瘤胃稳定性脂肪对产后奶牛泌乳、繁殖性能和抗病力的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
奶牛在产后的代谢改变主要表现为能量负平衡(negative energy balalice,NEB)。NEB不但引起奶牛产奶量下降,而且造成奶牛繁殖性能降低、使用年限缩短,并对营养代谢性疾病和感染性疾病发病率易感。脂肪是一种理想的供能物质,国外大量研究证实奶牛日粮中补充脂肪可改善奶牛泌乳期的能量负平衡,但在我国尚处于起步阶段。本文主要研究了瘤胃保护性脂肪对高产奶牛生产性能和血液生化指标的影响,为生产上推广应用瘤胃保护性脂肪提供科学根据。
     研究1上海地区某奶牛群场乳奶牛疾病流行趋势的调查
     对2000~2004年上海地区某奶牛场泌乳奶牛产奶量、繁殖性能和感染性疾病进行了调查。结果表明,成乳牛产奶量逐年上升,至2003年平均单产已达到8000kg。临床乳房炎发病率在2000~2003年间无显著差异(P>0.05),临床乳房炎发病率2004年比2000年时增加了0.9%(P<0.05)。隐性乳房炎发病率呈逐年升高趋势,2004年比2000年的隐性乳房炎发病率提高了14.8%(P<0.05)。各年间子宫内膜炎和胎衣不下发生率无明显的变化规律。相关性分析显示,年平均情期受胎率和年平均繁殖率下降呈下降趋势,与产奶量呈显著负相关(P<0.05)。结果表明,产奶量上升所致能量负平衡加剧与高产奶牛繁殖性能下降有密切联系。
     研究2瘤胃稳定性脂肪对产后奶牛奶产量、体况和牛奶成份的影响
     选择经产、胎次相同和产奶量相近的荷斯坦奶牛40头,采用配对分组设机分为对照组和试验组,每组20头。对照组全程饲喂基础日粮,试验组饲喂基础日粮+400g瘤胃稳定性脂肪。结果:瘤胃稳定性脂肪酸对奶牛采食量无显著影响(P>0.05);试验组牛产奶量显著升高(P<0.05),乳脂率呈上升趋势(P>0.05),但乳蛋白率未见显著变化(P>0.05);产后90天的体况评分(Body Condition Scoring,BCS)值两组问有显著变化;牛奶体细胞(somatic cell counts,SCC)呈下降趋势(P>0.05)。上述结果表明,补充瘤胃稳定性脂肪可提高奶牛泌如乳性能。
     研究3瘤胃稳定性脂肪对产后奶牛临床血液学的影响
     选择经产、胎次相同和产奶量相近的荷斯坦奶牛40头,采用配对分组设机分为对照组和试验组,每组20头。对照组全程饲喂基础日粮,试验组饲喂基础日粮+400g瘤胃稳定性脂肪。试验结果表明,添加瘤胃稳定性脂肪提高了围产期饲料能量密度,奶牛产后的奶产量显著提高,但对红细胞数和PVC、MCV、MCH、MCHC和淋巴细胞数均无明显影响;试验组奶牛外周血白细胞总数轻度上升(P>0.05)。上述结果表明,补充瘤胃稳定性脂肪对于改善机体免疫机可能有一定的作用。
     研究4瘤胃稳定性脂肪对产后奶牛血液生化指标的影响
     选择经产、胎次相同和产奶量相近的荷斯坦奶牛40头,采用配对分组设机分为对照组和试验组,每组20头。对照组全程饲喂基础日粮,试验组饲喂基础日粮+400g瘤胃稳定性脂肪。分别于产后0、15、30、45、60、75和90d经尾静脉采血,检测血浆总蛋白、白蛋白、球蛋白、葡萄糖、尿素氮和非酯化脂肪酸(nonesterified fatty acids,NEFA)浓度。结果:瘤胃稳定性脂肪对血浆总蛋白、白蛋白、球蛋白、葡萄糖、尿素氮、血清钙、甘油三酯和胆固醇无显著影响,但引起NEFA浓度在产后30d内显著升高(P<0.05)。上述结果表明:在奶牛产后日粮中添加400g瘤胃稳定性脂肪对血液蛋白质、葡萄糖代谢无显著影响,但可在短期内促进体内脂肪代谢。
     研究5瘤胃稳定性脂肪对奶牛群体生产和繁殖性能的影响
     选择年龄、胎次、泌乳日龄和上胎305天产奶量相近的679头奶牛,随机分为2组。其中对照组380头,试验组379头。从产后第8d起在试验组奶牛日粮中逐渐添加瘤胃稳定性脂肪百事美T-300(BERGAFAT T-300),到第14d每头每天喂100g,以后每6d递增喂100g,产后26d添加量达到400g,直到产后100d。从产后101d开始,按照每6d递减100g的方式,在产后119 d停止添加。结果表明,试验组奶牛奶产量、乳脂率、体况评分(BCS)较对照组升高,产犊间隔较对照组缩短,全年情期受胎率和年繁殖率以及初产牛和经产牛中产后80天发情牛的比例显著高于对照组,胎衣不下的比例和产后45天内子宫炎发病率较对照组明显降低。上述结果表明,补充瘤胃稳定性脂肪可提高奶牛生产和繁殖性能。
     上述结果提示:
     1.产奶量上升所致能量负平衡加剧与高产奶牛繁殖性能下降和感染性疾病发病率升高有密切联系。
     2.在产后奶牛日粮中补充瘤胃稳定性脂肪对红细胞状态、血浆蛋白、葡萄糖和血钙等生化指标无显著影响,但可显著提高产奶量作用,升高乳脂率、降低牛奶SCC。
     3.添加瘤胃稳定性脂肪也可显著提高产后奶牛繁殖性能,具有推广应用的价值。
Metabolic changes in post-parturient dairy cows are typically characterized by negative energy balance (NEB),which results in not only reduced milk yield,but also reduced reproductivity,shortened service period and,increased susceptibility to metabolic disorders and infectious disease.Supplemental fat,an energy substance, has been demonstrated to prevent negative energy balance in lactating dairy cow in many researches oversea.However,up to date,there are limited reports focused on this event in China. Accordingly,the present study was conducted to examine the effect of supplemental rumen-protected fat on production and plasma metabolite in dairy cow with high milk yield after calving, so as to provide a basis for generalization of this kind of products.
     Study 1 Prevalence trend of diseases in lactating cows in a dairy herd located in Shanghai area
     The present survey was focused on the milk yield, reproductivity, and incidence of infectious diseases in lactating dairy cow from 2000 to 2004.It was found that the milk yield was increased and peaked at 8000kg in 2003. With the increasing of milk yield, the incidence of the mastitis and endometritis don't tend to increase correlatively, and the conception rate of oestrus and reproduction rate were interrelated to reduce.It was demonstrated that the decreased reproductivity is associated with intense negative energy balance resulting from increased milk yield in high yield cows.
     Study 2 Effect of rumen-undegraded fat on milk yield,body condition scoring and milk composition in post-parturient dairy cows
     Forty multiparous Holstein dairy cows with similar parity and milk yielding of the last year were allocated equally into a control and an experimental group according to matched-pair grouping design.Beginning at the day of parturition until 90 days after parturition,cows in the experimental group were fed basic diet supplemented with 400 g rumen-undegraded fat. It was found that rumen-undegraded fat did not alter dry matter intake (DIM) (P>0.05).However,it increased milk yielding (P<0.05).Milk fat percentage tended to be increased by supplemental fat,although the differences between the two groups were not pronounced (P>0.05).There were no differences in milk protein percentage between the two groups (P>0.05).However,it tended to reduce somatic cell counts (SCC) in milk ( P>0.05).Body Condition Scoring (BCS) in two groups' showed significantly change.It was concluded that supplemental fat increased milk performance.
     Study 3 Effect of rumen-undegraded fat on clinical hematology in post.parturient dairy cows
     Forty multiparous Holstein dairy cows with similar parity and milk yielding of the last year were allocated equally into a control and an experimental group according to matched-pair grouping design. Beginning at the day of parturition until 90 days after parturition,cows in the experimental group were fed basic diet supplemented with 400 g rumen-undegraded fat.It was found that rumen-undegraded fat did not significantly alter RBC,PCV and MCV,MCH,MCHC (P>0.05).Supplemental fat had minor effect on the total number of peripheral leukocytes and the number of lymphocyte (P>0.05).It was concluded that supplemental fat improved immune function to a certain extent.
     Study 4 Effect of rumen-undegraded fat on plasma metabolites in post-parturient dairy cows
     Forty Holstein dairy cows were allocated equally into a control and an experimental group according to matched-pair grouping design. Beginning at the day of parturition until 90 days after parturition,cows in the experimental group were fed basic diet supplemented with 400 g rumen-undegraded fat.Blood samples were collected from vena caudalis for detection of plasma total protein,albumin,globin,glucose,urea nitrogen and nonesterified fatty acids (NEFA) on days 0,15,30,45,60,75 and 90 after parturition,respectively.It was found that rumen-undegraded fat did not alter the concentration of plasma total protein,albumin,globin or glucose.They were no significantly difference in serum calcium,tfiglycefide,cholesterol concentration in different groups.However,supplemental fat significantly increased plasma NEFA concentration during the first 30 days after parturition.In conclusion,supplemental fat enhanced lipolysis in a short term;however,it had no adverse effect on plasma protein and glucose metabolite.
     Study 5 The effect of rumen-undegraded fat on productivity and reproductivity in a dairy herd
     Cows with similar years of age, parities,onset of lactating and previous 305-day milk yield were divided into a control group (308 cows) and a treated group (379 cows) at random. Starting at days 8 after parturition, supplemental rumen-undegraded fat was increasingly added to the basal diets of the treated group until every cow received 100 g on days 14 after parturition.Thereafter, 100 g rumen-undegraded fat was increased by degrees at an interval of 6 days until 400 g were added on day 26 after parturition,and then remained constant until days 100 after parturition.Beginning at days 101 after parturition, rumen-undegraded fat was decreased progressively at a rate of 100 g every 6 days until supplementation of fat was canceled on days 119 after parturition. It was found that supplemental rumen-undegraded fat increased the milk yield, milk fat percentage and body condition score (BCS).Cows in rumen passed fat-treated group had shortened interval of calving, increased concept rate of oestrus, breeding coefficient per year and percentage of oestrus both in primiparous and multimiparous cows within 80 days after calving.Incidences of placenta retention and metritis were deceased by supplemental rumen-undegraded fat.It was demonstrated that rumen-undegraded fat improved both the productivity and reproductivity in dairy cows.
     It demonstrated that:
     1.The increased incidence of infectious diseases and decreased reproductivity is associated with intense negative energy balance resulting from increased milk yield in high yield cows
     2.Supplementation of rumen-undegraded fat to the diet of postpartum cows had no effects on blood cell status, plasma protein,glucose and calcium.However,it significantly increased milk yield, and tended to elevate milk fat percentage and to reduce SCC in milk.
     3.Supplemental rumen-undegraded fat was also shown to improve reproductivity in
     postpartum cows in a dairy herd.
     Based on those findings,it is suggested that rumen-undegraded fat can be generalized for practice.
引文
[1] Palmquist D L, Jenkins T C. Fat in lactation rations. Journal of Dairy Science, 1980, 63: 1-14.
    [2] Schneider P, Sklan D, Chalupa W, Kronfeld D S. Feeding calcium salts of fatty acids to lactating cows. Journal of DahT Science, 1988, 71: 2143~2150.
    [3] Kronfeld D S, Donoghue S, Naylor J M, J. Johnson, and C. A. Bradley. 1980. Metabolic effects of feeding protected tallow to dairy cows. J. Dairy Sci. 63: 545.
    [4] Jenkins DJ, Wolever TM, Rao AV, Hegele RA, Mitchell SJ, Ransom TT, Boctor DL, Spadafora PJ, Jenkins AL, Mehling C, et al. Effect on blood lipids of very high intakes of fiber in diets low in saturated fat and cholestcrol. N Engl J Meal. 1993 Jul 1; 329(1): 21-6
    [5] Perrier R, Ferchal E, Durier C, Doreau M. Effect of undernutrition on the ability of the sheep rumen to absorb volatile fatty acids. Reprod Nutr Dev. 1994; 34(4): 341-7.
    [5] Palmquist DL, Conrad HR High fat rations dairy cows, tallow and hydrolyzed blended fat at two intakes. J Dairy Sci. 198063(3): 391-5.
    [6] Gooden JM. Tbe importance of lipolytic enzymes in milk-fed and ruminating calves. Aust J Biol Sci. 1973 Oct; 26(5): 1189-99
    [7] Bauchart D, Legay-Carmier F, Doreau M. Ruminal hydrolysis of dietary triglycerides in dairy cows fed lipid,supplemented diets. Reprnd Nutr Dee. 1990; Suppl 2: 187s
    [8] Gerson, T., A. John, and B. R. Sinclair. 1983. The effect of dietary N on in vitro lipolysis and fatty acid hydrogenation in rumen digesta from cheep fed diets high in starch. J. Agric. Sci. (Camb.) 101: 97-101.
    [9] Gerson, T., A. John, and A. S. D. King. 1985. The effect of dietary starch and fiber on the in vitro rates of lipolysis and hydrogenation by sheep rumen digesta .J Agrie. Sci. (Camb.) 105: 27-30.
    [10] Wood, R. D., M. C. Bell, R. B. Grainger, and R. A. Teekell. 1963. Metabolism of labeled linoleic-1-C14 acid in the sheep rumen. J. Nutrition 79: 62.
    [11] Wu, Z., and D. L. Palmquist. 1991. Synthesis and biohydrogenation of fatty acids by ruminal microorganisms in vitro. J. Dairy Sci. 74: 3035.
    [12] Goosen PC. Absorption of long-chain fatty acids by rumen epithelium; experiments in vivo and in vitro. Z Tierphysiol Tierernahr Futtermittelkd. 1975 Oct; 35(6): 296-302.
    [13] J. A. Taylor and H. D. Jackson Formation of ketone bodies from [~(14)C]palmitate and [~(14)C]glycerol by tissues from ketotic sheep. Biochem J. 1968 January; 106(1): 289-292.
    [14] Emmanuel B.The relative contribution of propionate, and long-chain even-numbered fatty acids to the production of long-chain odd-numbered fatty acids in rumen bacteria. Biochim Biophys Acta. 1978 Feb 27;528(2):239-46.
    [15] Chow JC, Jesse BW.Interactions between gluconeogenesis and fatty acid oxidation in isolated sheep hepatocytes. J Dairy Sci. 1992 Aug;75(8):2142-8.
    [16] Patton RA, McCarthy RD, Keske LG, Griel LC Jr, Baumgardt BR.Effect of feeding methionine hydroxy analog on the concentration of protozoa in the rumen of sheep. J Dairy Sci. 1970 Jul;53(7):933-5.
    [17] Ferlay A, Chabrot J, Elmeddah Y, Doreau M.Ruminal lipid balance and intestinal digestion by dairy cows fed calcium salts of rapeseed oil fatty acids or rapeseed oil. J Anim Sci. 1993 Aug;71(8):2237-45
    [18] Jenkins, T.C. and Palmquist, D.L. 1984 Effect of fatty acids or calcium soaps on rumen and total nutrient digestibility of dairy rations. J. Dairy Sci. 67: 978.
    [19] Bock B, Harmon D, Brandt R y Schneider J 1991 Fat source and calcium level effects on finishing steer performance, digestion and metabolism. Journal Animal Science 69: 2211-2224
    [20] Ikwuegbu OA, Sutton JD.The effect of varying the amount of linseed oil supplementation on rumen metabolism in sheep. Br J Nutr. 1982 Sep;48(2):365-75.
    [21] T. C. Jenkins Nutrient Digestion, Ruminal Fermentation, and Plasma lipids in Steers Fed Combinations of Hydrogenated Fat and Lecithin. J. Dairy Sci. 1990 73:2934-2939.
    [22] Boggs DL, Bergen WG, Hawkins DR.Effects of tallow supplementation and protein withdrawal on ruminal fermentation, microbial synthesis and site of digestion. J Anim Sci. 1987 Mar;64(3):907-14.
    [23]Czerkawski JW, Breckenridge GNew inhibitors of methane production by rumen micro-organisms. Experiments with animals and other practical possibilities. Br J Nutr. 1975 Nov;34(3):447-57.
    
    [24] Mansfield, H. and M. Stern 1994. Effects of soybean hulls and lignosulfonate-treated soybean meal on ruminal fermentation in lactating dairy cows. J. Dairy Sci. 77 :1070.
    [25] Doreau M, Ferlay A, Elmeddah Y. Organic matter and nitrogen digestion by dairy cows fed calcium salts of rapeseed oil fatty acids or rapeseed oil.J Anim Sci. 1993 Feb;71(2):499-504.
    [26] Doreau M, Legay F, Bauchart D.Effect of source and level of supplemental fat on total and ruminal organic matter and nitrogen digestion in dairy cows. J Dairy Sci. 1991 Jul;74(7):2233-42.
    [27] 冯仰廉, 1995
    
    [28] Lessire, M., M. Doreau, and A. Aumaitre. 1992. Digestion and metabolism of fats indomestic animals. In: Manuel des Corps Gras. pp. 683-694. Lavoisier, Paris.
    [29] Chilliard Y, Gagliostro G, Flechet J, Lefaivre J, Sebastian I.Duodenal rapeseed oil infusion in early and midlactation cows. 5. Milk fatty acids and adipose tissue lipogenic activities. J Dairy Sci. 1991 Jun;74(6): 1844-54.
    [30] Drackley JK, Richard MJ, Beitz DC, Young JW.Metabolic changes in dairy cows with ketonemia in response to feed restriction and dietary 1,3-butanediol. J Dairy Sci. 1992 Jun;75(6): 1622-34.
    [31] Doreau M, Remond B.Dietary behavior and digestion of a constant composition feed in the dairy cow at the end of gestation and the beginning of lactation] Reprod Nutr Dev. 1982;22(2):307-24.
    [32] MATTIAS, J.E.; RUEGSEGGER, G.J.; SCHUTZ, L.H.; of Dairy Science 66:21-25. TYLER, W.J. 1982. Effects of feeding animal fat to dairy cows in early lactation.
    [33] Trei, J. E., R. C. Parish, Y. K. Sigh, and G. C. Scott. 1971. Effect of methane inhibitors on rumen metabolism and feedlot performance of sheep. J. Dairy Sci. 54:536-540.
    [34] Ohajuruka OA, Wu ZG, Palmquist DL. Ruminal metabolism, fiber, and protein digestion by lactating cows fed calcium soap or animal-vegetable fat. J Dairy Sci. 1991 Aug;74(8):2601-9.
    [35] Schauff D J, Clark JH. Effects of prilled fatty acids and calcium salts of fatty acids on rumen fermentation, nutrient digestibilities, milk production, and milk composition. J Dairy Sci. 1989 Apr;72(4):917-27.
    [36] Grununer RR, Meacham CA, Hurley WL, Davis CLApolipoprotein composition of bovine lipoproteins isolated by gel filtration chromatography. Comp Biochem Physiol B. 1987;88(4): 1163-74.
    [37] Gagliostro G, Chilliard Y. Duodenal Rapeseed Oil Infusion in Early and Midlactation Cows. 4. In Vivo and In Vitro Adipose Tissue Lipolytic Responses. J. Dairy Sci. 1991 74:1830-1843.
    [38] Rindsig RB, Schultz LH.Effects of abomasal infusions of safflower oil or elaidic acid on blood lipids and milk fat in dairy cows. J Dairy Sci. 1974 Dec;57(12): 1459-66.
    [39] Drackley JK, Richard MJ, Beitz DC, Young JW.Metabolic changes in dairy cows with ketonemia in response to feed restriction and dietary 1,3-butanediol. J Dairy Sci. 1992 Jun;75(6): 1622-34.
    [40] Christensen RA, Cameron MR, Clark JH, Drackley JK, Lynch JM, Barbano DM.Effects of amount of protein and ruminally protected amino acids in the diet of dairy cows fed supplemental fat. J Dairy Sci. 1994 Jun;77(6): 1618-29.
    [41] Kronfeld D S. Bovine ketosis in high yielding dairy cows. The potential importance of the proportions of glucogenic, lipogenic and aminogenic nutrients in regard to the health and productivity of dairy cows. Fortschr Tierphysiol Tierernahr. 1976;(7):3-26.
    [42] Baldwin RL, Smith NE, Taylor J, Sharp M. Manipulating metabolic parameters to improve growth rate and milk secretion. J Anim Sci. 1980 Dec;51(6):1416-28.
    [1]Butler, W.R., 1998. Review: Effect of protein nutrition on ovarian and uterine physiology in dairy cattle. J. Dairy Sci. 81,2533-2539.
    
    [2] Bauman, D.E., Currie, W.B., 1980. Partitioning of nutrients during pregnancy and lactation: a review of mechanisms involving homeostasis and homeorhesis. J. Dairy Sci. 63,1514-1529.
    [3] Butler, W.R., Smith, R.D., 1989. Interrelationships between energy balance on postpartum reproductive function in dairy cattle. J. Dairy Sci. 7,767-783.
    [4] Bell, A.W., 1995. Regulation of organic nutrient metabolism during transition form late pregnancy to early lactation. J. Anim. Sci. 73, 2804-2819.
    [5] Staples, C.R., Thatcher, W.W., Clark, J.H., 1990. Relationship between ovarian activity and energy status during the early postpartum period of high producing dairy cows. J. Dairy Sci. 73, 938-947.
    [6] Villa-Godoy, A., Hughes, T.L, Emery, R.S., Chapin, LX, Fogwell, R.L., 1988. Association between energy balance and luteal function in lactating dairy cows. J Dairy Sci. 71,1063-1072.
    [7] Gamsworthy, P.C., Topps, J.H., 1982. The effect of body condition of dairy cows at calving on their food intake and performance when given complete diets. Anim. Prod. 35,113-119.
    [8] Rukkwamsuk, T., Wensing, T., Kruip, T.A.M., 1999. Relationship between triacylglycerol concentration in the liver and first ovulation in postpartum dairy cows. Theriogenology 51, 1133-1142.
    [9]Beam, S.W., Butler, W.R., 1997. Energy balance and ovarian follicle development prior to the first ovulation postpartum in dairy cows receiving three levels of dietary fat. Biol. Reprod. 56,133-142.
    [10] Butler, W.R., 2000. Nutritional effects on resumption of ovarian cyclicity and conception rate in postpartum dairy cows. Anim. Sci., in press.
    [11]Jolly, P.D., McDougall, S., Fitzpatrick, L.A., Macmillan, K.L., Entwistle, K., 1995. Physiological effects of undernutrition on postpartum anestrous in cows. J. Reprod. Fertil., Suppl. 49,477-492.
    [12]Spicer, L.J., Alpizar, E., Echternkamp, S.E., 1993. Effects of insulin, insulin-like growth factor 1, and gonadotropins on bovine granulosa cell proliferation, progesterone production, estradiol production and or insulin-like growth factor-I production. J. Anim. Sci. 71,1232-1241.
    [13]Simpson, R.B., Chase, C.C., Spicer, L.J., Vernon, R.K., Hammond, A.C., Rae, D.O., 1994. Effect of exogenous insulin on plasma and follicular insulin-like growth factor I, insulin-likc growth factor binding protein activity, follicular oestradiol and progesterone, and follicular growth in superovulated Angus and Brahman cows. J. Reprod. Fertil. 102,483-492.
    [14] Beam, S.W., Butler, W.R., 1998. Energy balance, metabolic hormones, and early postpartum follicular development in dairy cows fed prilled lipid. J. Dairy Sci. 81,121-131.
    [15]Beam, S.W., Butler, W.R., 1999. Effects of energy balance on follicular development and first ovulation in postpartum dairy cows. J. Reprod. Fertil., Suppl. 54,411-424.
    
    [16] Cohick, W.S., Armstrong, J.D., Whitacre, M.D., Lucy, M.C., Harvey, R.W., Cambell, R.M., 1996. Ovarian expression of insulin-like growth factor-I IGF-I, IGF binding proteins, and growth hormone GH. receptor in heifers actively immunized against GH-Releasing factor. Endocrinology 137, 1670-1677.
    [17] Perks, CM., Peters, A.R., Wathes, D.C., 1999. Follicular and luteal expression of insulin-like growth factors I and II and the type 1 IGF receptor in the bovine ovary. J. Reprod. Fertil. 116, 156-165.
    [18]Staples, C.R., Burke, J.M., Thatcher, W.W., 1998. Influence of supplemental fats on reproductive tissues and performance of lactating cows. J. Dairy Sci. 81,856-871.
    [19]Loeffler, S.H., De Vries, M.J., Schukken, Y.H., De Zeeuw, A.C., Dijkhuizen, A.A., De Graaf, F.M., Brand, A., 1999. Use of AI technician scores for body condition, uterine tone and uterine discharge in a model with disease and milk production parameters to predict pregnancy risk at first AI in Holstein dairy cows. Theriogenology 51,1267-1284.
    [20]Rhodes, F.M., Clark, B.A., Nation, D.P., Taufa, V.K., MacMillan, K.L., Day, M.L., Day, A.M., McDougall, S., 1998. Factors influencing the prevalence of postpartum anoestrus in New Zealand dairy cows. Proc. N. Z. Soc. Anim. Prod. 58, 79-81.
    [21] Butler, W.R., Calaman, JJ., Beam, S.W., 1996. Plasma and milk urea nitrogen in relation to pregnancy rate in lactating dairy cattle. J. Anim. Sci. 74,858-865.
    [22]Westwood, C.T., Lean, I.J., Kellaway, R.C., 1998. Indications and implications for testing of milk urea in dairy cattle: a quantitative review Part 2. Effect of dietary protein on reproductive performance. N. Z. Vet. J. 46,123-140.
    [23] Gath, V., Lonergan, P., Boland, M.P., O'Callaghan, D., 1999. Effects of diet type on establishment of pregnancy and embryo development in beef heifers. Theriogenology 51,224, abstract.
    
    [24]Britt, J.H., 1992. Influence of nutrition and weight loss on reproduction and early embryonic death in cattle. Proc. XVII World Buiatrics Congr. 2,143-149.
    [25]Wittwer, F.G., Gallardo, P., Reyes, J., Optiz, H., 1999. Bulk milk urea concentrations and their relationship with cow fertility in grazing dairy herds in southern Chile. Prev. Vet. Med. 38, 159-166.
    [26] Mallard, B. A., Dekkers J. C, Ireland M. J., Leslie K. E., Sharif S., Vankampen C. L, Wagter L., and Wilkie B. N., 1998. Alteration in immune responsiveness during the peripartum period and its ramification on dairy cow and calf health. Journal of Dairy Science, 81:585-595.
    [27]Burton J L and Erskine R J. Immunity and mastitis: some new ideal for an old disease. The Veterinary Clinics Food Animal Practice, 2003,19:1-45.
    [28] Meglia G.E., Johannisson A., Agenas S., Holtenius K. Waller K. P Effects of feeding intensity during the dry period on leukocyte and lymphocyte sub-populations, neutrophil function and health in periparturient dairy cows.
    [1] Gordon CM, DePeter KC, Estherann G, Emans SJ. Prevalance of vitamin D deficiency among healthy adolescents. In: Proceedings of Endo2003, the Endocrine Society Meeting. Bethesda, MD: The Endocrine Society, 2003: 87.
    [2] Casper DP, Schingoethe DJ. Model to describe and alleviate milk protein depression in early lactation dairy cows fed a high fat diet. J Dairy Sci. 1989 Dec; 72(12): 3327-35.
    [3] Galbraith H, Miller TB. Effect of long chain fatty acids on bacterial respiration and amino acid uptake. J Appl Bacteriol. 1973 Dec; 36(4): 659-75
    [4] Czerkawski JW, Breckenridge G. New inhibitors of methane production by rumen micro-organisms. Development and testing of inhibitors in vitro. Br J Nutr. 1975
    [5] Lyons ET, Drudge JH, Tolliver SC, Hemken RW, Button FS Jr. Further tests of activity of levamisole on Ostertagia ostertagi in dairy calves with notes on overwinter survival of gastrointestinal helminths on pasture. Am J Vet Res. 1983 Sep; 44(9): 1760-2
    [6] Jenkins TG, Leymaster KA, MacNeil MD. Development and evaluation of a regression equation of prediction for fat-free soft tissue in heterogenous populations of cattle. J Anita Sci. 1995 Dec; 73(12): 3627-32
    [7] Fotouhi N, Jenkins TC. Ruminal biohydrogenation of linoleoyl methionine and calcium linoleate in sheep. J Anim Sci. 1992 Nov; 70(11): 3607-14.
    [8] Schneider PL, Beede DK, Wilcox CJ. Nycterohemeral patterns of acid-base status, mineral concentrations and digestive function of lactating cows in natural or chamber heat stress environments. J Anita Sci. 1988 Jan; 66(1): 112-25.
    [9] Rogers RJ, Dimmock CK, de Vos AJ, Rodwell BJ. Bovine leucosis virus contamination of a vaccine produced in vivo against bovine babesiosis and anaplasmosis. Aust Vet J. 1988 Sep; 65(9): 285-7.
    [10] Schneider IC, Ames ML, Rasmussen MA, Reilly PJ. Fermentation of cottonseed and other feedstuffs in cattle rumen fluid. J Agric Food Chem. 2002.
    [11] 王应芬 罗京焰 等.优质牧草皇竹草的生物学特性及利用价值.养殖与饲料.2002,(3).-18.
    [12] 庄苏,陈银基,李建中,陈占军.饲料中添加脂肪粉对高产奶牛生产性能的影响.粮食与饲料工业,2004,2,24~43
    [13] 高士争,文光明.饲料添加剂脂肪酸钙制备工艺的研究.饲料工业,1998,19(8):15~16.
    [14] 刘艳琴.高洁.高玉红.江富华.李建国.炎热夏季奶牛日粮中添加脂肪酸钙对热应激影响的研究.草食家畜,1999,4;37-39.
    [15] 张磊.王政.鲍金柱.沙印强.孙通海.脂肪酸钙饲喂奶牛试验.兽药与饲料添加剂.2000,6;7.
    [16] Breves G, Zitnan R, Schroder B, Winckler C, Hagemeister H, Failing K, Voigt J. Research note: Postnatal development of electrolyte transport in calf rumen as affected by weaning time. Arch Tierernahr. 2002 Oct; 56(5): 371-7.
    [17] Schauff DJ, Clark JH, Drackley JK. Effects of feeding lactating dairy cows diets containing extruded soybeans and calcium salts of long-chain fatty acids. J Dairy Sci. 1992 Nov; 75(11): 3003-19.
    [18] Schneider PL, Sklan D, Kronfeld DS, Chalupa W. Responses of dairy cows in early lactation to bovine somatotropin and ruminally inert fat. J Dairy Sci. 1990 May; 73(5): 1263-8.
    [19] Gooden JM, Lascelles AK. Effect of feeding protected lipid on the uptake of precursors of milk fat by the bovine mammary gland. Aust J Biol Sci. 1973 Oct; 26(5): 1201-10.
    [20] 王秀梅.包赛娜.王琪瑞.杜敏.长链脂肪钙酸在奶牛日粮中添加效果的研究.内蒙古畜牧科学,1998,1;17-19..
    [21] Butler WR, Smith RD. Interrelationships between energy balance and postpartum reproductive function in dairy cattle. J Dairy Sci. 1989 Mar; 72(3): 767-83.
    [22] Schneider PL, Beede DK, Wilcox CJ. Nycterohemeral patterns of acid-base status, mineral concentrations and digestive function of lactating cows in natural or chamber heat stress environments J Anim Sci. 1988 Jan; 66(1): 112-25.
    [23] Moore K, Bondioli KR. Glycine and alanine supplementation of culture medium enhances development of in vitro matured and fertilized cattle embryos. Biol Reprod. 1993 Apr; 48(4): 833-40.
    [24] Sklan D, Moallem U, Folman Y. Effect of feeding calcium soaps of fatty acids on production and reproductive responses in high producing lactating cows. J Dairy Sci. 1991 Feb; 74(2): 510_(-7).
    1. Bell, A. W. 1995. Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. J. Anim. Sci. 73:2804-2819.
    2. Horst, R. L., J. P. Goff, T. A. Reinhardt, and D. R. Buxton. 1997. Strategies for preventing milk fever in dairy cattle. J. Dairy Sci.80:1269-1280.
    3. Reynolds, C. K., P. C. Aikman, B. Lupoli, D. J. Humphries, and D. E. Beever. 2003. Splanchnic metabolism of dairy cows during the transition fromlate gestation through early lactation. J. Dairy Sci.86:1201-1217.
    4. Bennink, M. R., R. W.Mellenberger, R. A. Frobish, and D. E. Bauman. 1972. Glucose oxidation and entry rate as affected by the initiation of lactation. J. Dairy Sci. 55:712. (Abstr.)
    5. Seal, C. J., and C. K. Reynolds. 1993.Nutritional implications of gastrointestinal and liver metabolism in ruminants. Nutr. Res. Rev.6:185-208.
    6. Overton, T. R., J. K. Drackley, G. N. Douglas, L. S. Emmert, and J. H. Clark. 1998. Hepatic gluconeogenesis and whole-body protein metabolism of periparturient dairy cows as affected by source of energy and intake of the prepartum diet. J. Dairy Sci. 81(Suppl.l):295. (Abstr.)
    7. Bell, A. W. 1995. Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. J. Anim. Sci. 73:2804-2819.
    8. Pullen, D. L., D. L. Palmquist, and R. S. Emery. 1989. Effect of days of lactation and methionine hydroxy analog on incorporation of plasma fatty acids into plasma triglycerides. J.Dairy Sci. 72:49-58.
    9. Emery, R. S., J. S. Liesman, and T. H. Herdt. 1992. Metabolism of long-chain fatty acids by ruminant liver. J. Nutr. 122:832-837.
    10. Piepenbrink, M. S., and T. R. Overton. 2003. Liver metabolism and production of cows fed increasing amounts of rumen-protected choline during the transition period. J. Dairy Sci. 86:1722-1733.
    11. Cadorniga-Valino, C., R. R. Grummer, L. E. Armentano, S. S. Donkin, and S. J. Bertics. 1997. Effects of fatty acids and hormones on fatty acid metabolism and gluconeogenesis in bovine hepatocytes. J. Dairy Sci. 80:646-656.
    12. Strang, B. D., S. J. Bertics, R. R. Grummer, and L. E. Armentano. 1998. Effect of long-chain fatty acids on triglyceride accumulation, gluconeogenesis, and ureagenesis in bovine hepatocytes. J. Dairy Sci. 81:728-739.
    13. Zhu, L. H., L. E. Armentano, D. R. Bremmer, R. R. Grummer, and S. J. Bertics. 2000. Plasma concentration of urea, ammonia, glutamine around calving, and the relation of hepatic triglyceride, to plasmaammonia removal and blood acid-base balance. J. Dairy Sci.83:734-740.
    14. Overton, T. R., J. K. Drackley, C. J. Ottemann-Abbamonte, A. D. Beaulieu, L. S. Emmert, and J. H. Clark. 1999. Substrate utilization for hepatic gluconeogenesis is altered by increased glucose demand in ruminants. J. Anim. Sci. 77:1940-1951.
    15. Reinhardt, T.A.,R.L. Horst, and J. P.Goff. 1988.Calcium, phosphorus, and magnesium homeostasis in ruminants. Vet. Clin. North Am. Food Anim. Pract. 4:331-350.
    16. Horst, R. L., J. P. Goff, and T. A. Reinhardt. 1994. Calciumand vitamin D metabolism in the dairy cow. J. Dairy Sci. 77:1936-1951.
    17. Thiede, M. A. 1994. Parathyroid hormone-related protein: a regulated calcium-mobilizing product of the mammary gland. J. Dairy Sci.77:1952-1963.
    18. Goff, J. P., K. Kimura, and R. L. Horst. 2002. Effect of mastectomy on milk fever, energy, and vitamins A, E, and β-carotene status at parturition. J. Dairy Sci. 85:1427-1436.
    19. Mayer, G. P., C. F. Ramberg, D. S. Kronfeld, R. M. Buckle, L. M. Sherwood, G. D. Aurbach, and J. T. Potts, Jr. 1969. Plasma parathyroid hormone concentration in hypocalcemic parturient cows. Am. J. Vet. Res. 30:1587-1597.
    20. Horst, R. L., N. A. Jorgensen, and H. F. DeLuca. 1978. Plasma 1,25-dihydroxyvitamin D and parathyroid hormone levels in paretic dairy cows. Am J. Physiol. 235:E634-E637.
    21. Horst, R. L., J. P. Goff, and T. A. Reinhardt. 1994. Calciumand vitamin D metabolism in the dairy cow. J. Dairy Sci. 77:1936-1951.
    22. Dann, H. M., N. B. Litherland, J. P. Underwood, M. Bionaz, and J. K. Drackley. 2003. Prepartum nutrient intake has minimal effects on postpartum dry matter intake, serum nonesterified fatty acids, liver lipid and glycogen contents, and milk yield. J. Dairy Sci.86(Suppl. 1):106. (Abstr.)
    23. Mashek, D. G., and D. K. Beede. 2001. Peripartum responses of dairy cows fed energy-dense diets for 3 or 6 weeks prepartum. J. DairySci. 84:115-125.
    24. Corbett, R. B. 2002. Influence of days fed a close-up dry cow ration and heat stress on subsequent milk production in western dairy herds. J. Dairy Sci. 85(Suppl. 1): 191-192. (Abstr.)
    25. Contreras, L. L., C. M. Ryan, and T. R. Overton. 2004. Effects of dry cow grouping strategy and prepartum body condition score on performance and health of transition dairy cows. J. Dairy Sci. 87:517-523.
    26. Hayirli, A., R. R. Grummer, E. V. Nordheim, and P. M. Crump. 2002. Animal and dietary factors affecting feed intake during the prefresh transition period in Holsteins. J. Dairy Sci. 85:3430-3443.
    27. Garnsworthy.P. C, and J.H. Topps. 1982a. The effect of body condition of dairy cows at calving on their food intake and performance when given complete diets. Anim. Prod. 35:113-119.
    28. Garnsworthy, P. C, and J. H. Topps. 1982b. The effects of body condition at calving, food intake, and performance in early lactation on blood composition of dairy cows given complete diets. Anim. Prod. 35:121-125.
    29. Treacher, R. J., I. M. Reid, and C. J. Roberts. 1986. Effect of body condition at calving on the health and performance of dairy cows. Anim. Prod. 43:1-6.
    30. Domecq, J. J., A. L. Skidmore, J. W. Lloyd, and J. B. Kaneene. 1997. Relationship between body condition scores and milk yield in a large dairy herd of high yielding Holstein cows. J. Dairy Sci. 80:101-112.
    31. Rabelo, E., R. L. Rezende, S. J. Bertics, and R. R. Grummer. 2003. Effects of transition diets varying in dietary energy density on lactation performance and ruminal parameters of dairy cows. J.Dairy Sci. 86:916-925.
    32. Dirksen, G., H. Liebich, and K. Mayer. 1985. Adaptive changes of the ruminal mucosa and functional and clinical significance. Bov. Pract. 20:116-120.
    33. Andersen, J. B., J. Sehested, and K. L. Ingvartsen. 1999. Effect of dry cow feeding strategy on rumen pH, concentration of volatile fatty acids, and rumen epitheliumdevelopment. Acta Agric. Scand. Sect. A Animal Sci. 49:149-155.
    34. Hayirli, A., R. R. Grummer, E. V. Nordheim, and P. M. Crump. 2002. Animal and dietary factors affecting feed intake during the prefresh transition period in Holsteins. J. Dairy Sci. 85:3430-3443.
    35. Dann, H. M, G. A. Varga, and D. E. Putnam. 1999. Improving energy supply to late gestation and early postpartum dairy cows. J. Dairy Sci. 82:1765-1778.
    36. Smith, K. L., M. R. Waldron, T. R. Overton, J. K. Drackley, and M. T. Socha. 2002. Performance of dairy cows as affected by prepartum carbohydrate source and supplementation with chromiumthroughout the periparturient period. J. Dairy Sci. 85(SuppI.l):23. (Abstr.)
    37. Smith, K. L., M. R. Waldron, T. R. Overton, J. K. Drackley, and M.T. Socha. 2003. Metabolism of dairy cows as affected by prepartum dietary carbohydrate source and supplementation with chromium throughout the periparturient period. J. Dairy Sci. 86(Suppl.1):106. (Abstr.)
    38. Pickett, M. M., T. W. Cassidy, P. R. Tozer, and G. A. Varga. 2003a. Effect of prepartum dietary carbohydrate source and monensin on dry matter intake, milk production and blood metabolites of transition dairy cows. J. Dairy Sci. 86(Suppl. 1):10. (Abstr.)
    39. Grummer, R. R., J. C. Winkler, S. J. Bertics, and V. A. Studer. 1994. Effect of propylene glycol dosage during feed restriction onmetabolites in blood of prepartum Holstein heifers. J. Dairy Sci. 77:3618-3623.
    40. Formigoni, A., M. Cornil,A. Prandi, A. Mordenti,A. Rossi, D.Portetelle, and R. Renaville. 1996. Effect of propylene glycol supplementation around parturition on milk yield, reproduction performance and some hormonal and metabolic characteristics in dairy cows. J. Dairy Res. 63:11-24.
    41. Burhans, W. S., E. A. Briggs, J. A. Rathmacher, and A. W. Bell. 1997. Glucogenic supplementation does not reduce body tissue protein degradation in periparturient dairy cows. J. Dairy Sci. 80(Suppl. 1):167. (Abstr.)
    42. Christensen, J. O., R. R. Grummer, F. E. Rasmussen, and S. J. Bertics. 1997. Effect of method of delivery of propylene glycol on plasma metabolites of feed-restricted cattle. J. Dairy Sci. 80:563-568.
    43. Stokes, S. R., and J. P. Goff. 2001. Evaluation of calcium propionate and propylene glycol administered into the esophagus at calving. Prof. Anim. Sci. 17:115-122.
    44. Pickett, M. M., M. S. Piepenbrink, and T. R. Overton. 2003b. Effects of propylene glycol or fat drench on plasma metabolites, liver composition, and production of dairy cows during the periparturient period. J. Dairy Sci. 86:2113-2121.
    45. Visser, B. M., J. G. Linn, S. M. Godden, andM. L. Raeth-Knight. 2002. Effects of prefresh diet and post parturition drenching on early lactation performance of multiparous Holstein cows. J. Dairy Sci. 85(Suppl. 1):186. (Abstr.)
    46. Burhans, W. S., and A. W. Bell. 1998. Feeding the transition cow. Pages 247-258 in Proc. Cornell Nutr. Conf. Feed Manuf. Cornell Univ., Ithaca NY.
    47. Mandebvu, P., C. S. Ballard, C. J. Sniffen, D. S. Tsang, F. Valdez, S. Miyoshi, and L. Schlatter. 2003. Effect of feeding an energy supplement prepartumand postpartum on milk yield and composition, and incidence of ketosis in dairy cows. Anim. Feed Sci. Tech. 105:81-93.
    48. Beem, A. E.,H. G. Bateman, C. C. Williams, C. C. Stanley, D. T. Gantt, Y. H. Chung, and F. R. Valdez. 2003. Effects of prepartum dietary energy concentration and Ca-propionate on transition performance. J. Dairy Sci. 86(Suppl. 1):105. (Abstr.)
    49. Bauman, D. E., C. L. Davis, and H. F. Bucholtz. 1971. Propionate production in the rumen of cows fed either a control or high-grain, low-fiber diet. J. Dairy Sci. 54:1282-1287.
    50. Duffield, T. F., D. Sandals, K. E. Leslie, K. Lissemore, B. W. McBride, J. H. Lumsden, P. Dick, and R. Bagg. 1998b. Efficacy of monensin for the prevention of subclinical ketosis in lactating dairy cows. J. Dairy Sci. 81:2866-2873.
    51. Duffield, T. F., D. Sandals, K. E. Leslie, K. Lissemore, B. W. McBride, J. H. Lumsden, P. Dick, and R. Bagg. 1998a. Effect of prepartum administration ofmonensin in a controlled-release capsule on post partum energy indicators in lactating dairy cows. J. Dairy Sci.81:2354-2361.
    52. Duffield, T. F., K. E. Leslie, D. Sandals, K. Lissemore, B. W. McBride, J. H. Lumsden, P. Dick, and R. Bagg. 1999. Effect of prepartum administration ofmonensin in a controlled-release capsule on milk production and milk components in early lactation. J. Dairy Sci. 82:272-279.
    53. Duffield, T. F., S. LeBlanc, R. Bagg, K. Leslie, J. Ten Hag, and P. Dick. 2003. Effect of a monensin controlled release capsule on metabolic parameters in transition dairy cows. J. Dairy Sci. 86:1171-1176.
    54. Vallimont, J. E., G. A. Varga, A. Arieli, T. W. Cassidy, and K. A. Cummins. 2001. Effects of prepartum somatotropin and monensin on metabolism and production of periparturient Holstein dairy cows. J. Dairy Sci. 84:2607-2621.
    55. Armentano, L. E., and J. W. Young. 1983. Production and metabolism of volatile fatty acids, glucose, and CO2 in steers and the effects ofmonensin on volatile fatty acid kinetics. J. Nutr. 113:1265-1277.
    56. Markantonatos, X., G. A. Varga, T. W. Cassidy, R. K. McGuffey, R. Tucker, and L. F. Richardson. 2002. Volatile fatty acid production rates of Holstein dairy cows provided monensin during the transition period. J. Dairy Sci. 85(Suppl. l):105. (Abstr.)
    57. Arieli,A., J.E. Vallimont, Y.Aharoni, andG. A. Varga. 2001.Monensin and growth hormone effects on glucose metabolism in the prepartum cow. J. Dairy Sci. 84:2770-2776.
    58. Kronfeld, D. S. 1982. Major metabolic determinants of milk volume, mammary efficiency, and spontaneous ketosis in dairy cows. J.Dairy Sci. 65:2204-2212.
    59. Skaar, T. C, R. R. Grummer, M. R. Dentine, and R. H. Stauffacher. 1989. Seasonal effects of prepartum and postpartumfat and niacin feeding on lactation performance and lipid metabolism. J. Dairy Sci. 72:2028-2038.
    60. Grum, D. E., J. K. Drackley, R. S. Younker, D. W. LaCount, and J. J. Veenhuizen. 1996. Nutrition during the dry period and hepatic lipid metabolism of periparturient dairy cows. J. Dairy Sci. 79:1850-1864.
    61. Burhans, W. S., A. W. Bell, R. Nadeau, and J. R. Knapp. 2003. Factors associated with transition cow ketosis incidence in selected New England herds. J. Dairy Sci. 86(Suppl. 1):247. (Abstr.)
    62. Douglas, G. N., J. K. Drackley, T. R. Overton, and H. G. Bateman. 1998. Lipid metabolismand production by Holstein cows fed control or high fat diets at restricted or ad libitum intakes during the dry period. J. Dairy Sci. 81(Suppl. 1):295. (Abstr.)
    63. Bertics, S. J., and R. R. Grummer. 1999. Effects of fat and methionine hydroxy analog on prevention or alleviation of fatty liver induced by feed restriction. J. Dairy Sci. 82:2731-2736.
    64. Douglas, G. N., J. K. Drackley, T. R. Overton, and H. G. Bateman. 1998. Lipid metabolismand production by Holstein cows fed control or high fat diets at restricted or ad libitum intakes during the dry period. J. Dairy Sci. 81(Suppl. 1):295. (Abstr.)
    65. Doepel, L., H. Lapierre, and J. J. Kennelly. 2002. Peripartum performance and metabolism of dairy cows in response to prepartum energy and protein intake. J. Dairy Sci. 85:2315-2334.
    66. Pickett, M. M., M. S. Piepenbrink, and T. R. Overton. 2003b. Effects of propylene glycol or fat drench on plasma metabolites, liver composition, and production of dairy cows during the periparturient period. J. Dairy Sci. 86:2113-2121.
    67. Giesy, J. G., S. Viswanadha, T.W. Hanson, L. R. Falen, M. A. McGuire, C. H. Skarie, and A. Vinci. 1999. Effects of calcium salts of conjugated linoleic acid (CLA) on estimated energy balance in Holstein cows early in lactation. J. Dairy Sci. 82(Suppl. 1):74. (Abstr.)
    68. Bernal-Santos, G., J. W. Perfield II, D. M. Barbano, D. E. Bauman, and T. R. Overton. 2003. Production responses of dairy cows to dietary supplementation with conjugated linoleic acid (CLA) during the transition period and early lactation. J. Dairy Sci. 86:3218-3228.
    69. Castaneda-Gutierrez, E., T. R. Overton, and D. E. Bauman. 2003. Dose response to supplementation with calcium salts of conjugated linoleic acid during the transition period and early lactation. J. Dairy Sci. 86(Suppl. 1):146. (Abstr.)
    70. Selberg, K. T., C. R. Staples, and L. Badinga. 2002. Production and metabolic responses to dietary conjugated linoleic acid (CLA) and trans-octadecenoic acid isomers in periparturient dairy cows. J. Dairy Sci. 85(Suppl. 1):19. (Abstr.)
    71. Grummer, R. R. 1993. Etiology of lipid-related metabolic disorders in periparturient dairy cows. J. Dairy Sci. 76:3882-3896.
    72. Yao, Z., andD.E. Vance. 1988. The active synthesis of phosphatidylcholine is required for very low density lipoprotein secretion from rat hepatocytes. J. Biol. Chem. 263:2998-3004.
    73. Yao, Z.M., and D. E. Vance. 1990. Reduction in VLDL, but not HDL, in plasma of rats deficient in choline. Biochem. Cell Biol. 68:552-558.
    74. Piepenbrink, M. S., and T. R. Overtoil. 2003c. Liver metabolism and production of cows fed increasing amounts of rumen-protected choline during the transition period. J. Dairy Sci. 86:1722-1733.
    75. Erdman, R. A., and B. K. Sharma. 1991. Effect of dietary rumenprotected choline in lactating dairy cows. J. Dairy Sci. 74:1641-1647.
    76. Hartwell, J. R., M. J. Cecava, and S. S. Donkin. 2000. Impact of dietary rumen undegradable protein and rumen-protected choline on intake, peripartum liver triacylglyceride, plasma metabolites, and milk production in transition dairy cows. J. Dairy Sci. 83:2907-2917.
    77. Scheer,W. A., M. C. Lucy, M. S. Kerley, and J. N. Spain. 2002. Effects of feeding soybeans and rumen-protected choline during late gestation and early lactation on performance of dairy cows. J. Dairy Sci. 85(Suppl. 1):276. (Abstr.)
    78. Pinotti, L., A. Baldi, I. Politis, R. Rebucci, L. Sangalli, and V. Dell'Orto. 2003. Rumen-protected choline administration to transition cows: Effects on milk production and vitamin E status. J. Vet. Med.50:18-21.
    79. Bauchart, D., D. Durand, D. Gruffat, and Y. Chilliard. 1998. Mechanismof liver steatosis in early lactation cows—Effects of hepatoprotector agents. Pages 27-37 in Proc. ComellNutr.Conf.FeedManuf. Cornell University, Ithaca, NY.
    80. McCarthy, R. D., G. A. Porter, and L. C. Griel, Jr. 1968. Bovine ketosis and depressed fat test inmilk:Aproblemofmethioninemetabolism and serum lipoprotein aberration. J. Dairy Sci. 51:459-462.
    81. Waterman, R., and L. H. Schultz. 1972. Methionine hydroxyl analog treatment of bovine ketosis: Effects on circulating metabolites and interrelationships. J. Dairy Sci. 55:1513-1516.
    82. Socha, M. T., C. G. Schwab, D. E. Putnam, N. L. Whitehouse, N. A. Kierstead, and B. D. Garthwaite. 1994. Production responses of early lactation cows fed rumen-stable methionine or rumen-stable lysine plus methionine at two levels of dietary crude protein. J. Dairy Sci. 77(Suppl. 1):93. (Abstr.)
    83. Overton, T. R., D. W. LaCount, T. M. Cicela, and J. H. Clark. 1996. Evaluation of a ruminally protected methionine product for lactating dairy cows. J. Dairy Sci. 79:631-638.
    84. Rode, L. M., C. D. Knight, K. A. Andrews, and K. M. Koenig. 1998. Effects of pre- and post-partum Alimet supplementation on milk production of dairy cows. J. Dairy Sci. 81(Suppl. 1):294. (Abstr.)
    85. Piepenbrink, M. S., A. L. Bork, M. R. Waldron, W. R. Butler, T. R. Overton, M. Vazquez-Anon, and M. D. Holt. 2004. Feeding 2-hydroxy-4-(methylthio)-butanoic acid to transition dairy cows improves milk production but not hepatic metabolism. J. Dairy Sci.87:1071-1084.
    86. Pullen, D. L., D. L. Palmquist, and R. S. Emery. 1989. Effect of days of lactation and methionine hydroxy analog on incorporation of plasma fatty acids into plasma triglycerides. J.Dairy Sci. 72:49-58.
    87. Bertics, S. J., and R. R. Grummer. 1999. Effects of fat and methionine hydroxy analog on prevention or alleviation of fatty liver induced by feed restriction. J. Dairy Sci. 82:2731-2736.
    88. Lang, C. A., and R. A. Davis. 1990. Fish oil fatty acids impair VLDL assembly and/or secretion by cultured rat hepatocytes. J. Lipid Res. 31:2079-2086.
    89. Wu, X., A. Shang, H. Jiang, and H. N. Ginsberg. 1997. Demonstration of biphasic effects of docosahexaenoic acid on apolipoprotein B secretion in HepG2 cells. Arterioscler. Thromb. Vasc. Biol. 17:3347-3355.
    90. Mashek, D. G., and R. R. Grummer. 2003. Feeding pre-fresh transition cows: should we maximize feed intake or minimize feed intake depression? J. Dairy Sci. 86(Suppl. 1):11. (Abstr.)
    91. Piepenbrink,M. S., andT.R. Overton. 2003a. Hepatic palmitate metabolism of peripartrient dairy cows as affected by nutrients supplied in vitro. J. Dairy Sci. 86(Suppl. l):220. (Abstr.)
    92. Grummer, R. R. 1995. Impact in changes in organic nutrient metabolism on feeding the transition cow. J. Anim. Sci. 73:2820-2833
    93.Hayirli, A., R. R. Grummer, E. V. Nordheim, and P. M. Crump. 2002. Animal and dietary factors affecting feed intake during the prefresh transition period in Holsteins. J. Dairy Sci. 85:3430-3443.
    94. Douglas, G. N., J. K. Drackley, T. R. Overton, and H. G. Bateman. 1998. Lipid metabolismand production by Holstein cows fed control or high fat diets at restricted or ad libitum intakes during the dry period. J. Dairy Sci. 81(Suppl. 1):295. (Abstr.)
    95. Holcomb, C. S., H. H. Van Horn, H. H. Head, M. B. Hall, and C. J. Wilcox. 2001. Effects of prepartum dry matter intake and forage percentage on postpartum performance of lactating dairy cows. J. Dairy Sci. 84:2051-2058.
    96. Agenas, S., E. Burstedt, and K. Holtenius. 2003. Effects of feeding intensity during the dry period. 1. Feed intake, body weight, and milk production. J. Dairy Sci. 86:870-882.
    97. Holtenius, K., S. Agenas,C. Delavaud, and Y. Chilliard. 2003. Effects of feeding intensity during the dry period. 2.Metabolic and hormonal responses. J. Dairy Sci. 86:883-891.
    98. Mashek, D. G., and R. R. Grummer. 2003. Feeding pre-fresh transition cows: should we maximize feed intake or minimize feed intake depression? J. Dairy Sci. 86(Suppl. 1):11. (Abstr.)
    99. Curtis, C. R., H. N. Erb, C. H. Sniffen, R. D. Smith, and D. S. Kronfeld. 1985. Path analysis of dry period nutrition, postpartum metabolic and reproductive disorders, and mastitis in Holstein cows. J. Dairy Sci. 68:2347-2360.
    100 . Horst, R. L., J. P. Goff, T. A. Reinhardt, and D. R. Buxton. 1997. Strategies for preventing milk fever in dairy cattle. J. Dairy Sci.80:1269-1280.
    101. Block, E. 1984. Manipulating dietary anions and cations for prepartum dairy cows to reduce incidence of milk fever. J. Dairy Sci. 67:2939-2948.
    102. Joyce, P. W., W. K. Sanchez, and J. P. Goff. 1997. Effect of anionic salts in prepartum diets based on alfalfa. J. Dairy Sci. 80:2866-2875.
    103. Roche, J. R., J. Morton, and E. S. Kolver. 2002. Sulfur and chlorine play a non-acid base role in periparturient calcium homestasis. J.Dairy Sci. 85:3444-3453.
    104. Moore, S. J., M. J. VandeHaar, B. K. Sharma, T. E. Pilbeam, D. K. Beede, H. F. Bucholtz, J. S. Liesman, R. L. Horst, and J. P. Goff. 2000. Effects of altering dietary cation-anion difference on calcium and energy metabolism in peripartum cows. J. Dairy Sci. 83:2095-2104.
    105. Thilsing-Hansen, T., R. J. Jorgensen, J. M. Enemark, and T. Larsen. 2002. The effect of zeolite A supplementation in the dry period on periparturient calcium, phosphorus, and magnesium homeostasis. J. Dairy Sci. 85:1855-1862.
    106. Drackley, J.K. 1999. Biology of dairy cows during the transition period: The final frontier? J. Dairy Sci. 82:2259-2273.
    107. Drackley, J. K., T. R. Overton, and G. N. Douglas. 2001. Adaptations of glucose and long-chain fatty acid metabolism in liver of dairy cows during the periparturient period. J. Dairy Sci. 84(E. Suppl): E100-E112.
    108. Mallard, B. A., J. C. Dekkers, M. J. Ireland, K. E. Leslie, S. Sharif, C.LaceyVankampen,L.Wagter, andB.N. Wilkie. 1998. Alteration in immune responsiveness during the periparturient period and its ramification on dairy cow and calf health. J. Dairy Sci. 81:585-595.
    109. Sordillo, L. M., G. M. Pighetti, and M. R. Davis. 1995. Enhanced production of bovine tumor necrosis factor-alpha during the periparturient period. Vet. Immunol. Immunopathol. 49:263-270.
    110. Matthews, K. R., J. J. Rejman, J. D. Turner, and S. P. Oliver. 1994. Proliferation of a bovine mammary epithelial cell line in the presence of bacterial virulence factors. J. Dairy Sci. 77:2959-2964.
    111. Schukken, Y. H., H. N. Erb, and J. M. Scarlett. 1989. A hospital-based study of the relationship between retained placenta and mastitis in dairy cows. Cornell Vet. 79:319-326.
    112. Dosogne, H., C. Burvenich, and J. A. Lohuis. 1999. Acyloxyacyl hydrolase activity of neutrophil leukocytes in normal early postpartum dairy cows and in cows with retained placenta. Theriogenology 51:867-874
    113. Kimura, K., J. P. Goff, M. E. Kehrli, Jr., and T. A. Reinhardt. 2002. Decreased neutrophil function as a cause of retained placenta in dairy cattle. J. Dairy Sci. 85:544-550.
    114. Kehrli, M. E., Jr., and J. P. Goff 1989. Periparturient hypocalcemia in cows: effects on peripheral blood neutrophil and lymphocyte function. J. Dairy Sci. 72:1188-1196.
    115. Barker, A. R., F. N. Schrick, M. J. Lewis, H. H. Dowlen, and S. P. Oliver. 1998. Influence of clinical mastitis during early lactation on reproctive performance of Jersey cows. J. Dairy Sci. 81:1285-1290.
    116. Schrick, F. N., M. E.Hockett, A.M. Saxton, M. J. Lewis, H. H. Dowlen, and S. P.Oliver. 2001. Influence of subclinical mastitis during early lactation on reproductive parameters. J. Dairy Sci. 84:1407-1412.
    117. Huszenicza, G., S. Janosi, M. Kulcsar, P. Korodi, S. J. Dieleman, J. Bartyik, P. Rudas, and P. Ribiczei-Szabo. 1998. Gram-negative mastitis in early lactation may interfere with ovarian and certain endocrine functions and metabolism in dairy cows. Reprod. Domest. Anim. 33:147-153.
    118. Hockett, M. E., F. M. Hopkins, M. J. Lewis, A. M. Saxton, H. H. Dowlen, S. P. Oliver, and F. N. Schrick. 2000. Endocrine profiles of dairy cows following experimentally induced clinical mastitis during early lactation. Anim. Reprod. Sci. 58:241-251.
    119. Roche, J. R., J. Morton, and E. S. Kolver. 2002. Sulfur and chlorine play a non-acid base role in periparturient calcium homestasis. J.Dairy Sci. 85:3444-3453.
    120. Preisler, M. T., P. S. Weber, R. J. Tempelman, R. J. Erskine, H. Hunt, and J. L. Burton. 2000. Glucocorticoid receptor down-regulation in neutrophils of periparturient cows. Am. J. Vet. Res. 61:14-19.
    121. Weber, P. S., S. A. Madsen, G. W. Smith, J. J. Ireland, and J. L. Burton. 2001. Pre-translational regulation of neutrophil L-selectin in glucocorticoid-challenged cattle. Vet. Immunol. Immunopathol. 83:213-240.
    122. Perkins, K. H., M. J. VandeHaar, R. J. Tempelman, and J. L. Burton. 2001. Negative energy balance does not decrease expression of leukocyte adhesion or antigen-presenting molecules in cattle. J.Dairy Sci. 84:421-428.
    123. Perkins, K. H., M. J. VandeHaar, J. L. Burton, J. S. Liesman, R. J. Erskine, and T. H. Elsasser. 2002. Clinical responses to intramammary endotoxin infusion in dairy cows subjected to feed restriction. J. Dairy Sci. 85:1724-1731.
    124. Kimura, K., J. P. Goff, and M. E. Kehrli, Jr. 1999. Effects of the presence of the mammary gland on expression of neutrophil adhesion molecules and myeloperoxidase activity in periparturient dairy cows. J. Dairy Sci. 82:2385-2392.
    125. Suriyasathaporn, W., C. Heuer, E. N. Noordhuizen-Stassen, and Y. H. Schukken. 2000. Hyperketonemia and the impairment of udder defense: A review. Vet. Res. 31:397-412.
    126. Andersen, P. H., N. Jarlov, M. Hesselholt, and L. Baek. 1996. Studies on in vivo endotoxin plasma disappearance times in cattle. J. Vet. Med. A 43:93-101.
    127. Reid, I. M., and C. J. Roberts. 1983. Subclinical fatty liver in dairy cows—current research and future prospects. Irish Vet. J.37:104-110.
    128. Hill, A. W., I. M. Reid, and R. A. Collins. 1985. Influence of liver fat on experimental Escherichia coli mastitis in periparturient cows. Vet. Rec. 117:549-551.
    129. Waldron, M. R., T. Nishida, B. J. Nonnecke, and T. R. Overton. 2003a. Effect of lipopolysaccharide on indices of peripheral and hepatic metabolism in lactating cows. J. Dairy Sci. 86:3447-3459.
    130. Waldron, M. R., B. J. Nonnecke, T. Nishida, R. L. Horst, and T. R. Overton. 2003b. Effect of lipopolysaccharide infusion on serum macromineral and vitaminDconcentrations in dairy cows. J.Dairy Sci. 86:3440-3446.
    [1] Mallard A, Dekkers J C, Ireland M J, Leslie K E, Sharif S C. Wagter L L, Wilkie B N. Alteration in immune responsiveness during the peripartum period and its ramification on dairy cow and calf health. Journal of Dairy Science, 1998, 81: 585-595.
    [2] Krebs H A. Bovine ketosis. The Veterinary Record, 1966,78:187-192.
    [3] Mallard BA., Dekkers J.C., Ireland M.J., Leslie K.E., Sharif S., Lacey Vankampen C, Wagter, L and Wilkie B.N. Alteration in immune responsiveness during the peripartum period and its ramification on dairy cow and calf health. The Journal of Dairy Science, 1998, 81:585-595.
    [4] Meglia GE. Johannisson A, Agenas S., Holtenius K. and Persson Waller K. Effects of feeding intensity during the dry period on leukocyte and lymphocyte sub-populations, neutrophil function and health in periparturient dairy cows. The Veterinary Journal, 2005,169: 376-384.
    [5] Day M L, Imakawa K, Garcia-Winder M, Zalesky D D, Schanbacher B D, Kittok R J, Kinder J E. Influence of prepubertal ovariectomy and oestradiol replacement therapy on secretion of luteinising hormone before and after pubertal age in heifers. Domest. Anim. Endocrinol., 1986, 3:17-25.
    [6] Moran C. Quirke J F, Roche J F. Puberty in heifers: a review. Anim. Reprod. Sci., 1989,18:167-182.
    [7] Kinder J E, Bergfelt E G M, Wehrman M E, Peters K E, Kojima F N, Reprod J.. Endocrine basis for puberty in heifers and ewes. J. Reprod. Fertil. 1995,49:393-407.
    [8]Beam S W, Butler W R, 1997. Energy balance and ovarian follicle development prior to first ovulation postpartum in dairy cows receiving three levels of dietary fat. Biol. Reprod., 56: 133-142.
    
    [9] Dunne L D, Diskin M G, Boland M P, O'Farrell K J, Sreenan J M. The effect of pre- and post-insemination plane of nutrition on embryo survival in beef heifers. Anim. Sci. 1999, 69: 411-417.
    [1] Jorritsma R., Jorritsma H., Schukken Y. H. and Wentink G. H. Relationships between fatty liver and fertility and some periparturient diseases In Commercial Dutch Dairy Herds. Theriogenology 2000, 54: 1065-1074,
    [2] Chalupa W., Rickabaugh B., Kronfeld D. S., and Sklan D. Rumen fermentation in vitro as influenced by long chain fatty acids. Journal of Dairy Science, 1984, 67: 1439.
    [3] Palmquist D. L. and Jenkins T. C. Fat in lactation rations: review. Journal of Dairy Science, 1980, 63: 1.
    [4] Erickson, P. S., M. R. Murphy, and J. H. Clark. 1992. Supplementation of dairy cow diets with calcium salts of long-chain fatty acids and nicotinic acid in early lactation. Journal of Dairy Science, 75: 1078-1089.
    [5] Harrison, J. H., J. P. McNamara, and R. L. Kincaid. Production responses in lactating dairy cattle fed rations high in fat. Journal of Dairy Science, 1995, 78: 181-193.
    [6] Schneider, P., D. Sklan, W. Chalupa, and D. S. Kronfeld.. Feeding calcium salts of fatty acids to lactating cows. Journal of Dairy Science, 1988, 71: 2143-2150.
    [7] Schaufp D. J. and J. H. Clark. Effects of Feeding Diets Containing Calcium Salts of Long-chain Fatty Acids to Lactating Dairy Cows. Journal of Dairy Science, 1992, 75: 2990~3002.
    [8] Erickson P. S., Murphy M. R. and Clark J. H. Supplementation of dairy cows with calcium salts of long chain fatty acids and nicotinic acid in early lactation. Journal of Dairy Science, 1992, 75: 1078.
    [9] Klusmeyer T. H., Lynch G. L. Clark J. H. and Nelson D. R.. Effects of calcium salts of fatty acids and protein source on ruminal fermentation and nutrient flow to the duodenum of cows. Journal of Dairy Science, 1991, 74: 2206.
    [10] Palmquist D. L., and Moser E A. Dietary fat effects on blood insulin, glucose utilization, and milk protein content of lactating cows. Journal of Dairy Science, 1981, 64: 1664.
    [11] Kent, B. A., and Arambel M. J. Effects of calcium salts of long-chain fatty acids on dairy cows in early lactation. Journal of Dairy Science, 1988, 71: 2412.
    [12] 董德宽,关于奶牛体况评分,乳业科学与技术,2004,23:2832
    [13] 杨金波,李非,过瘤胃脂肪对奶牛体况及生产性能的影响,中国奶牛·2002年第6期,19-20
    [14] 雷晓薇等,应用体细胞记数监测奶牛阴性乳房炎,畜牧与兽医,2003,35(12)35-36
    [1] Jorritsma R., Jorritsma H., Schukken Y.H. and Wentink G.H. Relationships between fatty liver and fertility and some periparturient diseases In Commercial Dutch Dairy Herds. Theriogenology 2000, 54:1065-1074,
    [2] Chalupa W., Rickabaugh B., Kronfeld D.S., and Sklan D. Rumen fermentation in vitro as influenced by long chain fatty acids. Journal of Dairy Science, 1984,67:1439.
    [3] Palmquist D. L. and Jenkins T. C. Fat in lactation rations: review. Journal of Dairy Science, 1980, 63: I.
    [4 ]Erickson, P. S., M. R. Murphy, and J. H. Clark. 1992. Supplementation of dairy cow diets with calcium salts of long-chain fatty acids and nicotinic acid in early lactation. Journal of Dairy Science, 75:1078-1089.
    [5]Harrison, J. H., J. P. McNamara, and R. L. Kincaid. Production responses in lactating dairy cattle fed rations high in fat. Journal of Dairy Science, 1995, 78:181-193.
    [6] Schneider, P., D. Sklan, W. Chalupa, and D. S. Kronfeld.. Feeding calcium salts of fatty acids to lactating cows. Journal of Dairy Science, 1988, 71: 2143-2150.
    [7] Schaufp D. J.and J. H. Clark. Effects of Feeding Diets Containing Calcium Salts of Long-chain Fatty Acids to Lactating Dairy Cows. Journal of Dairy Science, 1992, 75: 2990-3002.
    [8] Erickson P. S., Murphy M. R. and Clark J. H. Supplementation of dairy cows with calcium salts of long chain fatty acids and nicotinic acid in early lactation. Journal of Dairy Science, 1992, 75:1078.
    [9] Klusmeyer T.H., Lynch G.L. Clark J.H. and Nelson D.R.. Effects of calcium salts of fatty acids and protein source on ruminal fermentation and nutrient flow to the duodenum of cows. Journal of Dairy Science, 1991, 74: 2206.
    [10]Palmquist D.L., and Moser E A. Dietary fat effects on blood insulin, glucose utilization, and milk protein content of lactating cows. Journal of Dairy Science, 1981, 64:1664.
    [11]Kent, B.A., and Arambel M.J. Effects of calcium salts of long-chain fatty acids on dairy cows in early lactation. Journal of Dairy Science, 1988,71: 2412.
    [12] Targowski, S. P., Klucinski, W. Reduction in mitogenic response of bovine lymphocytes by ketones bodies. American Journal of Veterinary Research, 1983, 44: 828~830.
    [13] Meglia G. E. Johannisson A, Agenas S., Holtenius K. and Persson Waller K. Effects of feeding intensity during the dry period on leukocyte and lymphocyte sub-populations, neutrophil function and health in periparturient dairy cows. The Veterinary Journal, 2005, 169: 376~384.
    [1] Berries S J, Grummer R R, Cadoringa-Valino C, Stoddard E E. Effect of prepartum dry matter intake on liver triglycerideconcentration and early lactation. Journal of Dairy Science, 1992, 75, 1914-1922.
    [2] Hayirli, A, Gmmmer R R, Nordheim E V, Crump P M. Animal and dietary factors affecting feed intake during the prefresh transition period in Holsteins. Journal of Dairy Science, 2002, 85: 3430-3443.
    [3] Overton T R, Waldron M R. Nutritional Management of Transition Dairy Cows: trategies to Optimize Metabolic Health. The Joumal of Dairy Science, 2004, E105~E119.
    [4] Wentink G H, Rutten V P M G, van den Ingh T S G A M, Hoek A, Wensing M K E. Impaired specific immunoreactivity in cows with hepatic lipidosis. Veterinary Immunology and Irnmunopathology, 1997, 56: 77~83.
    [5] Schaufp D J, Clark J H. Effects of feeding diets containing calcium salts of long-chain fatty acids to lactating dairy cows. Journal of Dairy Science, 75: 2990~3002.
    [6] Chilliard Y. Dietary fat and adipose tissue metabolism in ruminants, pigs, and rodents. Journal of Dairy Science, 1993, 76: 3897~3931.
    [7] DePeters E J, Cant J P. Nutritional factors influencing the nitrogen composition of bovine milk. Journal of Dairy Science, 1992, 75: 2043~2070.
    [8] Khorasani G R, de Boer G, Robinson P H, Kennelly J J. Effect of canola fat on ruminal and total tract digestion, plasma hormones, and metabolites in lactating dairy cows. Journal of Daily Science, 1992, 75: 492~501.
    [9] Palmquist D L, Conrad H R. High fat rations for dairy cows. Effects on feed intake, milk and fat production, and plasma metabolites. Journal of Dairy Science, 1978, 61: 890~901.
    [10] Grummer R R. Effect of feed on the composition of milk fat. Journal of Dairy Science, 1991, 74: 3244~3257.
    [11] Erickson P S, Murphy M R, Clark J H. Supplementation of dairy cow diets with calcium salts of long-chain atty acids and nicotinic acid in early lactation. Journal of Dairy Science, 1992, 75: 1078~1089.
    [12] Harrison J H, McNamara J P, Kincaid R L. Production responses in lactating dairy cattle fed rations high in fat. Journal of Dairy Science, 1995, 78: 181~193.
    [13] Schneider P, Sldan D, Chalupa W, Kronfeld D S. Feeding calcium salts of fatty acids to lactating cows. Journal of Dairy Science, 1988, 71: 2143~2150.
    [14] Selberg K T, Lowe A C, Staples C R, Luchini N D, Badinga L. Production and Metabolic Responses of Periparturient Holstein Cows to Dietary Conjugated Linoleic Acid and trans-Octadecenoic Acids. Journal of Dairy Science, 2004, 87: 158~168.
    [15] Baumgard L H, Cod B A, Dwyer D A, Saebo A, Bauman D E. Identification of the conjugated linoleic acid isomer that inhibits milk fat synthesis. American Journal of Physiology, 2000, 278: R179~R184.
    [16] Baumgard L H, Matitashvili E, Cod B A, Dwyer D A, Bauman D E. trans-10, cis-12 conjugated linoleic acid decreases lipogenic rates and expression of genes involved in milk lipid synthesis. Journal of Dairy Science, 2002, 85: 2155~2163.
    [17] Bauman D E, Peel C J, Steinhour W D, Reynolds P J, Tyrrell H F, Brown A C G, Haaland G L. Effect of bovine somatotropin on metabolism of lactating dairy cows: Influence on rates of irreversible loss and oxidation of glucose and nonesterified fatty acids. Journal of Nutrition, 1988, 118: 1031~1040.
    [18] Klusmeyer H, Lynch G L, Clark J H. Effects of Calcium Salts of Fatty Acids and Protein Source on Ruminal Fermentation and Nutrient Flow to Duodenum of Cows. Journal of Dairy Science, 1991, 74: 2206~2219.
    [19] 牛淑玲,王哲,李秀菊.围产期奶牛能量代谢障碍性疾病的防治进展.中国畜牧杂志,2004,40(12):36~39.
    [20] Perkins K H, VandeHaar M J, Tempelman R J, Burton J L. Negative energy balance dose not decrease expression of leukocytes adhension or antigen-presenting molecules in cattle. Journal of Dairy Science, 2001, 84: 421~428.
    [1] 刘艳琴 高洁 高玉红 江富华 李建国。炎热夏季奶牛日粮中添加脂肪酸钙对热应激影响的研究。草食家畜,1999,(4):37~39。
    [2] 张磊;王政;鲍金柱;沙印强;孙通海。脂肪酸钙饲喂奶牛试验。兽药与饲料添加剂,2000年第六期,15-17
    [3] 庄苏:陈银基;李建中;程占军;饲料中添加脂肪粉对高产奶牛生产性能的影响粮食与饲料工业,2004年第二期。42-43
    [4] Erickson, P. S., M. R. Murphy, and J. H. Clark. 1992. Supplementation of dairy cow diets with calcium salts of long-chain fatty acids and nicotinic acid in early lactation. Journal of Dairy Science, 75: 1078-1089.
    [5] Harrison, J. H., J. P. McNamara, and R. L. Kincaid. Production responses in lactating dairy cattle fed rations high in fat. Journal of Dairy Science, 1995, 78: 181-193.
    [6] Schneider, P., D. Sklan, W. Chalupa, and D. S. Kronfeld.. Feeding calcium salts of fatty acids to lactating cows. Journal of Dairy Science, 1988, 71: 2143-2150.
    [7] Butler, W. R., R. W. Everett, and C. E. Coppock. 1981. The relationships between energy balance, milk production and ovulationin postpartum Hostein cows. J. Anita. Sci. 53: 742-748.
    [8] Butler, W. R., and R. D. Smith. 1989. Interrelationships between energy balance and postpartum reproductive function in dairy cattle. J. Dairy Sci. 72: 767-783.
    [9] Staples, C. R., W. W. Thatcher, and J. H. Clark. 1990. Relationship between ovarian activity and energy status during the early postpartum period of high producing dairy cows. J. Dairy Sci. 73: 938-947.
    [10] Lucy, M. C., C. R. Staples, W. W. Thatcher, P. S. Erickson, R. M. Cleale, J. L. Firkins, J. H. Clark, M. R. Murphy, and B. O. Brodie. 1992. Influence of diet composition, dry matter intake, milk production and energy balance on time of postpartum ovulation and fertility in dairy cows. Anim. Prod. 54: 323-331.
    [11] Thatcher, W. W., and C. J. Wilcox. 1973. Postpartum estrus as an indicator of reproductive status in the dairy cow. J. Dairy Sci. 56: 608-610.
    [12] Domenq, J. J., A. L. Skidmore, J. W. Lloyd, and J. B. Kaneene. 1997. Relationship between body condition scores and conception at first aritificial insemination in a large dairy herd of high yielding Holstein cows. J. Dairy Sci. 80: 113-120.
    [13] Staples, C. R., Burke, J. M., Thatcher, W. W., 1998. Influence of supplemental fats on reproductive tissues and performance of lactating cows. J. Dairy Sci. 81, 856-871..
    [14] 董德宽.关于奶牛体况评分,乳业科学与技术,2004,23:28-32