模型蛋白与药物分子相互作用的分子光谱法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质是生命的物质基础,是生命科学的重要研究对象。蛋白质与小分子物质之间的相互作用研究有助于考察蛋白质的结构和功能与小分子配体的结构和性质之间存在的相关性,并已成为生命科学、化学和临床医学研究领域的重要研究课题。本论文采用流动注射-化学发光法,以溶菌酶、牛血清白蛋白、过氧化氢酶和肌红蛋白对化学发光试剂鲁米诺的增敏作用为基础,分别建立了鲁米诺-溶菌酶、鲁米诺-牛血清白蛋白、鲁米诺-过氧化氢酶和鲁米诺-肌红蛋白稳态化学发光体系;以溶菌酶和牛血清白蛋白为模型蛋白,探讨了蛋白质与头孢菌素之间的相互作用并做了富有创新性的研究工作,首次建立了蛋白质-药物相互作用的流动注射-化学发光法模型,并且成功用于四种模型蛋白与头孢菌素等药物相互作用及分析应用研究。论文内容分为两部分:
     第一部分综述
     总结了分子光谱法进展及其应用于研究蛋白质与小分子物质相互作用的现状,引用文献282篇(第一章)。
     第二部分研究报告
     1.蛋白质-药物相互作用的流动注射-化学发光法模型的构建。溶菌酶(或牛血清白蛋白)与鲁米诺在线生成1:1的二元复合物,能够增强鲁米诺化学发光,以此建立了稳态的鲁米诺-溶菌酶(或鲁米诺-牛血清白蛋白)化学发光体系;以头孢菌素与鲁米诺-溶菌酶(或鲁米诺-牛血清白蛋白)的相互作用生成1:1:1三元复合物并能猝灭鲁米诺-溶菌酶(或鲁米诺-牛血清白蛋白)化学发光为基础,构建了蛋白质-药物相互作用的流动注射-化学发光法模型并推导出计算作用参数的公式:lg(I0-I)/I=lgKD+nlg[D](第二、三章)。
     2.蛋白质-药物相互作用的流动注射-化学发光法模型的应用。运用本论文建立的蛋白质-药物相互作用模型,获得了溶菌酶-头孢菌素和牛血清白蛋白-头孢菌素的作用参数,同时用荧光猝灭法进行了验证,两种方法得到的结果基本一致。大部分头孢菌素类药物与蛋白相互作用的结合常数KD均在103-105水平,表明该类药物与溶菌酶或牛血清白蛋白之间存在较强相互作用。结合能力大小遵循以下顺序:头孢哌酮、头孢曲松、头孢噻肟>头孢呋辛、头孢克洛>头孢羟氨苄、头孢拉定、头孢唑啉,表明随着药物代次的升高,药物与蛋白质之间结合越来越强。结合位点数n约为1.0,表明头孢菌素在溶菌酶或牛血清白蛋白分子中的结合位点都是一个,并可能位于溶菌酶分子中Trp62或牛血清白蛋白分子中Trp212氨基酸残基附近。热力学参数均为:ΔG<0,ΔH>0,ΔS>0,表明溶菌酶或牛血清白蛋白同头孢菌素药物相互作用形成复合物的过程是自发进行的,并主要以疏水作用力相结合(第二、三章)。头孢菌素药物与过氧化氢酶能够发生相互作用,对鲁米诺-过氧化氢酶体系的化学发光有猝灭作用,据此运用流动注射-发学发光法研究了过氧化氢酶与头孢菌素的相互作用。运用蛋白质-药物作用模型,计算了过氧化氢酶与头孢菌素相互作用的的结合常数及结合位点数。除第一代头孢菌素外,二、三代药物与过氧化氢酶的结合常数KD均在104-105水平,表明它们之间存在强的亲合作用;结合位点数n约为1.0,表明药物在过氧化氢酶分子中有一个结合位点。本方法还成功用于口服头孢拉定胶囊中的药物含量测定和人体尿液中头孢拉定的监测,口服500.0 mg头孢拉定后,2小时后头孢拉定的排出量达到最大值,8小时内总代谢率为79.51%,计算得到头孢拉定总的代谢常数(K)和半衰期(t1/2)分别为0.4822和1.45(第四章)。基于鲁米诺-肌红蛋白体系强烈的化学发光能被头孢菌素药物抑制,运用流动注射-化学发光法研究了肌红蛋白与头孢菌素药物的相互作用,获得了作用参数。本方法也应用于头孢克洛胶囊中的含量测定及口服头孢克洛后人体尿液中代谢状况监测。药物含量测定的回收率范围为93.0%-106.5%,测定值与标示量接近;尿液监测的结果为1.5小时头孢克洛的排出量达到最大值,8小时内总代谢率为51.75%,总的代谢常数(K)和半衰期(t1/2)分别为0.8063和0.86(第五章)。应用鲁米诺-肌红蛋白化学发光体系,研究了肌红蛋白与三聚氰胺的相互作用,建立了测定纳克级三聚氰胺的化学发光分析方法。鲁米诺-肌红蛋白体系化学发光强度的减小值与三聚氰胺浓度的对数值在0.01 ng mL-1-50ng mL-1的范围内呈现良好的线性关系,检出限为3 pg mL-1(3σ),测定的相对标准偏差小于3.0%(n=7)。该方法已经成功应用于测定乳制品中的三聚氰胺,回收率为93.4-106.5%(第六章)。以氯雷他定对鲁米诺-肌红蛋白体系化学发光反应的抑制作用为基础,研究了肌红蛋白和氯雷他定的相互作用,建立了测定氯雷他定的化学发光分析方法。氯雷他定浓度的对数值与化学发光强度降低值成线性关系,线性浓度范围为0.1 ngmL-1-100.0 ng mL-1,检出限为0.03 ng mL-1(3σ),实验测定的相对标准偏差均小于3.0%(n=7)。该方法获得了肌红蛋白-氯雷他定结合的作用参数,并成功应用于药片、尿液及血清样品中氯雷他定的测定(第七章)。
Protein is the essential biological material and basilic studying object of life science. Study on the interaction between protein and small molecules has been the current important subject in the fields of biology, chemistry and clinical medicine as it can help to explore the relativity of the structure and nature of small molecules with structure and function of protein. In this thesis, based on the CL of luminol can be significantly enhanced by lysozyme, BSA, catalase and myoglobin, the steady CL system of luminol-lysozyme, luminol-BSA, luminol-catalase and luminol-myoglobin was proposed. Using lysozyme and BSA as the model proteins, the interaction of protein with cephalosporin was investigated by FI-CL method and a FI-CL model for studying the interaction of protein-drug was constructed for the first time. The proposed model was applied successfully to the interaction study of four model proteins with drugs. The main content consisted of two parts:
     Part I:Review
     The current development of molecular spectroscopy was summarized and the research status for the interaction between protein and small molecules by molecular spectroscopy were described.282 references was cited (in Chapter 1).
     Part II:Research reports
     1. Constructing of FI-CL model for studying the interaction of protein-drug. Lysozyme (or BSA) and luminol could react to form 1:1 complex on line, which could greatly enhance the luminol CL intensity, then the steady CL system of luminol-lysozyme (or luminol-BSA) was proposed. Based on cephalosporin binding to luminol-lysozyme (or luminol-BSA) formed 1:1:1 complex and remarkable quenched the CL of luminol-lysozyme (or luminol-BSA), the FI-CL model of protein-drug interaction was constructed and the formula lg(Io-I)/I=lgKD+nlg[D]was deduced (in Chapter 2 and 3).
     2. Applications of FI-CL model for studying the interaction of protein-drug. Using the proposed model, the interaction parameters of lysozyme-cephalosporin and BSA-cephalosporin were calculated. Meanwhile, the binding parameters were also studied by fluorescence quenching method. The results obtained by the proposed model agreed well with the results obtained by fluorescence quenching method illuminated that the proposed model would be a feasible method in the study of protein-drug interaction. The binding constant KD values of the drugs mostly were at 103-105 level suggesting that there was high binding affinity of cephalosporin to lysozyme or BSA. The binding ability of the studied cephalosporin drugs followed the pattern:cefoperazone, ceftriaxone and cefotaxime> cefuroxime and cefaclor> cefadroxil, cefradine and cefazolin, which consisted with that of their antibacterial ability. The number of binding potential point n approximately equaled to 1.0 indicating that there was one class of binding site to cephalosporin analogues in lysozyme or BSA and cephalosporin probably bound to the site of Trp62 in lysozyme or the active site near Trp212 in BSA. The calculated thermodynamic parameters were△G<0,△H>0 and△S> 0, which meant that the binding process was spontaneous and the hydrophobic effect was the major binding force in the interaction of lysozyme or BSA with cephalosporins (in Chapter 2 and 3). Based on the inhibitory effect of cephalosporin on the luminol-catalase CL system, a new method for studying the interaction of catalase with cephalosporin was constructed. Utilizing the proposed protein-drug interaction model, the binding constant and the number of binding potential point were calculated. The results indicated that there was high binding affinity and one class of binding site of cephalosporin in catalase. The calculated thermodynamic parameters showed that catalyse bound with cephalosporins by hydrophobic effect. The proposed procedure was applied successfully to determine cefradine in capsules and monitor the excretion of cefradine in human urine samples. It was found that the excretive cefradine concentration reached its maximum after orally administrated for 2 hours, the cefradine excretive ratio in 8 hours was 79.51%, the total elimination rate constant (K) and the half-life time (t1/2) of cefradine in the body were 0.4822 and 1.45, respectively (in Chapter 4). Based on the inhibitory effect of cephalosporin on the luminol-myoglobin system, the interaction of myoglobin with cephalosporin was studied by FI-CL and the interaction parameters were obtained. The proposed method was applied successfully to the determination of cefaclor in capsules with the recoveries range from 93.0%-106.5%, and the results agreed well with the labeled amount. The proposed method was also applied to monitoring the excretion of cefaclor in human urine samples. It was found that the excretive cefaclor concentration reached its maximum after orally administrated for 1.5 hours, the cefaclor excretive ratio in 8 hours was 51.75%, the total elimination rate constant (Κ) and the half-life time(t1/2) of cefaclor in the body were 0.8063 and 0.86 hours, respectively (in Chapter 5). The interaction of myoglobin with melamine was investigated using luminol-myoglobin CL system. A sensitive chemiluminescence method for the determination of melamine was presented based on the inhibitory effect of melamine on the CL reaction between luminol and myoglobin, and the decrement of CL intensity was proportional to the concentration of melamine ranging from 0.01 to 50.0 ng mL"1 with the detection limit of 3 pg mL-1 (3σ). The proposed method was applied successfully to the determination of melamine in milk products, and the recovery was from 93.4 to 106.5%(in Chapter 6). Based on the inhibitory effect of loratadine on the luminol-myoglobin chemiluminescence reaction, the interaction between myoglobin and loratadine was studied and a CL method for the determination of loratadine was presented. The decrement of CL signal was linear with the logarithm of loratadine concentration over the range from 0.1 to 100.0 ng mL-1 with the detection limit of 0.03 ng mL-1 (3a) and relative standard deviation of less than 3.0%(n= 7). The proposed procedure was applied successfully to obtaining the interaction parameters of myoglobin-loratadine complex and determining loratadine in the medicine of tablets, human serum and urine (in Chapter 7).
引文
[1]Lowry M., Fakayode S. O., Geng M. L., et al. Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry[J]. Analytical Chemistry,2008,80(12), 4551-4574
    [2]Fletcher K. A., Fakayode S. O., Lowry M., et al. Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry[J]. Analytical Chemistry,2006, 78(12),4047-4068
    [3]Powe A. M., Fletcher K. A., Luce N. N. S., et al. Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry[J]. Analytical Chemistry,2004, 76(16),4614-4634
    [4]Agbaria R. A., Oldham P. B., McCarroll M., et al. Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry[J]. Analytical Chemistry,2002, 74(16),3952-3962
    [5]Wang J., Lin M., Yan Y., et al. CdSe/AsS core-shell quantum dots:preparation and two-photon fluorescence [J]. Journal of the American Chemical Society,2009,131(32), 11300-11301
    [6]Zhang G., Lu J., Sabat M., et al. Polymorphism and reversible mechanochromic luminescence for solid-state difluoroboron avobenzone[J]. Journal of the American Chemical Society,2010, DOI:10.1021/ja9097719
    [7]Zhang F., Braun G. B., Shi Y., et al. Fabrication of Ag@SiO2@Y2O3:Er nanostructures for bioimaging:tuning of the upconversion fluorescence with silver nanoparticles[J]. Journal of the American Chemical Society,2010,132(9),2850-2851
    [8]Qin B., Chen H., Liang H., et al. Reversible photoswitchable fluorescence in thin films of inorganic nanoparticle and polyoxometalate assemblies[J]. Journal of the American Chemical Society,2010,132(9),2886-2888
    [9]Hori Y., Ueno H., Mizukami S., et al. Photoactive yellow protein-based protein labeling system with turn-on fluorescence intensity [J]. Journal of the American Chemical Society,2009,131(46),16610-16611
    [10]Oushiki D., Kojima H., Terai T., et al. Development and application of a near-infrared fluorescence probe for oxidative stress based on differential reactivity of linked cyanine dyes[J]. Journal of the American Chemical Society,2010,132(8),2795-2801
    [11]Izumi S., Urano Y., Hanaoka K., et al. A simple and effective strategy to increase the sensitivity of fluorescence probes in living cells[J]. Journal of the American Chemical Society,2009,131(29),10189-10200
    [12]Weeks C. L., Singh S., Madzelan P., et al. Heme regulation of human cystathionine β-synthase activity:insights from fluorescence and raman spectroscopy[J]. Journal of the American Chemical Society,2009,131(35),12809-12816
    [13]Nevin A. Comelli D., Valentini., et al. Total synchronous fluorescence spectroscopy combined with multivariate analysis:method for the classification of selected resins, oils, and protein-based media used in paintings[J]. Anal. Chem.,2009,81(5), 1784-1791
    [14]Michelman-Ribeiro A., Horkay F., Nossal R., et al. Probe diffusion in aqueous poly(vinyl alcohol) solutions studied by fluorescence correlation spectroscopy[J]. Biomacromolecules,2007,8(5),1595-1600
    [15]Wong F. H. C., Banks D. S., Abu-Arish A., et al. A molecular thermometer based on fluorescent protein blinking[J]. Journal of the American Chemical Society,2007, 129(34),10302-10303
    [16]Schuettpelz M., Schoening J. C., Doose S., et al. Changes in conformational dynamics of mRNA upon AtGRP7 binding studied by fluorescence correlation spectroscopy [J]. Journal of the American Chemical Society,2008,130(29),9507-9513
    [17]Fogarty K., McPhee J. T., Scott E., et al. Probing the ionic atmosphere of single-stranded DNA using continuous flow capillary electrophoresis and fluorescence correlation spectroscopy [J]. Anal. Chem.,2009,81(1),465-472
    [18]Tcherniak A., Reznik C., Link S., et al. Fluorescence correlation spectroscopy:criteria for analysis in complex systems[J]. Anal. Chem.,2009,81(2),746-754
    [19]Wenger J., Grard D., Aouani H., et al. Nanoaperture-enhanced signal-to-noise ratio in fluorescence correlation spectroscopy[J]. Anal. Chem.,2009,81(2),834-839
    [20]Lee W., Lee Y. I., Lee J., et al. Cross-talk-free dual-color fluorescence cross-correlation spectroscopy for the study of enzyme activity[J]. Anal. Chem., Articles ASAP (As Soon As Publishable), Publication Date (Web):January 14,2010
    [21]Santo I. D., Causa F., Netti P. A. Subdiffusive molecular motion in nanochannels observed by fluorescence correlation spectroscopy[J]. Anal. Chem.,2010,82(3), 997-1005
    [22]Miller A. E., Hollars C. W., Lane S. M., et al. Fluorescence cross-correlation spectroscopy as a universal method for protein detection with low false positives[J]. Anal. Chem.,2009,81(14),5614-5622
    [23]Stanton S. G., Pecora R., Hudson B. S. Resonance enhanced dynamic Rayleigh scattering[J]. Journal of Chemical Physics,1981,75(12),5615-5626
    [24]Skoog, D. A. Pinciples of instrumental analysis[M], New York,1985, p.362
    [25]Pasternack R. F., Schaefer K. F., Hambright P. Resonance light-scattering studies of porphyrin diacid aggregates[J]. Inorganic Chemistry,1994,33(9),2062-2605
    [26]Zhang W. Z., Chen X. D., Yang J., et al. Quantitative description of aggregation and dissociation of polystyrene chains in cyclohexane solutions by resonance light scattering technique[J]. J. Phys. Chem. B,2010,114,1301-1306
    [27]Liu Z. D., Li Y. F., Ling J., et al. A localized surface plasmon resonance light-scattering assay of mercury (Ⅱ) on the basis of Hg2+-DNA complex induced aggregation of gold nanoparticles[J]. Environ. Sci. Technol.,2009,43(13),5022-5027
    [28]Xiang M., Xu X., Liu F., et al. Gold nanoparticle based plasmon resonance light-scattering method as a new approach for glycogen-biomacromolecule interactions[J]. J. Phys. Chem. B,2009,113(9),2734-2738
    [29]Cai C., Chen X. Determination of nanograms of proteins based on the amplified resonance light scattering signals of tichromine[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2010,75(3),1057-1060
    [30]Chen Z., Liu G, Chen M., et al. Determination of nanograms of proteins based on decreased resonance light scattering of zwitterionic gemini surfactant[J]. Analytical Biochemistry,2009,384(2),337-342
    [31]Zhan G, Zhang L., Li C. Resonance light scattering spectral method for the determination of serum albumin with the interaction of neutral red-sodium dodecyl sulfonate[J]. Colloids and Surfaces B:Biointerfaces,2009,71(1),84-87
    [32]Wu L., Mu D., Gao D., et al. Determination of protein by resonance light scattering technique using dithiothreitol-sodium dodecylbenzene sulphonate as probe [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2009,72(1), 178-181
    [33]Zhang S. H., Fan Y. S., Feng S., et al. Microdetermination of proteins by resonance light scattering technique based on aggregation of ferric nanoparticles[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy.2009,72(4),748-752
    [34]Zou Q. C., Chen H., Yu H., et al. Synthesis of polycation with gemini structure and detection of DNA by resonance light scattering[J]. Sensors and Actuators B:Chemical, 2010,145(1),378-385
    [35]Li L., Xu Z. S., Pan Q., et al. Determination of nucleic acid based on increased resonance light-scattering of fluorinated surfactants [J]. Journal of Fluorine Chemistry, 2009,130(6),567-572
    [36]Li J., Kang J., Lu J., et al. Determination of calf thymus DNA using resonance light-scattering quenching method based on the terbium (Ⅲ) (Tb3+)/europium (Ⅲ) (Eu3+)-quercetin system[J]. Journal of Luminescence,2009,129(9),906-911
    [37]Zhou H., Wu X., Yang J. Study on the interaction of nucleic acids with silver nanoparticles-Al(Ⅲ) by resonance light scattering technique and its analytical application[J]. Talanta,2009,78(3),809-813
    [38]Zhang J. Q., Wang Y. S., He Y, et al. Determination of urinary adenosine using resonance light scattering of gold nanoparticles modified structure-switching aptamer[J]. Analytical Biochemistry,2010,397(2),212-217
    [39]Chen Z., Liu G, Chen M., et al. High-sensitivity detection of polysaccharide using phosphodiesters quaternary ammonium salt as probe by decreased resonance light scattering[J]. Talanta,2009,79(2),171-176
    [40]Chen Z., Zhu L., Song T., et al. Determination of dextrin based on its self-aggregation by resonance light scattering technique[J]. Analytica Chimica Acta,2009,635(2), 202-206
    [41]Chen H. Q., Luo F. B., Liu Y., et al. Application of functional CdS nanoparticles in determination of silver ion by resonance light-scattering technique[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2009,71(5),1701-1703
    [42]Fan Y, Long Y. F., Li Y. F. A sensitive resonance light scattering spectrometry of trace Hg2+ with sulfur ion modified gold nanoparticles[J]. Analytica Chimica Acta,2009, 653(2),207-211
    [43]Yang J., Chen X., Fu R., et al. Phase separation in polystyrene/poly (vinyl methyl ether) blend revealed by two-dimensional correlation resonance light scattering spectroscopy [J]. Polymer Testing,2009,28(4),456-460
    [44]Chen Z., Zhu L., Song T., et al. A novel curcumin assay with the metal ion Cu (Ⅱ) as a simple probe by resonance light scattering technique[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2009,72(3),518-522
    [45]Chen Z., Liu G, Chen M., et al. Screen anticancer drug in vitro using resonance light scattering technique [J]. Talanta,2009,77(4),1365-1369
    [46]Sun Q., Jiang X., Ma J., et al. Resonance light-scattering method for the determination of labetalol using uranyl acetate and aniline blue[J]. Materials Science and Engineering: C,2009,29(1),271-274
    [47]杨传孝,共振光散射光谱的校正及其分析应用研究[D],西南师范大学硕士学位论文,2003
    [48]Dai X. X., Li Y. F., He W., et al. A dual-wavelength resonance light scattering ratiometry of biopolymer by its electrostatic interaction with surfactant[J]. Talanta,2006, 70(3),578-583
    [49]Huang C. Z., Pang X. B., Li Y. F., et al. A resonance light scattering ratiometry applied for binding study of organic small molecules with biopolymer [J]. Talanta,2006,69(1), 180-186
    [50]庞小兵,共振光散射新技术在生化药物分析中的应用研究[D],西南师范大学硕士论文,2004
    [51]Feng P., Shu W. Q., Huang C. Z., et al. Total internal reflected resonance light scattering determination of chlortetracycline in body fluid with the complex cation of chlortetracycline-europium-trioctyl phosphine oxide at the water/tetrachloromethane interface[J]. Analytical Chemistry,2001,73(17),4307-4312
    [52]Lu W., Huang C. Z., Li Y. F. A sensitive and selective assay of nucleic acids by measuring enhanced total internal reflected resonance light scattering signals deriving from the evanescent field at the water/tetrachloromethane interface[J]. Analyst,2002, 127(10),1392-1396
    [53]Feng P., Huang C. Z., Li Y. F. Direct quantification of human serum albumin in human blood serum without separation of y-globulin by the total internal reflected resonance light scattering of thorium-sodium dodecylbenzene sulfonate at water/tetrachloromethane interface[J]. Analytical Biochemistry,2002,308(1),83-89
    [54]Zhao H. W., Huang C. Z., Li Y. F. A novel optical immunosensing system based on measuring surface enhanced light scattering signals of solid supports [J]. Analytica Chimica Acta,2006,564(2),166-172
    [55]Tan K. J., Huang C. Z., Huang Y. M. Determination of lead in environmental water by a backward light scattering technique[J]. Talanta,2006,70(1),116-121
    [56]Wang Y. H., Guo H. P., Tan K. J., et al. Backscattering light detection of nucleic acids with tetraphenylporphyrin-Al(Ⅲ)-nucleic acids at liquid/liquid interface[J]. Analytica Chimica Acta,2004,521(1),109-115
    [57]Huang C. Z., Wang Y. H., Guo H. P., et al. A backscattering light detection assembly for sensitive determination of analyte concentrated at the liquid/liquid interface using the interaction of quercetin with proteins as the model system[J]. Analyst,2005,130(2), 200-205
    [58]Wang Z. X., Lee J., Cossins A. R., et al. Microarray-based detection of protein binding and functionality by gold nanoparticle probes[J]. Analytical Chemistry,2005,77(17), 5770-5774
    [59]Bao P., Frutos A. G, Greef C., et al. High-sensitivity detection of DNA hybridization on microarrays using resonance light scattering[J]. Analytical Chemistry,2002,74(8), 1792-1797
    [60]Han Z., Qi L., Shen G, et al. Determination of chromium(VI) by surface plasmon field-enhanced resonance light scattering [J]. Analytical Chemistry,2007,79(15), 5862-5868
    [61]Huang C. Z., Liu Y, Wang Y. H., et al. Resonance light scattering imaging detection of proteins with α,β,γ,δ-tetrakis(p-sulfophenyl)porphyrin[J]. Analytical Biochemistry, 2003,321(2),236-243
    [62]Wu L. P., Li Y. F., Huang C. Z., et al. Visual detection of sudan dyes based on the plasmon resonance light scattering signals of silver nanoparticles[J]. Analytical Chemistry,2006,78(15),5570-5577
    [63]Savchenko A., Kashuba E., Kashuba V., et al. Imaging technique for the screening of protein-protein interactions using scattered light under surface plasmon resonance conditions[J]. Analytical Chemistry,2007,79(4),1349-1355
    [64]Anderson D. J., Guo B., Xu Y., et al. Clinical chemistry[J]. Analytical chemistry,1997, 69(12),165-229
    [65]Yamaguchi M., Yoshida H., Nohta H., Luminol-type chemiluminescence derivatization reagents for liquid chromatography and capillary electrophoresis[J]. Journal of Chromatography, A,2002,950(1-2),1-19
    [66]Myung N., Bae Y., Bard A. J. Effect of surface passivation on the electrogenerated chemiluminescence of CdSe/ZnSe nanocrystals[J]. Nano Letters,2003,3(8),1053-1055
    [67]Myung N., Lu X., Johnston K. P., et al. Electrogenerated chemiluminescence of Ge nanocrystals[J]. Nano Letters,2004,4(1),183-185
    [68]Myung N., Ding Z., Bard A. J. Electrogenerated chemiluminescence of CdSe nanocrystals[J]. Nano Letters,2002,2(11),1315-1319
    [69]Bae Y, Myung N., Bard A. J. Electrochemistry and electrogenerated chemiluminescence of CdTe nanoparticles[J]. Nano Letters,2004,4(6),1153-1161
    [70]Wang Z., Li J., Liu B., et al. Chemiluminescence of CdTe nanocrystals induced by direct chemical oxidation and its size-dependent and surfactant-sensitized effect[J]. J. Phys. Chem. B,2005,109,23304-23311
    [71]Sun C., Liu B., Li J. Sensitized chemiluminescence of CdTe quantum-dots on Ce(IV)-sulfite and its analytical applications [J]. Talanta,2008,75,447-454
    [72]Zhang Z. F., Cui H., Shi M. J. Chemiluminescence accompanied by the reaction of gold nanoparticles with potassium permanganate[J]. Phys. Chem. Chem. Phys.,2006,8, 1017-1021
    [73]Cui H., Zhang Z. F., Shi M. J. Chemiluminescent reactions induced by gold nanoparticles[J]. J. Phys. Chem. B,2005,109,3099-3103
    [74]Cui H., Zhang Z. F., Shi M. J., et al. Light emission of gold nanoparticles induced by the reaction of bis(2,4,6-trichiorophenyl) oxalate and hydrogen peroxide[J]. Anal. Chem.,2005,77,6402-6406
    [75]Guo J. Z., Cui H. Lucigenin chemiluminescence induced by noble metal nanoparticles in the presence of adsorbates[J]. J. Phys. Chem. C,2007,111,12254-12259
    [76]聂菲,吕九如.铁氰化钾-钙黄绿素化学发光体系测定酮替芬的研究[J].化学学报,2007,65(20)2299-2302
    [77]Nie F., Lu J. Determination of ketotifen by using calcein as chemiluminescence reagent[J]. Analytica Chimica Acta,2007,592,168-172
    [78]Fei Nie, Jiuru Lu. Novel chemiluminescence system with calcein as chemiluminescent reagent[J]. Luminescence 2007,22,480-486
    [79]Nie F., Lu J. Determination of trace aluminum (Ⅲ) using a novel cerium (Ⅳ)-calcein chemiluminescence detection[J]. Spectrochimica Acta Part A,2008,71(2),350-354
    [80]何云华,吕九如.铁氰化钾-钙黄绿素体系后化学发光反应测定氨基比林[J].分析化学研究简报,2007,35(4),564-566
    [81]Nie F., Lu J. Determination of fenfluramine based on potassium penmanganate-calcein chemiluminescence system[J].Talanta,2008,74,1242-1246
    [82]Cui H., Li S., Lin X. Chemiluminescence of Ce(Ⅳ) and surfactant Tween 20[J]. Analyst, 2001,126,553-554
    [83]Cui H., Zhou J., Xu F., et al. Determination of phenolic compounds using high-performance liquid chromatography with Ce4+-Tween 20 chemiluminescence detection[J]. Analytica chimica Acta,2004,511,273-279
    [84]Meseguer-Lloret S., Campins-Falco P., Cardenas S., et al. FI automatic method for the determination of copper(Ⅱ) based on coproporphyrin I-Cu(Ⅱ)/TCPO/H2O2 chemiluminescence reaction for the screening of waters [J]. Talanta,2004,64(4), 1030-1035
    [85]Kricka L. J. Clinical applications of chemiluminescence[J]. Analytica Chimica Acta, 2003,500(1-2),279-286
    [86]Francis P. S., Adcock J. L., Costin J. W., et al. Chemiluminescence detection of arginine-containing peptides separated with monolithic high-performance liquid chromatography[J]. Analytical Biochemistry,2005,336(1),141-143
    [87]Zhao S., Li X., Liu Y. M. Integrated microfluidic system with chemiluminescence detection for single cell analysis after intracellular labeling[J]. Anal. Chem.,2009, 81(10),3873-3878
    [88]Jessica M. T., Jacqui L. A., Don C. O., et al. Chemiluminescence detector with a serpentine flow cell[J]. Anal. Chem.,2008,80(24),9817-9821
    [89]Yea H., Qiu B., Chen J. et al. Flow-injection analysis for meloxicam based on tris(2,2'-bipyridine) ruthenium(Ⅱ)-Ce(Ⅳ) chemiluminescent system[J]. Luminescence, 2009,24,260-265
    [90]Na N., Zhang S., Wang X., et al. Cataluminescence-based array imaging for high-throughput screening of heterogeneous catalysts[J]. Anal. Chem.,2009,81, 2092-2097
    [91]Liu D., Liu M., Liu G., et al. Dual-channel sensing of volatile organic compounds with semiconducting nanoparticles[J]. Anal. Chem.,2010,82,66-68
    [92]Wang X., Na N., Zhang S., et al. Rapid screening of gold catalysts by chemiluminescence-based array imaging[J]. J. Am. Chem. Soc.,2007,129,6062-6063
    [93]Chen L., Chi Y, Zheng X., et al. Heated indium tin oxide cell for studying ionic liquid-mediated electrochemiluminescence[J]. Anal. Chem.,2009,81,2394-2398
    [94]Zhang Z. F., Cui H., Lai C. Z., et al. Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications[J]. Anal. Chem.,2005,77, 3324-3329
    [95]Duan C., Cui H., Zhang Z., et al. Size-dependent inhibition and enhancement by gold nanoparticles of luminol-ferricyanide chemiluminescence [J]. J. Phys. Chem. C,2007, 111,4561-4566
    [96]Xu S. L., Cui H. Luminol chemiluminescence catalysed by colloidal platinum nanoparticles [J]. Luminescence,2007,22,77-87
    [97]Chen H., Gao F., He R., et al. Chemiluminescence of luminol catalyzed by silver nanoparticles[J]. Journal of Colloid and Interface Seience,2007,15,158-163
    [98]Safavi A., Absalan G., Bamdad F. Effect of gold nanoparticle as a novel nanocatalyst on luminol-hydrazine chemiluminescence system and its analytical application[J]. Analytica Chimica Acta,2008,610,243-248
    [99]Yuan D. Q., Lu J. Z., Atsumi M. et al. Cerium complexes of cyclodextrin dimers as efficient catalysts for luminal chemiluminescence reactions[J]. Org. Biomol. Chem., 2007,5,2932-2939
    [100]Uzu T., Sasaki S. A new copper(II) complex as an efficient catalyst of luminol chemiluminescence[J]. Organic Letters,2007,9(21),4383-4386
    [101]Zhou H., Zhang Z., He D., et al. Flow chemiluminescence sensor for determination of clenbuterol based on molecularly imprinted polymer[J]. Analytica Chimica Acta,2004, 523,237-242
    [102]Zhou H., Zhang Z., He D., et al. Flow through chemiluminescence sensor using molecularly imprinted Polymer as recognition elements for detection of salbutamol[J]. Sensors and Actuators B,2005,107,798-804
    [103]Xiong Y., Zhou H., Zhang Z., et al. Molecularly imprinted on-line solid-phase extraction combined with flow-injeetion chemiluminescence for the determination of tetracycline[J]. Analyst,2006,131,829-834
    [104]Xiong Y., Zhou H., Zhang Z., et al. Determination of hydralazine with flow injection chemiluminescence sensor using molecularly imprinted polymer as recognition element[J]. Journal of Pharmaceutical and Biomedical Analysis,2006,41,694-700
    [105]Xiong Y., Zhou H., Zhang Z., et al. Flow-injection chemiluminescence sensor for determination of isoniazid in urine sample based on molecularly imprinted polymer[J]. Spectrochimica Acta Part A,2007,66,341-346
    [106]Wang L., Zhang Z. Molecular imprinted polymer-based chemiluminescence imaging sensor for the detection of trans-resveratrol[J]. Analytica Chimica Acta,2007,592, 115-120
    [107]杨春艳,熊艳,何超,章竹君.分子印迹固相萃取-化学发光测定盐酸金霉素[J].应用化学,2007,24(3),273-277
    [108]He Y, Lu J., Liu M., et al. Molecular imprinting-chemiluminescence determination of trimethoprim using trimethoprim-imprinted polymer as recognition material [J]. Analyst, 2005,130,1032-1037
    [109]Liu M., Lu J., He Y, et al. Molecular imprinting chemiluminescence sensor for the determination of brucine[J]. Analytica Chimica Acta,2005,541,99-104
    [110]Nie F., Lu J., He Y, et al. Determination of indomethacin in urine using molecule imprinting-chemiluminescence method[J]. Talanta,2005,66,728-733
    [111]张红鸽,吕九如,何云华,杜建修.非那西丁的分子印迹-化学发光分析法研究[J].化学学报,2005,63(3),210-214
    [112]牛卫芬,吕九如.高锰酸钾-鲁米诺化学发光体系分子印迹-后化学发光法测定奋乃静[J].分析化学,2007,35(2),281-284
    [113]刘清慧,吕九如,冯娜.铁氰化钾-鲁米诺体系后化学发光反应及其分析应用研究-分子印迹-后化学发光法测定双嘧达莫[J].高等学校化学学报,2006,27(6),1036-1041
    [114]聂舟,何治柯,庞代文,程介克.微流控芯片化学发光检测系统研究[J].分析科学学报,2003,19(4),321-323
    [115]王洋,范世华.芯片式微型流通池顺序注射化学发光法测定水中的亚硝酸根[J].光谱学与光谱分析,2005,25(2),184-187
    [116]Som-Aum W., Threeprom J., Li H., et al. Determination of chromium(Ⅲ) and total chromium using dual channels on glass chip with chemiluminescence detection[J]. Talanta,2007,71,2062-2068
    [117]黄英,章竹君,何德勇,胡玉斐.微流动注射芯片化学发光法测定雨水中过氧化氢[J].分析化学,2005,33(7),958-960
    [118]He D., Zhang Z., Zhou H., et al. Microflow sensor on a chip for the determination of terbutaline in human serum based on chemiluminescence and a molecularly imprinted polymer[J]. Talanta,2006,69,1215-1220
    [119]Lu Y, Zhang Z., Chen F. Chemiluminescence biosensor chip based on a microreactor using carrier air flow for determination of uric acid in human serurn[J]. Analyst,2002, 127,1176-1179
    [120]He D., Zhang Z., Huang Y, et al. Chemiluminescence microflow injection analysis system on a chip for the determination of nitrite in food[J]. Food Chemistry,2007,101, 667-672
    [121]Luo L., Zhang Z., Ma L. A design of reaction-controlled chemiluminescence imaging and its application[J]. Analytica Chimica Acta,2005,43,222-228
    [122]马利锋,罗丽荣,章竹君.化学发光成像法测定人体血清中乙型肝炎病毒[J].分析化学,2005,33(5),665-667
    [123]罗丽荣,马利锋,章竹君.化学发光成像分析法定量检测人尿液中β-人绒毛膜促性腺激素[J].分析化学,2005,33(9),1257-1260
    [124]Luo L., Zhang Z., Hou L. Development of a gold nanoparticles based chemiluminescence imaging assay and its application[J]. Analytica Chimica Acta,2007, 584,106-111
    [125]Wang L., Zhang Z. Chemiluminescence imaging assay dipyridamole based on molecular imprinted polymer as recognition material[J]. Sensors and Actuators B,2008, 133(1),40-45
    [126]Surugiu I., Danielsson B., Ye L., et al. Chemiluminescence imaging ELISA using an imprinted polymer as the recognition element instead of an antibody[J]. Anal. Chem., 2001,73,487-491
    [127]Chouhan R. S., Vivek Babu K., Kumar M. A., et al. Detection of methyl parathion using immuno-chemiluminescence based image analysis using charge coupled device[J]. Biosensors and Bioelectronics,2006,21,1264-1271
    [128]Gijsman P., Hamskog M. Simultaneous oxygen uptake and imaging chemiluminescence measurements[J]. Polymer Degradation and Stability,2006,91,423-428
    [129]Hamskog M., Klugel M., Forsstrom D., et al. The effect of adding virgin material or extra stabilizer on the recyclability of polypropylene as studied by multi-cell imaging chemiluminescence and microcalorimetry[J]. Polymer Degradation and Stability,2006, 91,429-436
    [130]Tachibana S., Zimmer L., Kurosawa Y., et al. Active control of combustion oscillations in a lean premixed combustor by secondary fuel injection coupling with chemiluminescence imaging technique[J]. Proceedings of the Combustion Institute, 2007,31,3225-3233
    [131]Li B., Zhang Z., Jin Y. Plant tissue-based chemiluminescence flow biosensor for glycolie acid[J]. Anal. Chem.,2001,73,1203-1206
    [132]Li B., Lan D., Zhang Z. Chemiluminescence flow-through biosensor for glucose with eggshell membrane as enzyme immobilization platform[J]. Analytical Biochemistry, 2008,374,64-70
    [133]曹志娟,刘彩云,夏鹰,甲菲雅亮,卢建忠.基于磁性微球的无标记化学发光端粒传感新技术[J].化学学报,2005,63(5),407-410
    [134]Zhu Y., Shi J., Zhang Z., et al. Development of a gas sensor utilizing chemiluminescence on nanosized titanium dioxide[J]. Anal. Chem.,2002,74,120-124
    [135]Li T., Wang E., Dong S. Lead(II)-induced allosteric G-quadruplex DNAzyme as a colorimetric and chemiluminescence sensor for highly sensitive and selective Pb2+ detection[J]. Anal. Chem.,2010, DOI:10.1021/ac902638v
    [136]Zhang S., Yan Y, Bi S. Design of molecular beacons as signaling probes for adenosine triphosphate detection in cancer cells based on chemiluminescence resonance energy transfer[J]. Anal. Chem.,2009,81 (21),8695-8701
    [137]Dai H., Xu H., Wu X., et al. Fabrication of a new electrochemiluminescent sensor for fentanyl citrate based on glassy carbon microsphe res and ionic liquid composite paste electrode[J]. Analytica Chimica Acta,2009,647,60-65
    [138]Lin Z., Sun J., Chen J., et al. Electrochemiluminescent biosensor for hypoxanthine based on the electrically heated carbon paste electrode modified with xanthine oxidase electrochemiluminescence (ECL) [J]. Anal. Chem.,2008,80,2826-2831
    [139]Na N., Zhang S., Wang S., et al. A catalytic nanomaterial-based optical chemo-sensor array[J]. J. Am. Chem. Soc.,2006,128,14420-14421
    [140]Zhao S., Xie C., Lu X., et al. A facile and sensitive chemiluminescence detection of amino acids in biological samples after capillary electrophoretic separation[J]. Electrophoresis,2005,26,1745-1750
    [141]Zhi Q., Xie C., Huang X., et al. Coupling chemiluminescence with capillary electrophoresis to analyze single human red blood cells[J]. Analytica Chimica Acta, 2007,583,217-222
    [142]Zhou S. L., Wang J. H., Huang W. H., et al. Monitoring the reaction of hemoglobin with hydrogen peroxide by capillary electrophoresis-chemiluminescence detection[J]. Journal of Chromatography B,2007,850,343-347
    [143]Liu Y. M., Mua H. B., Zheng Y. L., et al. Capillary electrophoretic immunoassay for alpha-fetoprotein with chemiluminescence detection[J]. Journal of Chromatography B, 2007,855,280-285
    [144]Zhao S., Yuan H., Xie C., et al. Determination of folic acid by capillary electrophoresis with chemiluminescence detection[J]. Journal of Chromatography A,2006,1107, 290-293
    [145]Peng C. F., Huo T. M., Liu L. Q., et al. Determination of medroxyprogesterone acetate residues by CE immunoassay with chemiluminescence detection[J]. Electrophoresis, 2007,28,970-974
    [146]Zhao S., Bai W., Wang B., et al. Determination of levodopa by capillary electrophoresis with chemiluminescence detection[J]. Talanta,2007,73,142-146
    [147]He W. W., Zhou X. W., Lu J. Q. Simultaneous determination of benserazide and levodopa by capillary electrophoresis-chemiluminescence using an improved interface[J]. Journal of Chromatography A,2006,1131,289-292
    [148]Wang C. Q., Wang H., Liu Y. M. Capillary electrophoresis with direct chemiluminescence detection for the analysis of catecholamines in human urine[J]. Chinese Chemical Letters,2007,18,452-454
    [149]Zhao S., Xie C., Lu X., et al. Determination of agmatine in biological samples by capillary electrophoresis with chemiluminescence detection[J]. Journal of Chromatography B,2006,832,52-57
    [150]Ji X., He Z., Ai X., et al. Determination of clenbuterol by capillary electrophoresis immunoassay with chemiluminescence detection[J]. Talanta,2006,70,353-357
    [151]Tsukagoshi K., Taniguchi T., Nakajima R. Analysis of antioxidants using a capillary electrophoresis with chemiluminescence detection system[J]. Analytica Chimica Acta, 2007,589,66-70
    [152]Guo X. M., Xu X. D., Zhang H. J., et al. A novel method for Co(II) and Cu(II) analysis by capillary electrophoresis with chemiluminescence detection[J]. Chinese Chemical Letters,2007,18,1095-1098
    [153]Nalewajko E., Wiszowata A., Kojlo A. Determination of catecholamines by flow-injection analysis and high-performance liquid chromatography with chemiluminescence detection[J]. Journal of Pharmaceutical and Biomedical Analysis, 2007,43,1673-1680
    [154]Serrano J. M., Silva M. Determination of amikacin in body fluid by high-performance liquid chromatography with chemiluminescence detection[J]. Journal of Chromatography B,2006,843,20-24
    [155]Zhang Y., Zhang Z., Sun Y. Development and optimization of an analytical method for the determination of sudan dyes in hot chilli pepper by high-performance liquid chromatography with on-line electrogenerated BrO--luminol chemiluminescence detection[J]. Journal of Chromatography A,2006,1129(1),34-40
    [156]Slezak T., Francis P. S., Anastos N., et al. Determination of synephrine in weight-loss products using high performance liquid chromatography with acidic potassium permanganate chemiluminescence detection[J]. Analytica Chimica Acta,2007,593, 98-102
    [157]Wan G. H., Cui H., Pan Y. L., et al. Determination of quinolones residues in prawn using high-performance liquid chromatography with Ce(IV)-Ru(bpy)32+-HNO3 chemiluminescence detection[J]. Journal of Chromatography B,2006,843,1-9
    [158]Santiago Valverde R., Sanchez Perez I., Franceschelli F., et al. Determination of photoirradiated tetracyclines in water by high-performance liquid chromatography with chemiluminescence detection based reaction of rhodamine B with cerium (IV) [J]. Journal of Chromatography A,2007,1167,85-94
    [159]Cui H., Zhou J., Xu F., et al. Determination of phenolic compounds using high-performance liquid chromatography with Ce4+-Tween 20 chemiluminescence detection[J]. Analytica Chimica Acta,2004,511,273-279
    [160]Zhang Y, Zhang Z., Qi G, et al. Detection of indomethacin by high-performance liquid chromatography with in situ electrogenerated Mn(Ⅲ) chemiluminescence detection[J]. Analytica Chimica Acta,2007,582,229-234
    [161]Chen H., Gong Z., Zhang Z. Coupling microdialysis with flow-injection chemiluminescence detection for a protein-drug interaction study[J]. Journal of Pharmaceutical and Biomedical Analysis,2006,41,1412-1417
    [162]Czescik A., Lopez-Malo D., Duart M. J., et al. Photo-induced chemiluminescence-based determination of diphenamid by using a multicommuted flow system[J]. Talanta,2007, 73,718-725
    [163]Millington K. R., Deledicque C., Jones M. J., et al. Photo-induced chemiluminescence from fibrous polymers and proteins[J]. Polymer Degradation and Stability,2008,93, 640-647
    [164]Albert-Garcia J. R., Calatayud J. M. Determination of the herbicide benfuresate by its photo-induced chemiluminescence using flow multicommutation methodology [J]. Talanta,2008,75(3),717-724
    [165]Wang Z., Chin S. Y., Chin C. D., et al. Microfluidic Cd4+T-cell counting device using chemiluminescence-based detection[J]. Anal. Chem.,2010,82(1),36-40
    [166]Zhao S., Li X., Liu Y. M., Integrated microfluidic system with chemiluminescence detection for single cell analysis after intracellular labeling[J]. Anal. Chem.,2009, 81(10),3873-3878
    [167]Chowdhury M. H., Malyn S. N., Aslan K., et al. Multicolor directional surface plasmon-coupled chemiluminescence [J]. J. Phys. Chem. B,2006,110,22644-22651
    [168]Chowdhury M. H., Malyn S. N., Aslan K., et al. First observation of surface plasmon-coupled chemiluminescence(SPCC)[J]. Chemical Physics Letters,2007,435, 114-118
    [169]Amini N., Kolev S. D. Gas-diffusion flow injection determination of Hg(Ⅱ) with chemiluminescence detection[J]. Analytica Chimica Acta,2007,582(1),103-108
    [170]Chang Y. L., Palacios R. E., Chen J. T., et al. Electrogenerated chemiluminescence of soliton waves in conjugated polymers[J]. J. Am. Chem. Soc.,2009,131(40), 14166-14167
    [171]Omer K. M., Ku S. Y, Wong K. T., et al. Green electrogenerated chemiluminescence of highly fluorescent benzothiadiazole and fluorene derivatives [J]. J. Am. Chem. Soc., 2009,131(30),10733-10741
    [172]Fan F. R. F., Park S., Zhu Y., et al. Electrogenerated chemiluminescence of partially oxidized highly oriented pyrolytic graphite surfaces and of graphene oxide nanoparticles[J]. J. Am. Chem. Soc.,2009,131(3),937-939
    [173]Wang Y., Lu J., Tang L., et al. Graphene oxide amplified electrogenerated chemiluminescence of quantum dots and its selective sensing for glutathione from thiol-containing compounds[J]. Anal. Chem.,2009,81(23),9710-9715
    [174]Mavr F., Chow K. F., Sheridan E., et al. A theoretical and experimental framework for understanding electrogenerated chemiluminescence (ECL) emission at bipolar electrodes[J]. Anal. Chem.,2009,81(15),6218-6225
    [175]Parajuli S., Miao W. Sensitive determination of hexamethylene triperoxide diamine explosives, using electrogenerated chemiluminescence enhanced by silver nitrate[J]. Anal. Chem.,2009,81(13),5267-5272
    [176]Lei R., Stratmann L., Schfer D., et al. Imaging biocatalytic activity of enzyme-polymer spots by means of combined scanning electrochemical microscopy/electrogenerated chemiluminescence[J]. Anal. Chem.,2009,81(12),5070-5074
    [177]Guo L., Yang H., Qiu B., et al. Capillary electrophoresis with electrochemiluminescent detection for highly sensitive assay of genetically modified organisms[J]. Anal. Chem., 2009,81,9578-9584
    [178]Chi Y., Duan J., Lin S., et al. Flow injection analysis system equipped with a newly designed electrochemiluminescent detector and its application for detection of 2-thiouracil[J]. Anal. Chem.,2006,78,1568-1573
    [179]Zheng L., Chi Y, Dong Y, et al. Electrochemiluminescent behavior of tris(2,2-bipyridine) ruthenium(Ⅱ)/triethylamine in ionic liquid solution[J]. J. Phys. Chem. C,2008,112,15570-15575
    [180]Dai H., Xu H., Wu X., et al. Fabrication of a new electrochemiluminescent sensor for fentanyl citrate based on glassy carbon microsphe res and ionic liquid composite paste electrode[J]. Analytica Chimica Acta,2009,647,60-65
    [181]Roda A., Guardigli M., Pasini P., et al. Bio-and chemiluminescence imaging in analytical chemistry[J]. Analytica Chimica Acta,2005,541(1-2),25-35
    [182]Kim S. H., Tamrazi A., Carlson K. E., et al. Estrogen receptor microarrays: subtype-selective ligand binding[J]. Journal of the American Chemical Society,2004, 126(15),4754-4755
    [183]Westphal U., Ashley B. D., Selden G. L. Steroid-protein interactions. V. Comparison of spectrophotometric and equilibrium-dialysis procedures for determination of binding constants[J]. Journal of the American Chemical Society,1958,80,5135-5138
    [184]Su Y., Xie Q., Yang Q., et al. Electrochemical quartz crystal impedance and fluorescence quenching studies on the binding of carbon nanotubes (CNTs)-adsorbed and solution rutin with hemoglobin[J]. Biotechnology Progress,2007,23(2),473-479
    [185]Toke O., Monsey J. D., Cistola D. P. Kinetic mechanism of ligand binding in human ileal bile acid binding protein as determined by stopped-flow fluorescence analysis [J]. Biochemistry,2007,46(18),5427-5436
    [186]Pau M. Y. M., Davis M. I., Orville A. M., et al. Spectroscopic and electronic structure study of the enzyme-substrate complex of intradiol dioxygenases:substrate activation by a high-spin ferric non-heme iron site[J]. Journal of the American Chemical Society, 2007,129(7),1944-1958
    [187]Itoh T., Hashimoto K., Biju V., et al., Elucidation of interaction between metal-free tetraphenylporphine and surface Ag atoms through temporal fluctuation of surface-enhanced resonance raman scattering and background-light emission[J]. Journal of Physical Chemistry B,2006,110(19),9579-9585
    [188]Krajewski M., Rothweiler U., D'Silva L., et al. An NMR-based antagonist induced dissociation assay for targeting the ligand-protein and protein-protein interactions in competition binding experiments [J]. Journal of Medicinal Chemistry,2007,50(18), 4382-4387
    [189]Wang B., Westerhoff L. M., Merz K. M. A critical assessment of the performance of protein-ligand scoring functions based on NMR chemical shift perturbations [J]. Journal of Medicinal Chemistry,2007,50(21),5128-5134
    [190]Zhan W., Bard A. J. Immunoassay of human C-reactive protein by using Ru(bpy)3(2+)-encapsulated liposomes as labels [J]. Analytical Chemistry,2007,79(2), 459-463
    [191]Zhang Z. Y., Zhang S. C., Zhang X. R. Recent developments and applications of chemiluminescence sensors[J]. Analytica Chimica Acta,2005,541(1-2),37-46
    [192]Scatchard G. The attraction of proteins for small molecules and ions[J]. Annals of the New York Academy of Sciences,1949,51,660-672
    [193]Taira Z., Terada H. Specific and nonspecific ligand binding to serum albumin[J]. Biochemical Pharmacology,1985,34(11),1999-2005
    [194]Pesavento M., Profumo A. Interaction of serum albumin with a sulfonated azo dye in acidic solution[J]. Talanta,1991,38(10),1099-1106
    [195]杨频,高飞.生物无机化学原理[M],科学出版社,北京,2002
    [196]刘媛,谢孟峡,康娟.三七总皂甙对牛血清白蛋白溶液构象的影响[J].化学学报,2003,61,1305-1310
    [197]迟燕华,庄稼,李娜,李克安,童沈阳.锌试剂与牛血清白蛋白作用机理的研究[J].高等学校化学学报,1999,20,1697-1702
    [198]Croney J. C., Jameson D. M., Learmonth R. P. Fluorescence spectroscopy in biochemistry:teaching basic principles with visual demonstrations [J]. Biochemistry and Molecular Biology Education,2001,29(2),60-65
    [199]Brown M. P., Royer C. Fluorescence spectroscopy as a tool to investigate protein interactions [J]. Current Opinion in Biotechnology,1997,8(1),45-49
    [200]陶慰孙,李惟,姜涌明主编,蛋白质分子基础(第二版)[M],高等教育出版社,1995(2003重印)
    [201]Jiang C. Q., Wang T. Study of the interactions between tetracycline analogues and lysozyme[J]. Bioorganic & Medicinal Chemistry,2004,12(9),2043-2047
    [202]Jiang C. Q., Luo L. Lysozyme enhanced europium-metacycline complex fluorescence:a new spectrofluorimetric method for the determination of lysozyme [J]. Analytica Chimica Acta,2004,511(1),11-16
    [203]杨冉,屈凌波,陈晓岚等.柚皮素、柚皮苷与溶菌酶相互作用的荧光光谱法研究[J].化学学报,2006,64,1349
    [204]He W. Y., Li Y., Tang J. H., et al. Comparison of the characterization on binding of alpinetin and cardamonin to lysozyme by spectroscopic methods[J]. International Journal of Biological Macromolecules,2006,39(4-5),165-173
    [205]Li D. J., Zhu J. F., Jin J. Spectrophotometric studies on the interaction between nevadensin and Iysozyme[J]. Journal of Photochemistry and Photobiology, A: Chemistry,2007,189(1),114-120
    [206]Zhu J. F., Li D. J., Jin J., et al. Binding analysis of farrerol to lysozyme by spectroscopic methods[J]. Spectrochimica Acta, Part A:Molecular and Biomolecular Spectroscopy, 2007,68(2),354-359
    [207]Jin J., Zhang X. Spectrophotometric studies on the interaction between pazufloxacin mesilate and human serum albumin or lysozyme[J]. Journal of Luminescence,2008, 128(1),81-86
    [208]Ghosh K. S., Sahoo B. K., Dasgupta S. Spectrophotometric studies on the interaction between (-)-epigallocatechin gallate and lysozyme[J]. Chemical. Physics. Letters,2008, 452(1-3),193-197
    [209]Li D. J., Ji B. M., Jin J. Spectrophotometric studies on the binding of Vitamin C to lysozyme and bovine liver catalase[J]. Journal of Luminescence,2008,128(9), 1399-1406
    [210]Ding F., Zhao G. Y, Huang J. L., et al. Fluorescence spectroscopic investigation of the interaction between chloramphenicol and lysozyme[J]. European Journal of Medicinal Chemistry,2009,44(10),4083-4089
    [211]He X. M., Carter D. C. Atomic structure and chemistry of human serum albumin[J]. Nature,1992,358(6383),209-215
    [212]Peters T. Advances in Protein Chemistry[M], Academic Press, New York,1985,37, 161.
    [213]Bos O. J. M., Remijn J. P. M., Fisher J. E., et al. Location and characterization of the warfarin binding site of human serum albumin. A comparative study of two large fragments[J]. Biochemical Pharmacology,1988,37(20),3905-3909
    [214]Carter D. C., Ho J. X. Structure of serum albumin[J]. Advances in protein chemistry, 1994,45,153-203
    [215]Banerjee T., Singh S. K., Kishore N. Binding of naproxen and amitriptyline to bovine serum albumin:biophysical aspects[J]. The Journal of Physical Chemistry. B,2006, 110(47),24147-24156
    [216]Zacharis C. K., Theodoridis G. A., Podgornik A., et al. Incorporation of a monolithic column into sequential injection system for drug-protein binding studies [J]. Journal of Chromatography. A,2006,1121(1),46-54
    [217]Lu J. Q., Jin F., Sun T. Q., et al. Multi-spectroscopic study on interaction of bovine serum albumin with lomefloxacin-copper(Ⅱ) complex[J]. International Journal of Biological Macromolecules,2007,40(4),299-304
    [218]Li J. C., Li N., Wu Q. H., et al. Study on the interaction between clozapine and bovine serum albumin[J]. Journal of Molecular Structure,2007,833(1-3),184-188
    [219]Zhou N., Liang Y. Z., Wang P.18β-Glycyrrhetinic acid interaction with bovine serum albumin[J]. Journal of Photochemistry and Photobiology, A:Chemistry,2007,185(2-3), 271-276
    [220]Wang Y. Q., Zhang H. M., Zhang G. C., et al. Spectroscopic studies on the interaction between silicotungstic acid and bovine serum albumin[J]. Journal of Pharmaceutical and Biomedical Analysis,2007,43(5),1869-1875
    [221]Xiao J. B., Chen W., Cao H., et al. Study of the interaction between baicalin and bovine serum albumin by multi-spectroscopic method[J]. Journal of Photochemistry and Photobiology, A:Chemistry,2007,191(2-3),222-227
    [222]Wang C. X., Yan F. F., Zhang Y. X., et al. Spectroscopic investigation of the interaction between rifabutin and bovine serum albumin[J]. Journal of Photochemistry and Photobiology, A:Chemistry,2007,192(1),23-28
    [223]Xiao J. B., Shi J., Cao H., et al. Analysis of binding interaction between puerarin and bovine serum albumin by multi-spectroscopic method[J]. Journal of Pharmaceutical and Biomedical Analysis,2007,45(4),609-615
    [224]Gong A. Q., Zhu X. S., Hu Y. Y, et al. A fluorescence spectroscopic study of the interaction between epristeride and bovine serum albumin and its analytical application [J]. Talanta,2007,73(4),668-673
    [225]Wang Y. Q., Zhang H. M., Zhang G. C., et al. Interaction of the flavonoid hesperidin with bovine serum albumin:A fluorescence quenching study [J]. Journal of Luminescence,2007,126(1),211-218
    [226]Bian H. D., Zhang H. R., Yu Q., et al. Studies on the interaction of cinnamic acid with bovine serum albumin[J]. Chemical & Pharmaceutical Bulletin,2007,55(6),871-875
    [227]Sulkowska A., Maciazek M., Rownicka J., et al. Effect of temperature on the methotrexate-BSA interaction:Spectroscopic study[J]. Journal of Molecular Structure, 2007,834-836,162-169
    [228]Shaikh S. M., Seetharamappa J., Kandagal P. B., et al. In vitro study on the binding of anti-coagulant vitamin to bovine serum albumin and the influence of toxic ions and common ions on binding[J]. International Journal of Biological Macromolecules,2007, 41(1),81-86
    [229]Zhou N., Liang Y. Z., Wang P. Characterization of the interaction between furosemide and bovine serum albumin[J]. Journal of Molecular Structure,2008,872(2-3),190-196
    [230]Sahoo B. K., Ghosh K. S., Dasgupta S. Investigating the binding of curcumin derivatives to bovine serum albumin[J]. Biophysical Chemistry,2008,132(2-3),81-88
    [231]Cheng Z. J., Zhang Y. T. Spectroscopic investigation on interaction of the bioactive component dl-tetrahydropalmatine to bovine serum albumin[J]. Journal of Molecular Structure,2008,876(1-3),308-312
    [232]Wang F., Huang W., Dai Z. X. Spectroscopic investigation of the interaction between riboflavin and bovine serum albumin[J]. Journal of Molecular Structure,2008,875(1-3), 509-514
    [233]Wang N., Ye L., Yan F. F., et al. Spectroscopic studies on the interaction of azelnidipine with bovine serum albumin[J]. International Journal of Pharmaceutics,2008,351(1-2), 55-60
    [234]Han X. L., Mei P., Liu Y, et al. Binding interaction of quinclorac with bovine serum albumin:A biophysical study [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2009,74(3),781-787
    [235]Ni Y N., Zhang X., Kokot S. Spectrometric and voltammetric studies of the interaction between quercetin and bovine serum albumin using warfarin as site marker with the aid of chemometrics[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2009,71(5),1865-1872
    [236]Wang T., Zhao Z., Zhang L., et al. Spectroscopic studies on the interaction between troxerutin and bovine serum albumin[J]. Journal of Molecular Structure,2009,937(1-3), 65-69
    [237]Naik P. N., Chimatadar S. A., Nandibewoor S. T. Study on the interaction between antibacterial drug and bovine serum albumin:A spectroscopic approach[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2009,73(5), 841-845
    [238]Zhang G., Chen X., Guo J., et al. Spectroscopic investigation of the interaction between chrysin and bovine serum albumin[J]. Journal of Molecular Structure,2009,921(1-3), 346-351
    [239]Guo X. J., Sun X. D., Xu S. K. Spectroscopic investigation of the interaction between riboflavin and bovine serum albumin[J]. Journal of Molecular Structure,2009,931(1-3), 55-59
    [240]Jha N. S., Kishore N. Binding of streptomycin with bovine serum albumin:Energetics and conformational aspects[J]. Thermochimica Acta,2009,482(1-2),21-29
    [241]Yang J., Jing Z. H., Jie J. J., et al. Fluorescence spectroscopy study on the interaction between gossypol and bovine serum albumin[J]. Journal of Molecular Structure,2009, 920(1-3),227-230
    [242]Ding F., Pan H., Li Z. Y., et al. Spectroscopic studies on the binding of barbital to bovine serum albumin[J]. Journal of Luminescence,2009,129(6),650-655
    [243]Bi S., Sun Y., Qiao C., et al. Binding of several anti-tumor drugs to bovine serum albumin:Fluorescence study[J]. Journal of Luminescence,2009,129(5),541-547
    [244]Cheng X. Xia., Lui Y., Zhou B., et al. Probing the binding sites and the effect of berbamine on the structure of bovine serum albumin[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2009,72(5),922-928
    [245]Guo X., Zhang L., Sun X., et al. Spectroscopic studies on the interaction between sodium ozagrel and bovine serum albumin[J]. Journal of Molecular Structure,2009, 928(1-3),114-120
    [246]Sun Y, Zhang H., Sun Y, et al. Study of interaction between protein and main active components in citrus aurantium L. by optical spectroscopy [J]. Journal of Luminescence, 2010,130(2),270-279
    [247]Zhang Q., Ni Y, Kokot S. Molecular spectroscopic studies on the interaction between ractopamine and bovine serum albumin[J]. Journal of Pharmaceutical and Biomedical Analysis,2010,52(2),280-288
    [248]Ni Y, Wang S., Kokot S. Spectrometric study of the interaction between Alpinetin and bovine serum albumin using chemometrics approaches[J]. Analytica Chimica Acta, 2010,663(2),139-146
    [249]Katrahalli U., Jaldappagari S., Kalanur S. S. Study of the interaction between fluoxetine hydrochloride and bovine serum albumin in the imitated physiological conditions by multi-spectroscopic methods[J]. Journal of Luminescence,2010,130(2),211-216
    [250]Guo X., Han X., Tong J., et al. The investigation of the interaction between piracetam and bovine serum albumin by spectroscopic methods [J]. Journal of Molecular Structure, 2010,966(1-3),129-135
    [251]Wang J., Liu L., Liu B., et al. Spectroscopic study on interaction of bovine serum albumin with sodium magnesium chlorophyllin and its sonodynamic damage under ultrasonic irradiation[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2010,75(1),366-374
    [252]Ni Y., Su S., Kokot S. Spectrometric studies on the interaction of fluoroquinolones and bovine serum albumin[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2010,75(2),547-552
    [253]Shi X., Li X., Gui M., et al. Studies on interaction between flavonoids and bovine serum albumin by spectral methods[J]. Journal of Luminescence,2010,130(4),637-644
    [254]Sebastian M., Hans-Dieter R., Wolfgang S. Determination of catalase activity at physiological hydrogen peroxide concentrations [J]. Anal. Biochem.,1997,245,55-60
    [255]易平贵,俞庆森,胡新根等.水-乙醇混合溶剂中过氧化氢酶活性与构象的研究[J].化学学报,2000,58(6),652-655
    [256]刘昌玲,王国庆,细菌过氧化氢酶的分离、结晶及性质.生物化学与生物物理进展[J].1990,17(5),380-383
    [257]Stern K. G. The constitution of the prosthetic group of catalase [J]. Journal of Biological Chemistry,1936,112,661-669
    [258]Stern K. G. The mechanism of enzyme action. A study of the decomposition of ethyl hydrogen peroxide by catalase and of an intermediate enzyme-substrate compound[J]. Journal of Biological Chemistry,1936,114,473-494
    [259]易平贵,商志才,俞庆森.荧光光谱法研究喹诺酮抗菌素与过氧化氢酶的相互作用[J].分析化学,2001,29(6),646-648
    [260]刘维屏,杨炜春,刘惠君等.荧光光谱法研究除草剂扑草净和扑灭通与过氧化氢酶的相互作用[J].光谱学与光谱分析,2003,23(5),926-929
    [261]叶发兵,董元彦,周鹏等.磺酰脲除草剂与过氧化氢酶的相互作用[J].光谱学与光 谱分析,2006,26(9),1685-1687
    [262]叶发兵,董元彦,胡记童等.尿素对磺酰脲除草剂与过氧化氢酶相互作用的影响[J].化学与生物工程,2007,24(2),25-28
    [263]Zhang X., Jin J. Binding analysis of pazufloxacin mesilate to catalase using spectroscopic methods[J]. Journal of Molecular Structure,2008,882,96-100
    [264]Wu Y. H. Study on the interaction between salicylic acid and catalase by spectroscopic methods[J]. Journal of Pharmaceutical and Biomedical Analysis,2007,44,796-801
    [265]Zhu J. F., Zhang X., Li D. J., et al. Probing the binding of flavonoids to catalase by molecular spectroscopy[J]. Journal of Molecular Structure,2007,843,38-44
    [266]Li D. J., Ji B. M., Jin J. Spectrophotometric studies on the binding of Vitamin C to lysozyme and bovine liver catalase[J]. Journal of Luminescence,2008,128,1399-1406
    [267]Kendrew J. C., Dickerson R. E., Strandberg B. E., Structure of myoglobin. Three-dimensional fourier synthesis at 2 A resolution[J]. Nature,1960,185,422-427
    [268]Song Z. H., Wang L., Hou S. A study of the chemiluminescence behavior of myoglobin with luminol and its analytical applications [J]. Analytical and Bioanalytical Chemistry, 2004,378(2),529-535
    [269]Yue Q. L., Song Z. H. Assay of femtogram level nitrite in human urine using luminol-myoglobin chemiluminescence[J]. Microchemical Journal,2006,84(1-2), 10-13
    [270]Shao X. D., Xie X. F., Liu Y. H., et al. Rapid determination of clindamycin in medicine with myoglobin-luminol chemiluminescence system[J]. Journal of Pharmaceutical and Biomedical Analysis,2006,41(2),667-670
    [271]Xie X. F., He X. L., Song, Z. H. A sensitive chemiluminescence procedure for the determination of carbon monoxide with myoglobin-luminol chemiluminescence system[J]. Applied Spectroscopy,2007,61(7),706-710
    [272]Xie X. F., Shao X. D., Yue Q. L., et al. Ultrasensitive assay of gatifloxacin at picogram level based on its enhancing effect on the myoglobin-luminol chemiluminescence reaction[J]. Analytical Letters,2007,40(10),1951-1961
    [273]Xie X. F., Song Z. H., Shao X. D. Determination of picomole amounts of formaldehyde in air and bio-fluids based on its enhanced myoglobin-luminol chemiluminescence reaction[J]. International Journal of Environmental Analytical Chemistry,2007,87(2), 149-157
    [274]Wang Z. M, Chen D. H, Gao X., et al. Subpicogram determination of melamine in milk products using a luminol-myoglobin chemiluminescence system[J]. J. Agric. Food Chem.,2009,57,3464-3469
    [275]Wang Z. M., He X. L., Wu S. P., et al. Rapid determination of loratadine in medicine and bio-fluids based on myoglobin-luminol chemiluminescence system[J]. Chem. Anal. (Warsaw),2009,54(3),471-481
    [276]Wells J. A., Mcclendon C. L. Reaching for high-hanging fruit in drug discovery at protein-protein interfaces [J]. Nature 2007,450(7172),1001-1009
    [277]Stroud R. M., Finer-Moore J. (Editors). Computational and structural approaches to drug discovery:ligand-protein interactions[M]. Royal Society of Chemistry, Cambridge, 2008, pp 382
    [278]Moschou E. A., Bachas L. G., Deo S. K. Hinge-motion binding proteins:unraveling their analytical potential[J]. Analytical Chemistry,2006,78(19),6692-6700
    [279]Staggemeier B. A., Bramanti E., Allegrini C., et al. High-throughput screening of protein surface activity via flow injection analysis-pH gradient-dynamic surface tension detection[J]. Analytical Chemistry,2005,77(1),250-258
    [280]Klotz I. M. Protein interactions with small molecules[J]. Accounts of Chemical Research,1974,7(5),162-168
    [281]Ishchenko A. V., Shakhnovich E. I. Small molecule growth 2001 (SMOG2001):an improved knowledge-based scoring function for protein-ligand interactions [J]. Journal of Medicinal Chemistry,2002,45(13),2770-2780
    [282]Stevens M. M., Allen S., Davies M. C., et al. Molecular level investigations of the inter-and intramolecular interactions of pH-responsive artificial triblock proteins[J]. Biomacromolecules,2005,6(3),1266-1271
    [283]Osserman E. F., Lawlor D. P. Serum and urinary lysozymes (muramidases) in monocytic and monomyelocytic leukemia[J]. Journal of Experimental Medicine,1966, 124(5),921-952
    [284]Merlini G, Bellotti V. Lysozyme:A paradigmatic molecule for the investigation of protein structure, function and misfolding[J]. Clinica Chimica Acta,2005,357(2), 168-172
    [285]Barber M. S., Giesecke U., Reichert A., et al. Industrial enzymatic production of cephalosporin-based β-lactams[J]. Advances in Biochemical Engineering/Biotechnology, 2004,88,179-215
    [286]Lode H., Kemmerich B., Gruhlke G, et al. Cefotaxime in bronchopulmonary infections-a clinical and pharmacological study[J]. The Journal of Antimicrobial Chemotherapy,1980,6, Suppl A,193-198
    [287]Wick W. E. Cephalexin, a new orally absorbed cephalosporin antibiotic [J]. Applied Microbiology,1967,15(4),765-769
    [288]Valeur B. Molecular Fluorescence Principles and Applications[M], Wiley-VCH Verlag GmbH,2001
    [289]Forster T., Sinanoglu O. Modern Quantum Chemistry[M], vol.3, Academic Press, New York,1996
    [290]Scatchard G. An attraction of proteins for small molecules and ions[J]. Annals of the New York Academy of Sciences,1949,51,660-672
    [291]Lehrer S. S. Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion[J]. Biochemistry,1971,10,3254-3263
    [292]Wu C. W., Stryer L. Proximity relationships in rhodopsin[J]. Proc. Nat. Acad. Sci.,1972, 69,1104-1108
    [293]Kasai S., Horie T., Mizuma T., et al. Fluorescence energy transfer study of the relationship between the lone tryptophan residue and drug binding sites in human serum albumin[J]. J. Pharm. Sci.,1987,76,387-392
    [294]Gonzalez-Jimenez J., Corrales S., Moreno F., et al. Study of the interactions between xylazine and bovine serum albumin by fluorescence quenching measurements[J]. Chem. Pharm. Bull,1995,43,1949-1952
    [295]Lowry M., Fakayode S. O., Geng M. L., et al. Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry[J]. Anal. Chem.,2008,80,4551-4574
    [296]Lee Y. J., Datta S., Pellois J. P., Real-time fluorescence detection of protein transduction into live cells[J]. J. Am. Chem. Soc.,2008,130,2398-2399
    [297]Liu Y., Ogawa K., Schanze K. S. Conjugated polyelectrolyte based real-time fluorescence assay for phospholipase c[J]. Anal. Chem.,2008,80,150-158
    [298]Ruzicka J., Hansen E. H. Flow injection analysis. Part I. A new concept of fast continuous flow analysis[J]. Anal. Chim. Acta,1975,78,145-157
    [299]Rusicka J., Hansen E. H. Flow Injection Analysis[M],2nd Ed., John Wiley and Sons, New York,1988
    [300]Trojanowicz M. Advances in Flow Methods of Analysis [M], Wiley-VCH, Weinheim, Germany,2008
    [301]Kolev S., McKelvie I. Flow Injection Analysis[M], Elsevier BV, Amsterdam, The Netherlands,2009
    [302]Fletcher P., Andrew K. N., Calokerinos A. C. et al. Analytical applications of flow injection with chemiluminescence detection-a review[J]. Luminescence,2001,16,1-23
    [303]Kulmala S., Suomi J. Current status of modern analytical luminescence methods[J]. Anal. Chim. Acta,2003,500,21-69
    [304]Johnson L. N., Phillips D. C. Structure of some crystalline lysozyme-inhibitor complexes determined by x-ray analysis at 6 A resolution[J]. Nature,1965,206, 761-763
    [305]Blake C. C. F., Koenig D. F., Mair G. A., et al. Structure of hen egg-white lysozyme:a three-dimensional fourier synthesis at 2 A resolution[J]. Nature,1965,206,757-761
    [306]Blake C. C. F., Johnson L. N., Mair G. A., et al. Crystallographic studies of the activity of hen egg-white lysozyme[J]. Proc. Roy. Soc. Ser. B. Biol. Sci.,1967,167,378-388
    [307]Kumagai I., Sunada F., Takeda S., et al. Redesign of the substrate-binding site of hen egg white lysozyme based on the molecular evolution of C-type lysozymes[J]. J. Bio. Chem.,1992,267,4608-4612
    [308]Zhao S., Xie C., Lu X., et al. A facile and sensitive chemiluminescence determination of amino acids in biological samples after capillary electrophoretic separation[J]. Electrophoresis,2005,26,1745-1750
    [309]Turner M. A., Ho well P. L. Structures of partridge egg-white lysozyme with and without tri-N-acetylchitotriose inhibitor at 1.9 A resolution[J]. Protein Sci.,1995,4,442-449
    [310]Wang Z. M., Tan X. J., Chen D. H., et al. Study on the binding behavior of lysozyme with cephalosporin analogues by fluorescence spectroscopy[J]. J. Fluoresc.,2009,19, 801-808
    [311]E1-Shaboury S. R., Saleh G. A., Mohamed F. A., et al. Analysis of cephalosporin antibiotics[J]. J. Pharm. Biomed. Anal.,2007,45,1-19
    [312]Soltes L., Mach M. Estimation of drug-protein binding parameters on assuming the validity of thermodynamic equilibrium[J]. Journal of Chromatography, B:Analytical Technologies in the Biomedical and Life Sciences,2002,768(1),113-119
    [313]Lakowicz J. R., Principles of fluorescence spectroscopy[M],2nd Ed., Plenum Press, New York,1999
    [314]Ross P. D., Subramanian S. Thermodynamics of protein association reactions:forces contributing to stability[J]. Biochem.,1981,20(11),3096-3102
    [315]Zhang L. H., Wang M. X. Advances in Chemicobiology[M], Chemical Industry Press, Beijing,2005.
    [316]Carter D. C., Ho J. X. Structure of serum albumin[J]. Advances in Protein Chemistry, 1994,45,153-203
    [317]Huang B. X., Kim H. Y., Dass C. Probing three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry[J]. Journal of the American Society for Mass Spectrometry,2004,15(8),1237-1247
    [318]Takeoka S., Okamura Y, Teramura Y, et al. Function of fibrinogen y-chain dodecapeptide-conjugated latex beads under flow[J]. Biochemical and Biophysical Research Communications,2003,312(3),773-779
    [319]Tian J. N., Liu J. Q., Hu Z. D., et al. Interaction of wogonin with bovine serum albumin[J]. Bioorganic & Medicinal Chemistry,2005,13(12),4124-4129
    [320]Bi S.Y., Sun Y. T., Qiao C.Y., et al. Binding of several anti-tumor drugs to bovine serum albumin:Fluorescence study [J]. Journal of Luminescence,2009,129(5),541-547
    [321]Naik P. N., Chimatadar S. A., Nandibewoor S. T. Study on the interaction between antibacterial drug and bovine serum albumin:a spectroscopic approach[J]. Spectrochimica Acta. Part A, Molecular and biomolecular spectroscopy,2009,73(5), 841-845
    [322]He X. M., Carter D. C. Atomic structure and chemistry of human serum albumin[J]. Nature,1992,358(6383),209-215
    [323]Peters T. Advances in Protein Chemistry[M], Academic Press, New York,1985, Vol.37, p.161
    [324]Li Q. F., Zhang H. Y., Xue, C. X., et al. Determination of proteins at nanogram levels based on their enhancement effects of Rayleigh light scattering on dibromomethylchlorophosphonazo[J]. Spectrochimica Acta, Part A:Molecular and Biomolecular Spectroscopy,2000,56(12),2465-2470
    [325]Li Q. F., Chen X. G, Zhang H. Y, et al. Microdetermination of proteins using m-carboxychlorophosphonazo as detection probe by enhanced resonance light scattering spectroscopy[J]. Fresenius Journal of Analytical Chemistry,2000,368(7), 715-719
    [326]Anderson R. G, Nickless G Heterocyclic azo dyestuffs in analytical chemistry[J]. Analyst,1967,92(1093),207-238
    [327]Alizadeh N., Mehdipour R. Drug-selective electrode for ketamine determination in pharmaceutical preparations and electrochemical study of drug with BSA[J]. Journal of Pharmaceutical and Biomedical Analysis,2002,30(3),725-731
    [328]Xiao J. B., Chen J. W., Cao H., et al. Study of the interaction between baicalin and bovine serum albumin by multi-spectroscopic method[J]. Journal of Photochemistry and Photobiology, A:Chemistry,2007,191(2-3),222-227
    [329]Cao B. L., Endsley S., Andersen N. H.19F NMR studies of tryptophan/serum albumin binding[J]. Bioorganic & Medicinal Chemistry,2003,11(1),69-75
    [330]Huang Y. M., Zhang Z. Z., Zhang D. J., et al. Flow-injection analysis chemiluminescence detection combined with microdialysis sampling for studying protein binding of drug[J]. Talanta,2001,53(4),835-841
    [331]Wang Z. P., Zhang Z. Z., Fu Z. F., et al. A flow-injection ultrafiltration sampling chemiluminescence system for on-line determination of drug-protein interaction[J]. Analytical and Bioanalytical Chemistry,2003,377(4),660-665
    [332]Huang Y. M., Zhang Z. Z. Binding study of drug with bovine serum albumin using a combined technique of microdialysis with flow-injection chemiluminescent detection[J]. Journal of Pharmaceutical and Biomedical Analysis,2004,35(5),1293-1299
    [333]Kragh-Hansen U. Molecular aspects of ligand binding to serum albumin[J]. Pharmacological Reviews 1981,33(1),17-53
    [334]Mostafa S., El-sadek M., Alla E. A. Spectrophotometric determination of ciprofloxacin, enrofloxacin and pefloxacin through charge transfer complex formation[J]. Journal of Pharmaceutical and Biomedical Analysis,2002,27(1-2),133-142
    [335]Mahdy M. A., El-Ghamry H. A., Ismail A. Effect of free fatty acids on binding of anti-inflammatory drugs by bovine and human serum albumin[J]. Zagazig Journal of Pharmaceutical Sciences,1999,8(1),68-75
    [336]Sulkowska A. Interaction of drugs with bovine and human serum albumin[J]. Journal of Molecular Structure,2002,614(1-3),227-232
    [337]Ji Z. S.,Yuan H. Z., Liu M. L., et al.1H-NMR study of the effect of acetonitrile on the interaction of ibuprofen with human serum albumin[J]. Journal of Pharmaceutical and Biomedical Analysis,2002,30(1),151-159
    [338]Vainshtein B. K., Melik-Adamyan W. R., Barynin V. V., et al. Three-dimensional structure of the enzyme catalase[J]. Nature,1981,293(5831),411-412
    [339]Huang S. K. Comprehensive Textbook of Pharmacokinetics[M]. China Pharmaceutical University Press, Nanjing, China,1989, pp.13-17
    [340]王镜岩,朱圣庚,徐长发.生物化学[M],北京,高等教育出版社,2002,pp 252-257
    [341]He W., Yao X., Liu P., et al. Molecular modeling and spectroscopic studies on the binding of guaiacol to human immunoglobulin[J]. Science in China, Series B: Chemistry,2006,49(6),550-559
    [342]Guo W., Hu N. F. Interaction of myoglobin with poly(methacrylic acid) at different pH in their layer-by-layer assembly films:An electrochemical study[J]. Biophysical Chemistry,2007,129(2-3),163-171
    [343]Taboada P., Fernandez Y., Mosquera V. Interactions of two amphiphilic penicillins with myoglobin in aqueous buffered solutions:a thermodynamic and spectroscopy study[J]. Biomacromolecules,2004,5(6),2201-2211
    [344]马静,郑学仿,唐乾等.光谱法研究Cu2+与肌红蛋白的相互作用[J].高等学校化学学报,2008,29(2),258-263
    [345]唐乾,郑学仿,王静云等.可见光谱法研究肌红蛋白血红素铁与金属离子相互作用(Ⅰ),光谱学与光谱分析,2009,29(7),1958-1961
    [346]杨媛,林琳,张伟等.肌红蛋白与生物碱相互作用的光谱性质研究[J],光谱实验室,2009,26(1),122-125
    [347]黄鹤勇,顾晓天,丁艳等.荧光光谱法研究咖啡因与肌红蛋白的相互作用[J],光谱学与光谱分析,2009,29(10),2798-2802
    [348]毛慧,蔡炳锋,赵波等.苏丹红Ⅱ与肌红蛋白相互作用的分子模拟与实验[J],应用化学,2009,26(11),1332-1335
    [349]Whitburn K. D. The interaction of oxymyoglobin with hydrogen peroxide:the formation of ferrylmyoglobin at moderate excesses of hydrogen peroxide[J]. Archives of Biochemistry and Biophysics 1987,253(2),419-430
    [350]Zhang W., Fan C., Sun Y., et al. An electrochemical investigation of ligand-binding abilities of film-entrapped myoglobin[J]. Biochimica et Biophysica Acta, General Subjects,2003,1623(1),29-32
    [351]Lang L. FDA issues statement on diethylene glycol and melamine food contamination[J]. Gastroenterology,2007,133,5-6
    [352]Burns K. Recall shines spotlight on pet foods[J]. J. Am. Vet. Med. Assoc.,2007,230, 1285-1286.
    [353]Burns K. Events leading to the major recall of pet foods[J]. J. Am. Vet. Med. Assoc., 2007,230,1600-1620
    [354]Lam H. S., Ng P. C., Chu W. C. W., et al. Renal screening in children after exposure to low dose melamine in Hong Kong:cross sectional study[J]. BMJ (Clinical research ed.), 2008,337, a2991
    [355]Chiu M. C. Melamine-tainted milk product (MTMP) renal stone outbreak in humans[J]. Xianggang yi xue za zhi,2008,14,424-426
    [356]Chan E. Y. Y., Griffiths S. M., Chan C. W. Public-health risks of melamine in milk products[J]. Lancet,2008,372,1444-1445
    [357]Ono S., Funato T., Inoue Y, et al. Determination of melamine derivatives, melam, melem, ammeline and ammelide by high-performance cation-exchange chromatography[J]. J. Chromatogr. A,1998,815,197-204
    [358]Muniz-Valencia R., Ceballos-Magana S. G, Rosales-Martinez D., et al. Method development and validation for melamine and its derivatives in rice concentrates by liquid chromatography. Application to animal feed samples[J]. Anal. Bioanal. Chem., 2008,392,523-531
    [359]Kim B., Perkins L. B., Bushway R. J., et al. Determination of melamine in pet food by enzyme immunoassay, high-performance liquid chromatography with diode array detection, and ultra-performance liquid chromatography with tandem mass spectrometry[J]. J. AOAC Int.,2008,91,408-413
    [360]Sugita T., Ishiwata H., Yoshihira K., et al. Determination of melamine and three hydrolytic products by liquid chromatography[J]. Bull. Environ. Contam. Toxicol., 1990,44,567-571
    [361]Garber E. A. E. Detection of melamine using commercial enzyme-linked immunosorbent assay technology [J]. J. Food Prot.,2008,71,590-594
    [362]Sancho J. V., Ibanez M., Grimalt S., et al. Residue determination of cyromazine and its metabolite melamine in chard samples by ion-pair liquid chromatography coupled to electrospray tandem mass spectrometry[J]. Anal. Chim. Acta,2005,530,237-243
    [363]Andersen W. C., Turnipseed S. B., Karbiwnyk C. M., et al. Determination and confirmation of melamine residues in catfish, trout, tilapia, salmon, and shrimp by liquid chromatography with tandem mass spectrometry[J]. J. Agric. Food Chem.,2008, 56,4340-4347
    [364]Filigenzi M. S., Puschner B., Aston L. S., et al. Diagnostic determination of melamine and related compounds in kidney tissue by liquid chromatography/tandem mass spectrometry[J]. J. Agric. Food Chem.,2008,56,7593-7599
    [365]Standard of the People's Republic of China, GB/T 22388-2008:Determination of melamine in raw milk and dairy products[J],2008,10
    [366]Pojahn H. D., Dreher C., Van E. R. Effect of pressure on the formation and deoxygenation kinetics of oxymyoglobin. Mechanistic information from a volume profile analysis[J]. J. Am. Chem. Soc.,1990,112,17-22
    [367]Brantley R. E. J., Smerdon S. J., Wilkinson A. J., et al. The mechanism of autooxidation of myoglobin[J]. J. Biol. Chem.,1993,268,6995-7010
    [368]Guo B. H. Chemical Compositions of milk. In Dairy Chemistry[M], China light industry press:Beijing, China,2001, pp 6
    [369]General Administration of Quality Supervision, Inspection and Quarantine of the PRC[EB/OL]. Bulletin,2008, http://www.aqsiq.gov.cn/gdxw/200809/t20080917_90088. htm
    [370]Haria M., Fitton A., Peters D. H. Loratadine:A reappraisal of its pharmacological properties and therapeutic use in allergic disorders[J]. Drugs,1994,48,617-637
    [371]Kunicki P. K. Determination of loratadine in human plasma by high-performance liquid chromatographic method with ultraviolet detection[J]. J. Chromatogr. B. Biomed. Sci. Appl.,2001,755,331-335
    [372]E1-Ragehy N. A., Badawy A. M., Khateeb S. Z. El. Stability indicating methods for the determination of loratadine in the presence of its degradation product[J]. J. Pharm. Biomed. Anal.,2002,28,1041-1053
    [373]Radhakrishna T., Narasaraju A., Ramakrishna M., et al. Simultaneous determination of montelukast and loratadine by HPLC and derivative spectrophotometric methods [J]. J. Pharm. Biomed. Anal.,2003,31,359-368
    [374]Ruperez F. J., Fernandez H., Barbas C. LC determination of loratadine and related impurities[J]. J. Pharm. Biomed. Anal.,2002,29,35-41
    [375]E1-Sherbiny D. T., El-Enany N., Belal F. F., et al. Simultaneous determination of loratadine and desloratadine in pharmaceutical preparations using liquid chromatography with a microemulsion as eluent[J]. J. Pharm. Biomed. Anal.,2007,43, 1236-1242
    [376]Amini H., Ahmadiani A. Rapid determination of loratadine in small volume plasma samples by high-performance liquid chromatography with fluorescence detection[J]. J. Chromatogr. B,2004,809,227-230
    [377]Sun J., Wang G, Wang W., et al. Simultaneous determination of loratadine and pseudoephedrine sulfate in human plasma by liquid chromatography-electrospray mass spectrometry for pharmacokinetic studies[J]. J. Pharm. Biomed. Anal.,2005,39, 217-224
    [378]Vlase L., Imre S., Muntean D., et al. Determination of loratadine and its active metabolite in human plasma by high-performance liquid chromatography with mass spectrometry detection[J]. J. Pharm. Biomed. Anal.,2007,44,652-657
    [379]Johnson R., Christensen J., Lin C.C. Sensitive gas-liquid chromatographic method for the determination of loratadine and its major active metabolite, descarboethoxy loratadine, in human plasma using a nitrogen-phosphorus detector[J]. J. Chromatogr. B. Biomed. Sci. Appl.,1994,657,125-131
    [380]Martens J. Determination of loratadine and pheniramine from human serum by gas chromatography-mass spectrometry [J]. J. Chromatogr. B. Biomed. Sci. Appl.,1995, 673,183-188
    [381]Fernandez H., Ruperez F. J., Barbas C. Capillary electrophoresis determination of loratadine and related impurities[J]. J. Pharm. Biomed. Anal.,2003,31,499-506
    [382]Mikus P., Kubacak P., Valaskova I., et al. Capillary zone electrophoresis determination of loratadine in tablets [J]. Pharmazie,2004,59,260-262
    [383]Capella-Priro M. E., Bossi A., Esteve-Romero J. Optimization by factorial design of a capillary zone electrophoresis method for the simultaneous separation of antihistamines[J]. Anal. Biochem.,2006,352,41-49
    [384]Mabrouk M. M., El-Fatatry H. M., Hammad S., et al. Simultaneous determination of loratadine and pseudoephedrine sulfate in pharmaceutical formulation by RP-LC and derivative spectrophotometry [J]. J. Pharm. Biomed. Anal.,2003,33,597-604
    [385]Mahgoub H., Gazy A. A., El-Yazbi F. A., et al. Spectrophotometric determination of binary mixtures of pseudoephedrine with some histamine H1-receptor antagonists using derivative ratio spectrum method[J]. J. Pharm. Biomed. Anal.,2003,31,801-809
    [386]Onur F., Yucesoy C., Dermis S., et al. Simultaneous determination of pseudoephedrine sulfate, dexbrompheniramine maleate and loratadine in pharmaceutical preparations using derivative spectrophotometry and ratio spectra derivative spectrophotometry[J]. Talanta,2000,51,269-279
    [387]Nogowska M., Zajac M., Muszalska I. Spectrophotometry (UV) and HPLC methods for determination of loratadine HCl in pharmaceutical preparations. Validation of the methods[J]. Chem. Anal. (Warsaw),2000,45,681-688
    [388]Gazy A. A., Mahgoub H., El-Yazbi F. A., et al. Determination of some histamine H1-receptor antagonists in dosage forms[J]. J. Pharm. Biomed. Anal.,2002,30, 859-867
    [389]Kricka L. J. Clinical applications of chemiluminescence[J]. Anal. Chim. Acta,2003, 500,279-286
    [390]Song Z. H., Wang C.N. Ultrasensitive assay of azithromycin in medicine and bio-fluids based on its enhanced luminol-H2O2 chemiluminescence reaction using flow injection technique[J]. Bioorgan. Med. Chem.,2003,11,5375-5380
    [391]Song Z. H., Wang C.N. Sensitive chemiluminescence assay for risperidone in pharmaceutical preparations [J]. J. Pharm. Biomed. Anal.,2004,36,491-494
    [392]Liu H. Y., Gao X. F., He X. L., et al. Sensitive chemiluminescence assay for patulin in apple juice by flow injection[J]. Spectrosc. Lett.,2007,40,851-860