核电厂结构抗震分析中不同规范要求引起的差异及影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国已运行和在建的核电厂涉及的技术种类不一,有些使用国内技术,有些引进国外技术,且引进的国家及技术均有所不同,这就造成现有中国核电厂设计依据的法规和标准有所不同。对于核电厂的抗震分析,核电厂设计依据不同必然对一定阶段下核电厂抗震设计的深度和实际核电厂抗震设防水准造成一定的影响,本文便基于实际核电厂工程抗震设计过程中因引用不同的规范造成核电厂许可过程和设计过程方面差异的一系列问题进行了比较、分析和研究,并给出了一些可供实际工程应用的研究结果,同时为更精确的开展计算分析,发展和提出了一种拟合多阻尼反应谱的人工地震动时程优化算法。研究工作为我国核电厂抗震设计、安全评估以及相关法规标准的完善和修订提供有益的参考。本文的主要工作如下:
     (1)以AP1000核电机组在中美两国申请许可证过程为例,比较分析了中国和美国核电厂许可证管理程序的差异,展示了对于同一核电机组依据不同的规范审评也可能对许可证管理过程造成一定的差异。
     (2)利用ASCE4-98和RCC-G两种不同的规范方法进行了CPR1000安全壳结构的阻抗函数计算分析,研究了不同阻抗函数计算方法在核电厂结构地震方面应用引起的差异性。在考虑地基土剪切波速、泊松比及地基土密度三种影响因素的情况下,分别探讨了不同的地基参数对应的两种规范方法得到的计算结果,给出了两种规范分析方法计算的地基刚度和阻尼的差异,验证了地基土剪切波速是影响地基阻抗函数大小的关键因素。并基于上述计算结果,分析CPR1000安全壳结构的地震反应,研究了地基土剪切波速、泊松比及地基土密度三种影响因素变化的情况下核电厂结构的反应规律。计算结果说明:ASCE4-98计算地基阻抗函数的方法较于RCC-G方法保守;地基土密度对核电厂结构响应的影响较小;地基土泊松比对核电厂结构响应的影响可以忽略;随着地基土剪切波速的增大,核电厂结构响应变化幅度降低,当剪切波速从1900m/s增加至2200m/s时,安全壳结构响应已出现拐点,考虑到整个计算过程的不确定性,建议当地基土剪切波速大于等于1900m/s时,CPR1000安全壳结构可不考虑地基与结构之间的相互作用。
     (3)基于AP1000核岛结构设计地基的场地参数模型,分析选取不同地震输入界面时同一特定场地的地表地震动峰值加速度和反应谱的差异。计算结果表明:地震输入界面的不同,AP1000核岛结构设计地基的同一场地土层模型地表地震动峰值加速度差异高达2.25倍,地表地震动加速度反应谱频谱特性发生较大的变化,建议在AP1000核电厂地震安全性评价中应基于剪切波速为2438m/s的基岩层作为土层地震反应分析的地震输入界面,而当一定深度内地基剪切波速达不到剪切波速2438m/s,则应基于地基与结构敏感性分析选择地震输入界面。同时说明在特定厂址评价中应基于同一标高比较厂址特定反应谱和AP1000标准设计地震反应谱的大小。并基于考虑地基与结构之间相互作用的不同方法,给出设计基岩处和基础底部的AP1000设计谱。计算结果说明:基础底部AP1000设计谱不能包络核岛结构抗震设计常用的0.20g标定的RG1.60谱。
     (4)基于不同核电厂法规涉及人工合成地震动方面的差异,对比现行中国可引用的法规之间在输入地震动的时程方面的异同,并结合工程实践给出了相关的评述和应用建议。同时,基于核电实际工程需要,提出了一种拟合多阻尼反应谱的人工地震动时程优化算法,实现了提高设计地震动时程对更多多阻尼目标反应谱的更高的拟合精度。该方法基于真实地震记录或传统方法获取初始加速度时程,然后从全局角度来考虑添加的信号,使得添加的信号对反应的影响总是在可控范围之内,这种可控性通过对优化的目标函数施加约束来实现。算例分析结果表明,该方法可实现满足5个不同阻尼比下的目标谱的拟合精度的设计地震动时程合成,同时较容易地将设计地震动时程的反应谱与多阻尼目标谱的最大误差降低至5%左右。
     (5)基于不同规范规定的核电厂抗震分析方法不同,且中国核电厂抗震规范中无复频响应分析方法,使用时程动力法和复频响应分析法计算同一核电厂结构的响应。计算结果表明:对于核电厂结构,因在抗震设计时其结构体系等效为线性体系,满足叠加原理要求,故在计算核电厂结构的响应的时域法或频域法是等价的,计算结果一致;由于频率在振动过程中物理概念的重要性,在频域中处理振动问题有许多优点,且频域解在计算上已无大困难。基于此,建议中国核电厂抗震设计规范中应增加复频响应分析法。
     (6)基于不同规范涉及竖向地震动方面的规定不同,对比分析竖向地震动选取的方式不同得到的竖向反应谱的差异,并基于AP1000核电厂结构分析竖向反应谱的差异可能对同一核电厂抗震响应造成的影响。计算结果说明:不同方法选取的竖向反应谱对核电厂结构水平向响应的影响可以忽略;峰值相同,反应谱谱形不同的竖向设计反应谱对核电厂结构的竖向峰值加速度的影响可以忽略,但需考虑对竖向相对最大位移和竖向楼层反应谱的影响;在核电厂抗震设计过程中,竖向峰值加速度取水平向峰值加速度的2/3偏于不保守。
     最后,在总结论文工作的基础上,提出了有待进一步研究的问题。
The NPPs (nuclear power plants) that had been built and will be built inChina are involve many types technique, some are come from domestic, somewere introduced from foreign countries, and the countries that the techniquewas used for design NPPs are difference. So we could use many codes thatwere published in other countries, but this status will lead to NPPs in Chinacould accord different codes to design. For the NPPs seismic analysis, if weuse the different regulations, then we maybe reach to different depths ofdesign in one same phase and receive two distinct design results for one sameNPP which is according to two different codes. In this paper, we do series ofstudies on this discrepancy between codes of NPPs seismic design that couldbe used in China, and we give some results of studies that could be used inactual NPPs project, and provide theoretical guidance on NPPs design, safereview of design reports and renovate code. These studies could help theconstruction and research of the later NPPs.
     The works in this study include:
     (1)Based on the process of AP1000licensing process in China andAmerican, comparison and analysis of the difference between the manageprograms of nuclear power plant in China and American. We gained that thereare also some differences in same nuclear power plant under two disparatecodes.
     (2)The earthquake response analysis of power plant structures underdifferent impendence functions of regulations considering the sensitivity ofparameters of ground soil. Based on impendence functions of foundation thatare calculated by two methods of different regulations, we analyze thestructure earthquake response of CPR1000NPP and give the difference ofearthquake response of NPP building by RCC-G and ASCE4-98impendencefunction. Considering the sensitivity of the impendence function of groundsoil, we study the response behavior of three parameters of velocity of ground,Poisson’s ratio of ground, and density of ground change. The results showthat:the computational method of impendence functions of ASCE4-98isconservative compared with the method in RCC-G;The density of ground haslittle impact on the response of NPP; the influence of Poisson’s ratio ofground could be neglected to the response of NPP; the ground soil could reduce the response of earthquakes under some conditions; With theincreasing of the shear wave velocity of ground, the response of NPP changeslittle, and when the velocity varies from1900m/s to2200m/s, there is only2%difference between two horizontal peak acceleration responses of the highestpoint in CPR1000NPP. Considering the uncertainty of the computation, wesuggest that the effect of foundation-structure interaction could be neglectedwhen the shear wave velocity of ground is greater than or is equal to1900m/s.
     (3)In the process of seismic hazard assessment of nuclear power plant,there are some different requirements in determination of seismic bedrock inthe site model by the related China and America code. In this study, theseismic bedrocks with different shear wave velocities of700m/s,1100m/s,and2438m/s were selected based on the site models for AP1000nuclearpower plant design, and seismic responses of the site models, including thepeak ground accelerations and response spectra, were analyzed by softwareswere widely used in China and America. The results indicated that differentshear wave velocities of seismic bedrocks could lead to a strong difference ofcalculated ground motions of sites for AP1000nuclear power plant design,such as more than2.25times variation of the peak ground accelerations.Therefore, it was suggested that the rock layer with shear wave velocity of2438m/s should be regarded as the seismic bedrock in the seismic safetyanalysis of AP1000nuclear power plant site. When the shear wave velocity ofsoil in certain depth still could not reach2438m/s,then we should select theseismic bedrock based on soil-structure interaction analysis. Based on theintroduction of AP1000Certified Seismic Design Response Spectra,we givethe relationship of difference Response Spectra of definite by differentRegulations, and illuminate that we should compare the site specific ResponseSpectra and AP1000CSDRS on one same ground level. Then, According totwo methods in SSI analysis, utilizing one artificial earthquake waves thatsimulating five damping rations of AP1000CSDRS, calculating two levelsCSDRS of design rock and foundation base on the basis of AP1000designground. We get that the calculated two levels CSDRS of design rock andfoundation base could not envelope RG1.60anchored by0.2g.
     (4) The main technical requirements in several domestic and foreigncodes involved in the synthesis of design ground motion are interpreted, andthe suggestions could be employed in actual project in China. Based on thepractical engineering requirements of nuclear power plants, we propose anoptimization algorithm for the time history generation to match the multi-damping design spectra. The algorithm could enhance the fittingprecision between the response spectra of time history to target spectra undermulti-damping ratios. In our method, the seed ground motion history could beobtained from actual seismic records or from traditional methods, and then weconsider to superimpose an adjusted ground motion in time domain from aglobal view point, which make the influences of the superimposed signal tothe response spectra be under control. The controllable property isimplemented through adding constraints on the objective function whichneeds to be optimized. In a numerical example, we demonstrate that theground motions generated by our method could match the design spectraunder5different damping ratios in a high precision. The max differencebetween response spectra of artificial time history and design spectra is about5%, and all the response spectra envelope the design spectra.
     (5)The main technical requirements in several domestic and foreignstandards involved in the methods of seismic analysis of NPPs are different,Based on there is no complex frequency response method in Code for SeismicDesign of Nuclear Power Plants of China, and we do analysis in AP1000nuclear island structure by complex frequency response method and timehistory method. The results of analysis show that the two methods are similaron the basis of the linear analysis of nuclear island. Besides, with thedevelopment of computer science, the complex frequency response methodbecomes much more fast and convenience, and then we suggest that we couldadd complex frequency response method in Code for Seismic Design ofNuclear Power Plants of China.
     (6)The requirements of vertical ground response of seismic analysis ofNPPs in several domestic and foreign standards are compared,and we do theseismic analysis on the basis of AP1000nuclear island structure and AP1000design response spectrum. The results of analysis show that different methodsof obtaining vertical ground response in seismic evaluation of one site on thehorizontal response of nuclear island structure effect could be neglected;thepeaks of different vertical ground accelerations are same and the shapes ofvertical response spectrum are different which have a little effect on the peaksof response accelerations of nuclear island structure,the effect on responsespectrums of nuclear island structure but need to be considered. In seismicanalysis of building of nuclear power plant, the vertical peak of designacceleration by scaling the corresponding ordinates of the horizontal peak ofdesign acceleration by two-thirds is un-conservative.
     In the end, we summarized our studied work, and then pointed out theproblems that need to be studied more deeply.
引文
[1]陈岩.基于三维实体模型的核电厂结构楼层反应谱分析[D].天津:天津大学硕士学位论文,2006.
    [2]常士骠.工程地质手册(第四版)[M].北京:中国建筑工业出版社,2007.
    [3]陈金元.核安全专业实务[M].北京:中国环境科学出版社,2004.
    [4]胡聿贤,何训.考虑相位谱的人造地震动反应谱拟合[J].地震工程与工程振动,1986,6(2):37-51.
    [5]胡聿贤.地震工程学(第二版)[M].北京:地震出版社,2006.
    [6]侯春林.跨断层埋地管线断层错动反应分析方法[D].北京:中国地震局地球物理研究所硕士学位论文,2006.
    [7]侯春林,李小军,潘蓉.核电厂结构地基阻抗函数不同规范采用的计算方法比较分析[J].核动力工程,2009,5(3):9-12.
    [8]侯春林,李小军.输入界面对AP1000设计地基地表地震动的影响[J].核动力工程,待发表.
    [9]高敏.美国核电厂行政许可制度介评[J].环境保护,2008,7(2):69-72.
    [10]国务院. HAF001中华人民共和国民用核设施安全监督管理条例[M].北京:国家核安全局,2006.
    [11]国务院. HAF001/01中华人民共和国民用核设施安全监督管理条例实施细则之一—核电厂安全许可证的申请和颁发,北京:国家核安全局,1993.
    [12]高峰.地下结构动力分析若干问题研究[D].成都:西南交通大学博士学位论文,2003.
    [13]耿淑伟.抗震设计中的地震动输入参数的研究[D].哈尔滨:中国地震局工程力学研究所博士学位论文,2010.
    [14]建筑地基基础设计规范(GB5007-2002)[S].北京:中国计划出版社,2002.
    [15]康慧,王正.核电厂建设五阶段与核安全许可制度[J].电力勘测设计,2007,5(4):73-76.
    [16]李小军.场地土层对地面运动影响的分析方法[J].世界地震工程.1992,8(2):49-60.
    [17]李小军,彭青.不同类别场地地震动参数的计算分析[J].地震工程与工程振动.2001.21(1):29-36.
    [18]李小军,侯春林,刘爱文,赵雷.考虑压缩失效时埋地管线跨地震断层的最佳交角研究[J].应用基础与工程科学学报.2006,14(2):203-210.
    [19]李忠献,陈岩,梁万顺.核电厂结构的楼层反应谱分析[J].福州大学学报2005,33(增刊):62-67.
    [20]李忠献,李忠诚,沈望霞.核反应堆厂房结构楼层反应谱的敏感性分析[J].核动力工程,2005,26(1):44-50.
    [21]李忠诚.考虑土—结构相互作用效应的核电厂地震响应分析[D].天津:天津大学博士学位论文,2006.
    [22]李忠诚,赵凤新.不同法规关于核电厂设计地震动合成的技术要求比较[J].核动力工程,2006,27(2):17-21.
    [23]李英民,杨琼,赖明.基于进化策略算法拟合多阻尼比反应谱的地震动仿真[J].世界地震工程,2003,19(2):33-38.
    [24]齐文浩,薄景山.土层地震反应等效线性化方法综述[J].世界地震工程2007,23(4):221-226.
    [25]齐文浩.土层非线性地震反应分析方法研究[D].哈尔滨:中国地震局工程力学研究所博士学位论文,2008.
    [26]戚承志,钱七虎.核电站抗震研究综述[J].地震工程与工程振动,2000,20(3):76-85.
    [27]田玉基,杨庆山.多阻尼比设计反应谱的非平稳地震动场拟合[J].核动力工程,2010,29(1):43-47.
    [28]王冲.输入界面对土层地表地震动的影响[D].哈尔滨:中国地震局工程力学研究所硕士学位论文,2009.
    [29]杨庆山,姜海鹏.基于相位差谱的时频非平稳人造地震动的反应谱拟合[J].地震工程与工程振动,2002,22(1):32-38.
    [30]谢异同,盛涛,袁俊.拟合多阻尼比目标反应谱的高精度地震动调整方法,2011,33(3):223-227.
    [31]杨柏坡,窦立军.地震安全性评价和高层建筑的地震动输入[J].地震工程与工程振动,2000,20(1):35-41.
    [32]杨子春.对AP1000技术消化吸收的几点看法,三代核电技术报告会三代核电技术报告会文集,2007.
    [33]杨溥,李英民,赖明等.结构时程分析法输入地震波的选择控制指标[J].土木工程学报,2000,33(6):33-37.
    [34]郁祖盛,中国与美国核电厂许可证管理程序的比较[J],核安全,2006,(3):33-38.
    [35]赵凤新,张郁山.多阻尼反应谱拟合的时域叠加法[J].核动力工程,2008,29(3):35-40.
    [36]张皎,郭明珠,季杨.简论人造地震动的研究[J].世界地震工程,2008,24(3):31-34.
    [37]周伯昌.不同地震环境下核电厂建筑结构地震反应特性分析[D].北京:中国地震局地球物理研究所硕士学位论文,2007.
    [38]周伯昌,李小军,李亚琦.我国核电厂厂址特定地震动特征分析[J].中国地震2008,22(3):31-34.
    [39]中华人民共和国国家标准.核电厂抗震设计规范(GB50267-97)[S].北京:中国计划出版社,1998.
    [40]中华人民共和国国家标准.工程场地地震安全性评价规范(GB17741-1999)[S].北京:中国建筑工业出版社,1998.
    [41] AP1000Design Control Document Rev.15.2005.
    [42] AP1000Design Control Document Rev.17.2008.
    [43] American Society of Civil Engineers Standard. Seismic Analysis of Safety-RelatedNuclear Structures and Commentary[C], ASCE4-98.1998.
    [44] A. Giaralis and P. Spanos. Wavelet-based response spectrum compatible synthesis ofaccelerograms–eurocode application[J]. Soil Dynamics and Earthquake Engineering,2009,29(1):219-235.
    [45] Cooley, J.W., and Tukey, J.W. An Algorithm for the Machine Calculation ofComplex Fourier Series[J]. Mathematics of Computation,1965,19(90):212-217.
    [46] D. A. Gasparini and E. H. Vanmarcke. Simulated earthquake motions compatiblewith prescribed response spectra[M], Publication No.76-4. Dept. of CivilEngineering, Massachusetts Institute of Tehnology,1976.
    [47] DC/COL-ISG-17, Interim Staff Guidance on Ensuring Hazard-Consistent SeismicInput for Site Response and Soil Structure Interaction Analysis[M].2009
    [48] D.-H. Choi and S.-H. Lee. Multi-damping earthquake design spectra-compatiblemotion histories[J]. Nuclear Engineering and Design,2003,226(3):221-230.
    [49] Electricite DeFrance, Design and construction rules for nuclear power plants.
    [50] Electricite DeFrance, Nuclear Power Block Seismic Analysis Presentation ofCalculations.
    [51] F. Zhao, Y. Zhang, and H. Lue. Artificial ground motion compatible with specifiedground shaking peaks and target response spectrum[J]. Earthquake Engineering andEngineering Vibration,2006,5(1):41-48.
    [52] Finite element modeling of the AP1000nuclear island for seismic analysis atanalysis at generic soil and rock sites[J], SMiRT18-J12-1,Beijing, China: August7-12,2005.
    [53] G. Ahmadi. Generation of artificial time-histories compatible with given responsespectra)a review[J]. SM archives,1979,4(3):207-239.
    [54] IAEA Safety Standards Series No.NS-G-3.3. Evaluation of Seismic Hazards forNuclear Power Plants[M].2002.
    [55] I.M Idriss, Joseph I.SUN.User’s Manual for shake91,1992.
    [56] Javier Avile′s and Martha Sua′rez, Effective periods and dampings ofbuilding-foundation systems including seismic wave effects[J]. EngineeringStructures24(2002):553-562.
    [57] J. Frenk and S. Schaible. Fractional programming[J]. Handbook of GeneralizedConvexity and Generalized Monotonicity,2005,pages335-386.
    [58] J. Hancock, J. Watson-Lamprey, A. NORMAN, J. JULIAN, A. Markatis, E.McCOYH, and R. Mendis. An improved method of matching response spectra ofrecorded earthquake ground motion using wavelets[J]. Journal of EarthquakeEngineering,2006,10(S1):67-89.
    [59] K. Lilhanand and W. S. Tseng. Generation of synthetic time histories compatiblewith multiple damping design response spectra[J]. In SMiRT-9, pages105–110,1987.
    [60] K. Lilhanand andW. S. Tseng. Development and application of realistic earthquaketime histories compatible with multiple-damping design spectra. In Proceedings ofthe9th WCEE, volume2,1988,pages819-824.
    [61] Liu, S.C., and Fagel, L.W. Earthquake Interaction by Fast Fourier Transform[C]. J.Engrg. Mech. Div., ASCE,1971,97(4).
    [62] M. Hirasawa and M. Watabe. Generation of simulated earthquake motionscompatible with multi-damping response spectra. In Proc10th World Conf EarthqEng, Madrid, volume2,1992, pages807-810.
    [63] Meek, J.W., and Veletsos, A.S. Dynamic Analysis by Extra Fast Fourier Transform.Report12, Department of Civil Engineering[M], Rice University, Houston, Tex,1971.
    [64] M. Kaul. Spectrum-consistent time-history generation[J]. Journal of the EngineeringMechanics Division,1978,104(4):781-788.
    [65] NUREG-0800, SRP2.5.2.Vibratory Ground Motion. Rev4, US NRC, March2007.
    [66] NUREG-0800, SRP2.5.4.Stability of Subsurface Materials and Foundations.Rev4,US NRC, May2010.
    [67] NUREG-0800, SRP3.7.1.Seismic Design Parameters.Rev3, US NRC, March2007.
    [68] NUREG-0800SRP3.7.2.Seismic System Analysis. Rev3, US NRC, March2007.
    [69] NUREG-0800SRP3.7.3.Seismic Subsystem Analysis.Rev3, US NRC, March2007.
    [70] N. Shun-Hao, X. Wei-Chau, and P. Mahesh. Application of hilbert-huang transformin generating spectrum-compatible earthquake time histories. ISRN SignalProcessing,2011.
    [71] Regulatory Guide1.60.Design Response Spectra for Seismic Design of NuclearPower Plants.US AEC, October1973.
    [72] Regulatory Guide1.208.A Performance-Based Approach to Define the Site-SpecificEarthquake Ground Motion. US NRC, March2007.
    [73] Seismic Design Criteria for Structures, Systems, and Components in NuclearFacilities American Society of Civil Engineers[C], ASCE43-05.2005.
    [74] Schnabel, P. B., Lysmer, J., Seed, H. B.SHAKE-A Computer program forEarthquake Response Analysis of Horizontally Layered Sites.Report EERC72/12[M], Earthquake Engineering Research Center, Berkeley, California,1972.
    [75] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge UniversityPress[M],2004.
    [76] S.Mukherjee and V. Gupta. Wavelet-based generation of spectrum-compatibletime-histories[J]. Soil Dynamics and Earthquake Engineering,2002,22(9-12):799-804.
    [77] SECY-08-0152. Final Rule-Consideration of Aircraft Impacts for New NuclearPower. Reactors. U.S. Nuclear Regulatory Commission, October15,2008.
    [78] US.10CFR Part52-Early Site Permits, Standard Design Certification, and CombinedLicenses for Nuclear Power Plants.
    [79] US.10CFR Part50-Dmestic Licensing of Production and Utilization Facilities.IssuedDesign Certification-Advanced Passive1000(AP1000), Rev.15Nuclear PowerPlant licensing process.
    [80] Y. Zhang and F. Zhao. Artificial ground motion compatible with specified peakground displacement and target multi-damping response spectra[J]. NuclearEngineering and Design,2010,240(10):2571-2578.