculation, the agreement between the calculated results and the experimental data is satisfactorily obtained. This confirms the exact degree of those mathematical models and the use of the system.
    The thesis is of momentous current significance .By establishing the mathematical relation between the fabric parameters and mechanical and physical function of fabrics, we can simulate the fabric mechanical and physical property, at the same time we can get the index and the approximate reference value of the fabric mechanical and physical function. This provide theoretical foundation for the fabric developing and designing, also shorten the period about product designing.
    Gao Chuanping (Textile Engineering) Directed by Prof. Wang Liming
引文
【1】 吴汉金等,织物结构参数对织物机械物理性能的影响,华东纺织工学院学报,1984,Vol10,No3,41-48
    【2】 Peirce F T. The geometry of cloth structure. J Text Inst, 1937, 28:T45~97
    【3】 Peirce F T. Geometrical principles applicable to the design of functional fabrics. Text Res J, 1947, 17:123~147
    【4】 Leaf G A V, et al. Geometry of a plain- knitted loop. J Text Inst, 1955, 46:T587~605
    【5】 Leaf G A V, Model of the plain- knitted loop. J Text Inst, 1960, 51:T49~58
    【6】 Leaf G A V, et al. The initial load-extension behavior of plain-woven fabrics. J Text Inst, 1980, 71:1~7
    【7】 Hearle J W S, et al. Structural Mechanics of Fibers, Yarns and Fabrics. New York, 1969,1
    【8】 Hearle J W S, et al. Mechanics of flexible fibre assemblies. The Netherlands, 1980:211
    【9】 P. Offermann Melliand (Eng. Ed), 1993(10), 347
    【10】 Luijk C J. Finite element analysis of yarns. J Text Inst, 1984, 75(5): 342~362
    【11】 Text. Asia, 1995(11)77~80
    【12】 Collier J R, et al. Drape prediction by means of finite-element nalysis. J Text Inst, 1991,82(1) 96~107
    【13】 N.J. Zhou. J Text Inst. 1991,82(3)361~371
    
    
    [ 14 ] Takashi Komori, et al. A model analysis of the compressibility of fiber assemblies. Text Res J. 1992,62 (10) 567-574
    [15] 今风春树,织物的变形解析,纤维学会志, 1988,44 (5) :217-228
    [16] M. Matsudaiva J Text Inst, 1993, 84 (3) 376-386
    [17] Indian Text J. 1993, 103 (8) 42-45
    [18] R. C.D.Kaushik Indian Text J. 1994, 104 (7) 74-76
    [19] S.M.Hwo Text Asia, 1994 (5) 41-44
    [20] Kathari V K, et al. Shear behavior of woven fabics. Text Res J, 1989,59 (3) :142-150
    [21] P.H.Harrison, 《J. Text. Ins.》 1960, Vol, 51, T 91-131
    [22] J. Greswick, 《J. Text. Ins.》 1947, Vol, 38, T 307-317
    [23] L.H. Turl, 《Text. Res. J.》 1956, Vol , 26, P161-176
    [24] W. H. Ewing, 《J. Text. Ins》 1956, Vol. 47, T609-611
    [25] L.H. Turl, 《Text. Res. J.》 1958, Vol. 28, P839-848
    [26] K. Row et al,《Canadian Textile Journal》 1988, No.3, P28-31
    [27] R. Steel et al, 《Text. Res. J》 1957, Vol. 27, P307-313
    [28] C. M. Krook et al, 《Text. Res. J》 1945, Vol, 15, P389
    [29] H.M.Taylor, 《J. Text. Ins.》 1959, Vol, 50, T161
    [30] Gupta V B, Kumar S. A Model for Nonlinear Creep of Textile Fibers. T .R J, 1977, 47 (10) : 647-649
    [31 ] Nachane R P, Sundaram V. Analysis of Relaxation Phenomena in Textile Fibers. J T I, 1995, 86 (1) : 10-30
    [32] Vangheluwe L. Influence of Strain Rate and Yarn Number on Tensile Test Results. T R J, 1992, 62 (10) :585-589
    
    
    [ 33 ] Teixeira N A, Platt M M,Hamburger W J. Relation of CertainGeometric Factors to the Tear Strength of Woven Fabrics. Text Res J, 1955, 25: 838-861
    [34] Krook C M, Fox K R, Study of the Tongue-Tear Test. Text Res J, 945,15:389-396
    [35] K. T. Aswani, Indian Text:J.1993, 103 (8) : 42-45
    [35] K. T. Aswani, Indian Text.J. 1993, 4: 51-52
    [36] Dr Hu, Modelling of Tensile Curves of Woven Fabrics. Text. Asia, 1995, (11) ,77-80
    [37] C. Mack. Brit. J. App. physics.1958, 9 (6) :247
    [38] D. W. Loyd. Paper presented at the NATO, advanced Study Institute,Mechanics of Flexible Fiber Assemblies, Kilini, Greece, 1979, P311-342
    [39] R. V. Southwell. An Introduction to the Theory of Elasticity, Oxford University Press, Lodon, 2nd edition, 1941, P15
    [40] M. Matsudaira, et al. The Effect of Fibre Cross-sectional Shape on Fabric Mechanical Properties and Handle, J Text Inst, 1993, 84, No3,Textile Institute
    [41] G. S. Bhargava,《The Indian Text. J.》 1984, 10, 73
    [42] K. P.S. Cheng, Text Asia. 1995 (10) ,34-36
    [43 ] Plate, D.E.A, Hepworth, K,: Beat-up Force in Weaving, Part I, J. Text.Inst, 1971,62 (10) ,515
    [44] Plate, D.E.A, Hepworth, K,: Beat-up Force in Weaving, Part II, J. Text.Inst, 1973,64 (5) ,233
    [45] P. Grosberg. in "Mechanics of Flexible Fiber Assemblies" (edited by J.W. S. Hearle, J. Thwaites and J. Amirbayat) ,
    
    1980
    【46】 J. W.S.Hearle, P. Grosberg and S. Backer. "Structural Mechanics of Fibers, Yarns and Fabrics", Volume 1, 1969
    【47】 S.Kawabata, Textile Structural Composites, Philadelphia, U.S.A.,Drexel University, 1989, P.67~116
    【48】 张芝兰。机织物各向异性力学性能的研究。天津纺织工学院学报1992,11(2):1~7
    【49】 陆家骅。平面三向织物的机械性能。纺织学报,1987,8(8)29~33
    【50】 姚穆等。纺织材料学,北京,纺织工业出版社,1988
    【51】 刘宏伟。织物撕裂机理的探讨,郑州纺织工学院学报,1995,3,Vol.6,No.1,8~12
    【52】 扬以雄等。机织物撕裂现象的研讨。中国纺织大学学报,1990,Vol.16,No.6,39~44
    【53】 储才元等,机织物的撕裂破坏机理和测试方法的分析,纺织学报,1992,5,Vol.13,No.5,196~200
    【54】 张芝兰。平纹织物各向异性的力学性能分析。天津纺织工学院学报,1986,(2):20~28
    【55】 谢光银。织物几何结构与织物织缩率的研究。西北纺织工学院学报,1996,6.Vol.10,No.2,201~205
    【56】 董孚允。平纹织物的剪切模量分析。天津纺织工学院学报。1991,Vol.10,No.1,47~52
    【57】 丁辛。纬纱在织口处的运动。中国纺织大学学报,1989,Vol.15,No.6,99~105
    【58】 常培荣等。经纬纱力学关系对织物的影响。青岛大学学报。1996.6,Vol.11,No.2,33~38
    
    
    [59]梅顺齐。纱线高速运动时张力的精确计算。广东机械学院学报,1996,Vol.14,No.3,33~36
    [60]吴震世。论曲面上纱线的导向与纱线张力。纺织科学研究,1997,No.1,37~47
    [61]陈人哲。纱线力学问题。纺织工业出版社。1989,6
    [62]郭兴峰。纬纱运动规律的计算机模拟研究。天津纺织工学院学报。1996,Vol.15,No.1,52~56
    [63]陈秋水。关于多层织物组织与拉伸断裂特性之间关系的研讨。纺织学报。1992,Vol.13,No.12,27~30
    [64]李作攀。非织造布力学性能的模拟及其应用探讨。中国纺织大学学报。1998,Vol.24,No.2,1~4
    [65]严灏景。纺织纤维的动态模量和初始模量间关系的探讨。中国纺织大学学报。1982,Vol.8,No.2,1
    [66]魏铭森等。机织物沿任意方向弯曲性能的研究。纺织学报。1995,Vol.16,No.4,7~11
    [67]杨斌。毛织物起拱变形力学因子探讨。天津纺织工学院学报。1996,Vol.15,No.2,37~40
    [68]齐鲁。PRT织物中纤维的形变对动态力学性能的影响。天津纺织工学院学报。1995,Vol.15,No.4,48~52
    [69]吴兆平。织物弯曲刚度简易测试法的统一理论分析。上海工程技术大学学报。1996,Vol.10,No.4,12~17
    [70]黄志文。测试条件对纱线强伸性能测量结果的影响。广东化纤。1996,No.3,29~35
    [71]顾伯洪。机织物拉伸性能有限元模拟计算方法及应用。纺织学报。1998,Vol.19,No.2,15~17
    [72]朱耀庭等。服装结构CAD中环浪造型的数学模型——薛夜来曲线族。1997,Vol.23,No.1,85~92
    
    
    【73】王府梅等。长丝纱的结构与织物的基本力学性能、表面性能的研究。1997,Vol.18,No.6,9~12,15
    【74】庄日近译。织物强度。印染译丛。1991,No.4,71~78
    【75】顾行方。纱线质量指标相互间的关系。西北纺织工学院学报。1992,No.1,25~29
    【76】陈元非。机织物断裂强力和断裂伸长试验方法探讨。纺织学报。1988,Vol.9,No.7,14~18
    【77】龚协辉等。苎麻织物机械性能研究。中国纺织大学学报。1993,Vol.19,No.3,75~81
    【78】杨永春。织物断裂强力指标探讨。纺织学报.1992,Vol.13,No.5,30~33
    【79】薛晓冬等译。从织物与纱线的关系论纺织生产的产品质量。纺织导报。1993,No.1,41~46
    【80】周国瑞。毛织物产品结构与服用性能的关系。纺织学报。1985,Vol.6,No.12,47~50
    【81】Chen X.…。三维复杂机织结构的模拟系统。Text.Asia(HKG)。1998,29(10).—33~35
    【82】张瑞云等。花色纱线嵌于织物中效果的计算机模拟。纺织学报。2002.5.—34
    【83】郭新新。提高计算机对机织物模拟的真实感。纺织学报。1996,12
    【84】吴奕立,颜钢锋。织物计算机模拟显示方法的探索。纺织学报。1999,Vol.20,No.5,296~298
    【85】王跃存。织物CAD/CAM系统的研究与实践。天津纺织工学院学报。1998,Vol.17,No.2,19~22
    
    
    【86】郑天勇,李克兢。关于机织物CAD技术的研究。天津纺织工学院学报。1998,Vol.17,No.2,97~101
    【87】M.C.Boyce,S.Backer。A Micromechanical Model of the Tensile Behavior of Woven Fabric。Textile Res.J.67(6),445-459(1997)
    【88】Jinlian Hu。Modelling of tensile curves of woven tabrics。Textile Asia. 1995.12
    【89】李立,汪黎明。机织物拉伸撕裂性能研究[硕士学位论文]。山东青岛:青岛大学,1999.7
    【90】汪黎明,高传平,李立。机织物撕裂破坏机理的研究。青岛大学学报工程技术版,2001,Vol.16,No.1